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THE OLYMPIAD CORNER 
No. 97 

R.E. WOODROW 

All communications about this column should be sent to Professor R.E. Woodrow, 
Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, 
Canada, T2NIN4. 

The first item is the 29th I.M.O. (Sydney &.Canberra). I would like to thank Bruce 
Shawyer and Richard Nowakowski for collecting information and sharing it with me. 

This year a record 268 students from 49 countries participated in the contest written 
July 9—21 at Sydney and Canberra, Australia. The maximum team size for each country 
was again six students, the same as for the last five years. 

The six problems of the competition were assigned equal weights of seven points each 
(the same as in the last seven I.M.O. Js) for a maximum possible individual score of 42 (and a 
maximum possible team score of 252). For comparison see the last seven I.M.O. reports in 
[1981: 220], [1982: 223], [1983: 205], [1984: 249], [1985: 202], [1986: 169] and [1987: 207]. 

This year first place (gold) medals were awarded to students with scores from 32 to a 
perfect 42. There were 5 perfect papers (compared to 22 in 1987 at Havana) and 4 more 
students scored 40 or 41. In all 17 gold medals were awarded. The second place (silver) 
medals were awarded to the 48 students with scores in the range 23—31. There were 66 third 
place (bronze) medals awarded to students with scores in the interval 14—22. In addition 
honourable mention was given any student receiving full marks on at least one problem. 
Congratulations to the following seventeen students who received a gold medal. 

Name Country Score 
Nicusor Dan 
Nicolai Filonov 
Hong Yu He 
Bao Chau Ngo 
Adrian Vasiu 
Xi Chen 
Sergei Ivanov 
Julien Cassaigne 
Ravi Vakil 
Dimitri Tuliakov 
Dimitri Ivanov 
Thorsten Kleinjung 
Terence Tao 
Andreas Siebert 
Wolfgang Stoecher 
Shoni Dar . 
Mats Persson 

Romania 
U.S.S.R. 
China 
Vietnam 
Romania 
China 
U.S.S.R. 
France 
Canada 
U.S.S.R. 
U.S.S.R. 
W. Germany 
Australia 
E. Germany 
Austria 
Israel 
Sweden 

42 
42 
42 
42 
42 
41 
41 
40 
40 
37 
36 
35 
34 
33 
33 
32 
32 
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The international jury (comprised of the team leaders from the participating 
countries) set out to give a paper that was somewhat harder than the one given last year in 
Havana. An indication of their success is the width of the gold medal band this year, and 
the rather astonishing absence of the U.S.A. from the ranks of gold medalists! Nevertheless 
the jury awarded medals to 49% of the participants, down only slightly from the 50.6% in 
1987. Terence Tao of Australia celebrated his thirteenth birthday during the contest and 
was paraded around the cafeteria by his teammates. He adds a gold this year with a score of 
32 to the silver (Havana) and bronze (Warsaw) he won previously. While there were no 
female gold medalists this year, Zvesdelina Stankova (Bulgaria) and Jianmei Wang (China) 
were the highest placed females with scores of 29. Also, Stankova was awarded a Special 
Prize (a John Conway wooden puzzle) for her solution to question 6. 

As the I.M.O. is officially an individual event, the compilation and comparison of 
team scores is unofficial, if inevitable. These team scores were compiled by adding up the 
individual scores of the team members. The totals are given in the following table. 
Congratulations to the winning team from the U.S.S.R. and to the teams from Romania and 
China who tied for second place not far behind. 

Rank 

1. 
2.-3. 
2.-3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13.-14. 
13.-14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

Country Score 

U.S.S.R. 
China 
Romania 
W. Germany 
Vietnam 
U.S.A. 
E. Germany 
Bulgaria 
France 
Canada 
U.K. 
Czechoslovakia 
Israel 
Sweden 
Austria 
Hungary 
Australia 
Singapore 
Yugoslavia 
Iran 
Netherlands 
Republic of Korea 
Belgium 
Hong Kong 
Tunisia 
Colombia 

(Max 252) 
1st 

217 4 
201 2 
201 2 
174 1 
166 1 
153 
145 1 
144 
128 1 
124 1 
121 
120 
115 1 
115 1 
110 1 
109 
100 1 

96 
92 
86 
85 
79 
76 
68 
67 
66 

Prizes 
2nd 
2 
4 
4 
4 
4 
5 
4 
4 
1 
1 
3 
2 
— 
— 
1 
2 
— 
2 
— 
1 
— 
— 
— 
— 
— 
— 

3rd 
— 
— 
— 
1 
— 
1 
— 
2 
3 
2 
2 
2 
4 
4 
1 
2 
1 
2 
4 
3 
3 
3 
3 
2 
3 
3 

Total 
Prizes 
6 
6 
6 
6 
5 
6 
5 (Team of 5) 
6 
5 
4 
5 
4 
5 
5 
3 
4 
2 
4 
4 
4 
3 
3 
3 
2 
3 (Team of 4) 
3 
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27.-
27.-
27.-
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 

-28.-29. 
-28.-29. 
-28.-29. 

44. 
45.-46. 
45.-46. 
47. 
48. 
49. 

Finland 
Greece 
Turkey 
Luxembourg 
Morocco 
Peru 
Poland 
New Zealand 
Italy 
Algeria 
Mexico 
Brazil 
Iceland 
Cuba 
Spain 
Norway 
Ireland 
Philippines 
Argentina 
Kuwait 
Cyprus 
Indonesia 
Ecuador 

65 
65 
65 
64 
62 
55 
54 
47 
44 
42 
40 
39 
37 
35 
34 
33 
30 
29 
23 
23 
21 
6 
1 

- 1 

2 
1 
3 
2 
2 
1 

- 1 -
- 1 -
- - 1 
- 1 -
- - 1 

2 
1 
3 
3 (Team of 3) 
2 

(Team of 3) 

(Team of 4 
(Team 

of 4) 
of 5) 

0 
1 (Team of 4) 
0 
0 
0 
0 
0 (Team of 5) 
0 (Team of 3) 
0 
0 
0 (Team of 3 
0 (Team 

of 3) 
ofl) 

This year the Canadian team moved up to tenth place. The team members, scores 

and the leaders were as follows: 

Leaders: 

Observer: 

Ravi Vakil 40 
Patrick Surry 25 
Colin Springer 22 
David McKinnon 15 
Gurraj Sangha 11 
Philip Jong 11 
Bruce Shawyer, Memorial University of Newfoundland 
Ron Scoins, Waterloo 
Richard Nowakowski, Dalhousie. 

(gold medal) 
(silver medal) 
(bronze medal) 
(bronze medal) 
(honourable mention) 

The U.S.A. team slipped to sixth place, but members put in a solid performance. 

The team members were: 
Jordan Ellenberg 
John Woo 
Samuel Kntin 
Tal Kubo 
Eric Wepsic 
Hubert Bray 

The leaders of the American team were: 

31 
31 
26 
24 
23 
18 

(silver medal) 
^silver medal) 
(silver medal) 
(silver medal) 
(silver medal) 
(bronze medal) 

Gerald Hener, Concordia College 
Gregg Patruno, Columbia University. 
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The next few Olympiads are: 
1989 
1990 
1991 
1992 
1993 

Braunschweig, West Germany 
China 
Sweden 
East Germany 
Turkey. 

Canada has tentatively been awarded the honour for 1995. 

We next give the problems of this year's I.M.O. competition. Solutions to these 
problems, along with those of the 1988 U.S.A. Mathematical Olympiad, will appear in a 
booklet entitled Mathematical Olympiads 1988 which may be obtained for a small charge 
from: 

Dr. W.E. Mientka 
Executive Director 
M.A.A. Committee on H.S. Contests 
917 Oldfather Hall 
University of Nebraska 
Lincoln, Nebraska, U.S.A. 68588 

THE 29TH INTERNATIONAL MATHEMATICAL OLYMPIAD 

Canberra, Australia 
First Day 

July 15, 1988 
Time: 4 1/2 hours 

1. Consider two coplanar circles of radii R and r (R > r) with the same centre. 
Let P be a fixed point on the smaller circle and B a variable point on the 

larger circle. The line BP meets the larger circle again at C. The perpendicular / to BP at P 

meets the smaller circle again at 4̂ (if I is tangent to the circle at P then A = P). 
(i) Find the set of values of BCf2 + CA2 + AB2. 

(ii) Find the locus of the midpoint of AB. 

2. Let n be a positive integer and let i4i,i42,...,i42n*i be subsets of a set B. 

Suppose that 
(a) Each A i has exactly 2n elements, 
(b) each A{ n A j (1 < i < j < 2n + 1) contains exactly one element, and 

(c) every element of B belongs to at least two of the Ai. 
For which values of n can one assign to every element of B one of the numbers 0 and 1 in 
such a way that each A i has 0 assigned to exactly n of its elements? 
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3. A function / is defined on the positive integers by 

7(1) = 1, / (3 )=3 , 

/(2n) = /(n), 

/ ( 4 n + l ) = 2 / ( 2 n + l ) - / ( n ) , 

/(4n + 3) = 3/(2n + 1) - 2/(n), 

for all positive integers n. Determine the number of positive integers n, less than or equal to 

1988, for which f(n) = n. 

Second Day-

July 16, 1988 

Time: 4 1/2 hours 

4. Show that the set of real numbers x which satisfy the inequality 

70 

is a union of disjoint intervals, the sum of whose lengths is 1988. 

5. ABC is a triangle right—angled at A, and D is the foot of the altitude from A. 

The straight line joining the incentres of the triangles ABD, ACD intersects 

the sides AB, AC at the points K} L respectively. S and T denote the areas of the triangles 

ABC and AKL respectively. Show that 5 > 2 T. 

6. Let a and b be positive integers such that ah + 1 divides a2 + 62. Show that 

a2 + b2 

o& + 1 

is the square of an integer. 
* ' • . * * 

We next give solutions for the problems of the 20th Canadian Mathematics Olympiad 

(1988) posed in the last issue of the Corner [1988: 163]. The solutions come from R. 

Nowakowski, Dalhousie University, who is chairman of the Canadian Mathematics 

Olympiad Committee of the Canadian Mathematical Society. 

1. For what values of b do the equations 1988s2 + bx + 8891 = 0 and 

8891x2 + bx+ 1988 = 0 have a common root? 

Solution. 

From the equations we see that 

ft = "8891 - 1988s2
 a n d b = -1988 - 8891s2 
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respectively. Putting these two equal we find a; = ±1. If z = 1 is the common root then 

b = -10879, if x = - 1 is the common root then b = 10879. 

2- A house is in the shape of a triangle, perimeter P metres and area A square 

metres. The garden consists of all the land within 5 metres of the house. 

How much land do the garden and house together occupy? 

Solution. 

The garden consists of 3 rectangular pieces and three sectors of a circle. The 

rectangular pieces all have width 5 metres and their total length is P metres. Their 

combined area is therefore 5P square metres. At a corner of the house, with interior angle x, 

the angle within the sector is 360 — 180° — x = 180° — x. The sum of the angles in all three 

sectors is 3(180°) — (sum of interior angles) = 360°. Therefore the sectors fit together to 

form a circle of radius 5. Their combined area is 25ir. The total area of house and garden is 

thus A + 257T + 5P square metres. 

3 . Suppose that S is a finite set of points in the plane where some are coloured 

red, the others are coloured blue. No subset of three or more similarly 

coloured points is collinear. Show that there is a triangle 

(i) whose vertices are all the same colour; and such that 

(ii) at least one side of the triangle does not contain a point of the opposite 

colour. 

Solution. 

Consider the set of triangles whose vertices are in the set S. Call a triangle 

monochromatic if all its vertices are the same colour. Let T be a monochromatic triangle of 

least nonzero area. If every side of T contains a vertex of the other colour then the triangle 

formed by choosing such a vertex along each side of T is monochromatic and has smaller 

nonzero area, contrary to the choice of T. 

4. Let 
2^+1 = 4&H - Zn-i, X0 = 0, Xi = 1, 

and 

!to*i = 4yn - j/n-i, Vo =1,3/1 = 2. 
Show for all n > 0 that yl = Zxl + 1. 

Solution. 

The result is proved by simultaneous induction on the two statements 

(a) yl = 3x2 + 1 

and 

(b) ynyn-i = 3 2 ^ - 1 + 2. 
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Both statements are true for n = 1. 

(i) yln = (4yn - 2/n-i)2 = 16y£ - 8ynyn.t + y*_t (by definition of yntX) 

= 48a£ + 16 - 8ynyn.i + 3z|-i + 1 (by induction and (a)) 
= 48z* + 16 - 8(2 + 3 x ^ - 0 + 3a^_i + 1 (by induction and (b)) 
= 48a^ - 24xftxn.1 + 3z£-i + 1 = 3(4^ - a ^ ) 2 + 1 
= 3a^+i + l. (by definition of in+i) 

(ii) ynnVn = (4yn - yn-i)yn = ±yl - ynpn-i (by definition of ynH) 

= 4(3x£ + 1) - (SxnXn-t + 2) (by induction, (a) and (b)) 
= 3 ^ ( 4 ^ - ^ - 0 + 2 
= ZxnXmi + 2. (by definition of â +i) 

5. Let S = {ai,a,2,...,ar} denote a set of integers where r is greater than 1. For 
each non-empty subset A of S, we define p(A) to be the product of all the 

integers contained in A. Let m(S) be the arithmetic average of p(A) over all non—empty 

subsets A of S. If m(S) = 13 and if m(S U {or+i}) = 49 for some positive integer ar*u 

determine the values of 01,02,...,or and or+i. 

Solution. 
For any n and A = {o1,02,...,an} note that 

(1 + oi)(l + o2)...(1 + an) = (2tt - l)m(A) + 1. 
It follows that 

(1 + oi)(l + o2)...(1 + or+i) = ( 2 r + 1 - l)m(5U {or+i}) + 1 
= [(2 r-l)m(S) + l](l + or+i). 

Thus 
[13(2r - 1) + 1](1 + or+1) = (2r+1 - 1)49 + 1. 

Solving for 2 r (and using 2r+1 = 2-2r), 

2r = 12(orM - 3) ( 1 ) 

Now the right side of (1) is a decreasing function of ar*t. Since ar*i = 1 gives 2 r < 1, no 
integers less than 85/13 need be considered as possible values for aT*h i.e. ar*i > 7. Since 

r > 2 we also require 
}jjK*i - J ) > 4 
13a r4i — 85 ~ J 

which works out to arn < 38/5. Thus arn = 7, and we get r = 3 and 
(1 + at)(l + a2)(l + as) = (23 - 1)13 + 1 = 92 = 2-2-23. 

Therefore the only solution in positive integers (up to rearrangement) is 1 + a\ = 2, 

1 + a2= 2, 1 + a3=-23,i.e. 
a\ = 1, 0,2 = 1, as = 22. 

The other 13 essentially different integral solutions are left for the reader. 
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The results of the 1988 Canadian Mathematics Olympiad are as follows: 

Gurraj Sangha 
David McKinnon 
Philip Jong 
Peter Copeland 
Graham Denham 
Samuel Maltby 
Phil Reiss 
Patrick Surry 

1st Prize 
2nd Prize 
3rd Prize 
4th Prize 
4th Prize 
4th Prize 
4th Prize 
4th Prize 

It is worth noting that the highest scores on the contest were given to Ravi Vakil 
followed by Colin Springer, but neither person was eligible for an official prize. They were 
able to represent Canada at the I.M.O. because of the different eligibility criteria. 

There were some ambiguities in the format and wording of the 1988 C.M.O. For 
instance, I received some comments on the subscripts and superscripts in problem 4 which, 
from the way they were printed on the exam sheet, offered potential for confusion. 
(Reportedly, none of the top students were fazed by this.) Readers who tried the problems 
printed in last month's Corner may have noticed other difficulties. For example, "set of 
integers" in problem 5 should likely have been "set of positive integers", and the question of 
rearrangements more clearly specified to limit the number of solutions to 1 instead of 14 (if 
nonpositive integers are allowed) or 72 (if also permutations are allowed). E.T.H. Wang 
pointed out that at least five points are needed in problem 3. A more serious possible 
confusion in problem 3 was conveyed to me by Alan Mekler of Simon Fraser University who 
points out that "side of the triangle" could also be taken to mean the line determined by two 
of the vertices. With this interpretation the problem is a good bit more challenging. What 
about the good contestant who reads the more difficult interpretation, but does not arrive at 
the solution? I reproduce below the elegant solution of Alistair Lachlan of Simon Fraser 
University for the problem as it was relayed to me by Alan Mekler. 

3. [1988:163] 1988 Canadian Mathematics Olympiad. 

Suppose that S is a finite set of points in the plane where some are coloured 
red, the others blue. No subset of three or more similarly coloured points is collinear. Show 
that there is a triangle 

(i) whose vertices are all the same colour; and such that 
(ii) at least one side of the triangle does not contain a point of the opposite 

colour. 

Solution by A. Lachlan and A. Mekler, Simon Fraser University. 
Note that S must contain at least 5 points, otherwise there are trivial counter­

examples with no monochromatic triangles. We prove the result with "side of the triangle" 
interpreted to mean the entire line containing the side. 
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Suppose we have a counterexample with 6 blue points and r red points, and 6 + r > 5. 
If either b or r equals 3 or less, then it is easy to see that there is a triangle of the required 
type; thus b > 3 and r > 3. Call any line containing 2 red points a "red line". There are 
exactly (2) red lines, and, since we have a counterexample, each red line must have a blue 

point on it. However, any blue point can be on at most r/2 red lines. Thus 

&>(2
r)/(£) = r - l . 

Similarly r > 6 - 1 , hence | r - b\ < 1. In particular, as 6,r > 3, Q > r and (I) > 6. 

Now, since every red line contains a blue point and (I) > 6, there is a blue point Bt 

which lies on two distinct red lines, say the lines containing (distinct) red points Qi, $2 and 

Qz, Q4, respectively. Let i?2r..,£b enumerate the rest of the blue points. Choose red points 
R2,.'.,Rb so that R{ lies on the line B\Bi. Notice that these points exist and are distinct. 
As well, at most one of Qi, $2 is among R2r*.,Ri and similarly for Q$, Q±. Counting the 
points we have 

•r> \{QhQhQzMu{Rh...,Rh}\ >b + l 
so that r > b. Similarly b > r, a contradiction. 

* * * 

PROBLEMS 
Problem proposals and solutions should be sent to the editor , whose address appears 

on the inside front cover of this issue. Proposab should, whenever possible, be accompanied 
by a solution, references, and other insights which are likely to be of help to the editor. An 
asterisk (*) after a number indicates a problem submitted without a solution. 

Original problems are particularly sought But other interesting problems may also be 
acceptable provided they are not too well known and references are given as to their 
provenance. Ordinarily, if the originator of a problem can be located, it should not be 
submitted by somebody else without his or her permission. 

To facilitate their consideration, your solutions, typewritten or neatly handwritten on 
signed, separate sheets, should preferably be mailed to the editor before April 1, 1989, although 
solutions received after that date will also be considered until the time when a solution is 
published. 

1381. Proposed by J. T. Groenman, Amhem, The Netherlands. 

Let ABC be a triangle with sides a, 6, c and angles a, /?, 7, and let its 

circumcenter lie on the escribed circle to the side a. 

(i) Prove that -cos a + cos /? + cos 7 = fl. 

(ii) Find the range of a. 
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1 3 6 2 . Proposed by M.S. Klamkin, University of Alberta, Edmonton, Alberta. 

Determine the sum 
n n 

L u+*JuJt* 
j = 0 k = 0 

u-j-2h 

where a; is a primitive cube root of unity. 

1363. Proposed by P. Erdos, Hungarian Academy of Sciences. 

Let there be given n points in the plane, no three on a line and no four on a 
circle. Is it true that these points must determine at least n distinct distances, if n i s large 
enough? I offer $25 U.S. for the first proof of this. 

1364. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, 

Massachusetts. 

Let a and b be integers. Find a polynomial with integer coefficients that has 
fa + $5 as a root. 

1365. Proposed by G. Tsintsifas, Thessaloniki, Greece. 

Prove that 

where A , B, C a r e the angles (in radians) of an acute triangle. 

1366. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. 

Prove or disprove that 

g . i y \ z >& + & + fi 
<Jx + y Jy + z Jz + x <J% 

for all positive real numbers x, y, z. 

1367. Proposed by Richard K. Guy, University of Calgary. 

Consider arrangements of pennies in rows in which the pennies in any row 
are contiguous, and each penny not in the bottom row touches two pennies in the row below. 

For example, Y^vv^f~\ *s aU°wed> but / ^ ^ S / ^ S r N *sn , t 

How many arrangements are there with n pennies in the bottom row? To illustrate, there 

are five arrangements with n = 3, namely 



- 2 0 3 -

1368. Proposed by Florentin Smarandache, Craiova, Romania. 
Let ABCD be a tetrahedron and Ax £ CD, A2 6 CB, Cx 6 AD, C2 G AB be 

four coplanar points. Let E= BCtn DC2 and F = BAX n ZM2. Prove that the lines AE and 
CF intersect. 

1369. Proposed by G.R. Veldkamp, De Bilt, The Netherlands. 

The perimeter of a triangle is 24 cm and its area is 24 cm2. Find the 
maximal length of a side and write it in a simple form. 

1370. Proposed by Peter Watson—Hurthig, Columbia College, Burnaby, British 
Columbia. 

Let L(n) be the number of steps required to go from n to 1 in the Collatz 
sequence 

3C*(n) + 1 if Ck(n) is odd,.' 

lCfc(n)/2 if Ci(n) is even. 
It is notoriously unknown whether L(n) exists for all positive integers n. Show that there 
exist infinitely many n such that 

L(n) = L{n + 1) = L(n + 2). 

•Ci(n) = n, Cfc*i(n) = J 

SOLUTIONS 

No problem is ever permanently closed. The editor will always be pleased to consider 

for publication new solutions or new insights on past problems. 

1067. [1985: 221; 1987: 27] Proposed by Jack Garjunkel, Flushing, N. Y. 

(a) If x, y, z> 0, prove that 

xyzjx + y + z + ^ 2 H 2 T i 2 ) / 3 + # 
(x2 + y2 + z2)(yz + zx + xy) 

II. Generalization by Murray S. Klamkin, University of Alberta. 

We show more generally that 

Ttn(Ti + V5̂ ) < n + Vn 

where 

Tx = xi + x2 + • • • + Xn, 

T2 = ^XiXj, 
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S2 = x\ + xl + • • • + z\. 
The given inequality is then the case n - 3. 

By the Maclaurin and power mean inequalities, 

Tl'n < J T2/Q) < Tt/n < x/S^i. 

Thus 

and 

which yield the result. 

i2'" ® 

1122. [1986: 50; 1987: 197] Proposed by Richard K. Guy, University of Calgary, 

Calgary, Alberta. 

Find a dissection of a 6 * 6 * 6 cube into a small number of connected pieces 
which can be reassembled to form cubes of sides 3, 4, and 5, thus demonstrating that 
33 + 43 + 53 = 63. One could ask this in at least four forms: 

(a) the pieces must be bricks, with integer dimensions; 
(b) the pieces must be unions of 1 * 1 x 1 cells of the cube; 

(c) the pieces must be polyhedral; 
(d) no restriction. 

Editor3s comment 

CHARLES H. JEPSEN, Grinnell College, has sent in a 10-brick solution to part (a), 
improving his 11-brick solution mentioned on [1987: 197]. Here it is in layers, with the 10 
bricks labelled A to J. 
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\A 

\A 

\A 

\D 
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A 

A 
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B 
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D 
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D 

A 

A 

A 

A 
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E 

E'\ 
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layer 1 layer 2 layer 3 
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\A 
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B 
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D 
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I 

H 
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H 
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H 
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H 
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H 

I 
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G 

J 

layer 4 layer 5 layer 6 

When reassembled, A forms the 4-cubes the 3-cube is 

layer 1 layer 2 

\c 
\c 
\c 

c 
c 
c 

c 
c 
c 

E 

I 

J 

E 

I 

J 

E 

I 

J 

E 

I 

J 

E 

I 

J 

E 

I 

J 

layer 3 

and the 5—cube Is 

layer 1 layer 2 
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layer 3 
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\D 

\D 

\D 
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\D 
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D 

D 
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B 
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B 
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G 1 
G 

G 

G 

G 

layer 4 layer 5 

This still leaves the possibility of an 8— or 9—brick solution for (a). 
* * * 

1215. [1987: 53; 1988: 119] Proposed by Edward T.H. Wang, Wilfrid Laurier 

University, Waterloo, Ontario. 

Let a, b, c be nonnegative real numbers with a + b + c = 1. Show that 

ab + be + ca < a3 + 63 + c3 + 6abc < a2 + b2 + c2 < 2(a3 + 63 + c3) + Sabc, 

and for each inequality determine all cases when equality holds. 

Comment by Murray 5. Klamkin, University of Alberta. 

It should have been noted with the published solution [1988: 119] that all the given 
inequalities are known. To see this, we convert the inequalities to homogeneous form by 
multiplying selectively by a + b + c and using the elementary symmetric functions 

Tx = a + b + c, T2= bc+ ca+ ab, Tz = abc. 

The given inequalities are then equivalent to 

TXT2 < (71 - 3Tir2 + 3T3) + 6T3 < Tl{
fl\-2T2)< 2{T\ -ZT^ + 3T3)'" + -3r8j 

and all of these are known elementary inequalities. The first and third inequalities are both 

T\ + 9Tz>4TtT2 

or equivaJently 
\a(a-b)(a-.c) > 0, 

a special case of the Schur inequality 

Y an(a-b)(a-c)>0. 

The middle inequality reduces to the well known Cauchy inequality T\T2 > 9T3 or 

(a+ b+ c)(l/a+ 1/6+ 1/c) > 9. 

1225 . [1987: 86] Proposed by David Singmaster, The Polytechnic of the South Bank, 
London, England. 
What convex subset S of a unit cube gives the maximum value for V/A, 
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where 7 is the volume of S and A is its surface area? (For the two-dimensional case, see 
Crux 870 [1986: 180].) 

Editor's comment 

The best anyone has done with this problem (ffanyonefS being either RICHARD I. 
HESS, Rancho Palos Verdes, California; or the proposer) is to consider, analogous to the 
two-dimensional case, sets Sr obtained by rounding the edges and corners of the unit cube to 
cylindrical and spherical caps of radius r. For these sets the maximum V/A was found 
numerically to be at r = 0.25848326, where 7 = 0.851069, A = 4.5930139, and 

•7/4 = '0.18529641. 
Can someone improve on this? 

1249. [1987: 150] Proposed by D.S. Mitrinovic and I.E. Pecaric, University of 

Belgrade, Belgrade, Yugoslavia, 

Prove the triangle inequalities 

(a) 

(b) 

(c) 

sin 
4 4 < 2 - , ft 

2 
- 3 ' r" 4 

< 2 - 5 

Y sin22i4 > 6 

Y sin2£sin2C<5 

+ 12 >36 

r 
H + 8 r 

7Z <9 r 

where the sums are cyclic over the angles A, B, C of a triangle, and r, R are the inradius and 

circumradius respectively. 

Solution by Vedula N. Murty, Pennsylvania State University at Harrisburg. 

The inequality r/R < 1/2 proves the second inequalities of (a), (b), and (c). 
For the remaining inequalities we put x= r/R, y = s/R where s is the semiperimeter. 

We claim that the first inequalities of (a), (b), and (c) are equivalent respectively to: 
L = yA - y\Qx2 + Sx) + 25x4 + 8r* + 20x2 - 1 6 < 0, 

M= y* - y2(6x2 + Sx + 4) + 25x4 + 8xz + 32x2 + 16x < 0, 
N^yA+ y2(2x* - Sx- 4) + x4 ~- 24x3 + 16a? < 0, 

where 0 < x < 1/2 and 0 < y. To prove this we need only note the following identities: 

Y sinAA = sin.4 sinBsin(7 - 2 

2 

sinBsinC! 
12 

+ 41 |sini4 Vsin.4; 

Ys in 2 2 i= J Y s i n 2 i j - 2 Y s i n 2Bsin 2(7; 

Y sin 25 sin 2 (7 = 4 TT cos2,4 + 4 TT sin2A + 4TT cos A; 
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V sin 2̂ 4 = 41 I sin A - 2xy; 

^ s i n f l s i n C ^ 2 + f + Ax; 

J ] coS A = ? - ( | + 2>2. 

Substitution of these expressions and some algebraic simplification proves the assertion. 
Next note that 

L -M=4[y 2 - (3x 2 + 4x+4)] 
and 

M-N= ^{{Zx2 + Ax + 4) - y2]. 
Steinig (see [1], item 5.8) proved that 

y2 < 3x2 + 4x + 4, 
therefore L < M and N < M. Thus if we prove that M < 0 we immediately establish L < 0 
and JV < 0. 

It remains to prove M < 0. The equation M = 0 is a quadratic in j / 2 and has two real 
roots 

y\ = Zx2+Ax+2-2y/l - x2 + 4x3^~4x4 

and 

y\ = 3X2 + Ax + 2 + 2̂ /1 - x2 + 4x3 - 4x4. 
Thus 

M ^ ^ - y 2 ) ^ 2 - ^ ) , 
and to show M < 0 we must show 

yl<y2<yi 
For this we note the known inequality 

2 + 1 0 x - x 2 - 2 ( l - 2 x ) 3 ' 2 < y2<2 + lOx-x2 + 2(1-2x) 3 ' 2 

(see [1], item 5.10), and we now verify that 
y?<2 + 1 0 x - x 2 - 2 ( l - 2 x ) 3 ' 2 (1) 

and 

y2>>2+10x-i? + 2{l-2x)3'2 (2) 
for 0 < x < 1/2. 

(1) is equivalent successively to 

Zx2 + 4x+ 2 - 2vT~^x2 + 4x3~^Ix4 < 2 + lOx- x2 - 2(1 - 2x)3'2, 
2X2 - 3x + (1 - 2x)3'2 < v l ~ = ^ 2 " T T i 3 ~ = ~ e 4 , 
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and by squaring and rearranging, 
8x4 - 24x3 + 22X2 - 6x < (6x- 4a?)(l - 2x)3'2, 

2 < x - l)(2x - l)(2x - 3) < 2x(3 - 2x)(l - 2x)3'2, 
which is true (for 0 < x < 1/2) since the left side is negative and the right side positive. 

Similarly, (2) is equivalent to 

3x2 +Ax+2 + 2 V F ^ ^ ~ T ^ > 2 + 10s - x2 + 2(1 - 2x)3'2, 
VI - x2 + 4^~^Ti*>-~2x2 + 3x+(l-~2xf'\ 

-8x4 + 24s8 - 22X2 + 6x > (6x - 4x2)(l - 2x)3'2, 
2a(l - s)(l - 2x)(3 - 2x) > 2a<3 - 2x)(l - 2xf'\ 

and finally 

. 1 - x > VI - 2x, 
which is clearly true by squaring. 

Reference: 

[1] 0. Bottema et al, Geometric Inequalities, 

Also solved by WALTHER JANOUS} Ursulinengymnasium, Innsbruck, Austria. One 

other reader noted that the three right-hand inequalities followed easily. 
* * * 

1250. [1987: 151] Proposed by J. T. Groenrnan, Arnhem, The Netherlands. 

We have a regular octahedron with vertices AhA2r..,A®. Let P be a point 

and let ni,7i2,...,n8 be the distances from P to the eight faces of the octahedron. Let 

6 8 

Si= ]T ra~, 52 = X n*' 
t = l i « l 

Prove that 5i/52 is independent of P. 

Solution by Richard I. Hess} Rancho Palos Verdes, California. 

Define the vertices as 

4!= (0,0,1), i 2 = (0,0,-1), J1S'.= (1,0,0), 

Ai = (-1,0,0), A* = (0,1,0), il6 = (0,-1,0) 

andlet P= (x,y,z). Then 
Si = x2 + y2 + ( z - I)2 + x2 + J/2 + (z + I)2 + ( x - I)2 + y2 + z2 + ( x + l ) 2 

= 6(x2 + y2 + z2 + 1). 
The eight faces are all at distance <2 = 1/J5 from the origin with normals (&d,±d,±d), where 
all eight choices of + or — are taken. For each such normal m*, 1 < i < 8, Hi-(x,j/,z) gives the 
distance q% = (±x ± y ± z)/v^ from P to the plane through the origin with normal n*. The 
sum of the squares of the distances from P to the two faces of the octahedron parallel to this 
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plane is then 
{qi + d)2 + {qi-d)2 = 2ql + 2d2. 

Thus 
o 

52=\ X M+2d2) 
i = l 

= §[(& +y+ z)2 + (x+ y- z)2 + (x-y+ z)2 + (-x +y+ z)2 + 4] 

= §(*2 + y2 + z2 + 1). 

Therefore S1/S2 = 9/4 irrespective of P. 

Also solved by JORDIDOU, Barcelona, Spain] HANS ENGELHAUPT, Gundelsheim, 

Federal Republic of Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, 

Austria; ZUN SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, 

Ontario; D.J. SMEENK, Zaltbommel, The Netherlands; C. WILDHAGEN, Tilburg 

University, Tilburg, The Netherlands; and the proposer. 

1251. [1987: 179] Proposed by Stanley Rabinowitz, Alliant Computer Systems 

Corp., Littleton, Massachusetts. (Dedicated to Leo Sauve.) 
(a) Find all integral n for which there exists a regular n—simplex with 

integer edge and integer volume. 

(b) Which such n—simplex has the smallest volume? 

Solution by the proposer. 

(a) If the edge of the n—simplex is a, the volume is given by 

n + 1 an 

^T. 2n 

This expression will be rational only if n + 1 is a square or twice a square. It can then be 
made integral by choosing a to be large enough. If n + 1 is a square, then we must have 2n 

a square, so n is even. Thus n + 1 will be the square of an odd number, so 

n=ik2 + Ak (1) 
for some positive integer k. If n + 1 is twice a square, then we have 

n=2fc 2- l (2) 
for some positive integer k > 1. Equations (1) and (2) give all possible values for n. 

* 
(b) I don't have a rigorous solution to this part. It seems clear that the smallest 

integral volume occurs for the smallest n, since n! contains many primes and these can't all 
be cancelled by the n + 1 term in the numerator. Thus these primes must appear in a, and 
the term an increases much faster than n! does. So it appears that the smallest volume 

occurs when n = 7 and a = 2-3-5-7 = 210. The volume then is 
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2«35-58*76 = 893397093750. 

Also solved (part (a)) by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, 
Austria. There was one partial solution submitted. 

The proposer is probably correct about part (b), although one reader claims the 
minimum volume to be 1, occurring when n = 1 = a ! Okay then, assuming n > 1, can anyone 
give a simple argument for part (6)? 

1252. [1987: 179] Proposed by George Tsintsifas, ThessaloniM, Greece. 

Let ABC be a triangle and M an interior point with barycentric coordinates 
Ais A2, A3. We denote the pedal triangle and the Cevian triangle of Mby DEF and A'B' Cf 

respectively. Prove that 

{ [ ^ h \ >- 4AiA2A3(s/iZ)2, 

where s is the semiperimeter and R the circnmradins of A ABC, and [X] denotes the area of 

figure X 

I. Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. 

We will prove the stronger result 

DEF\ x(Xt + A2)(A2 + A3XA3 + Ai) 
8 ' " ' >lf7T 2 

with equality if and only if Mis the incenter of A ABC. The given inequality then follows 
via 

(Ai + A2)(A2 + A3)(A3 + At) > 8AiA2A3. 
Let F = [ABC] and n, r2, r% the distances from M to the sides ai, a2, a3, respectively, 

of A ABC. Then 

A i - ^ — J ? ~ ~~j>F~ * 2 ~ HSJF" J 3"" "lO7" " ^ ' 

Furthermore, since 

we have 
[DEF] = [D£M] + [tfFiW] + [FDM] 

- °ir2^3 + Wzrx + azrir2 /9\ 

From p.89 of Bottema et al, Geometric Inequalities, we take 

[^-g-]=(Al + A^;AlAlfi(A! + A,i- w 
Finally by the weighted arithmetic—harmonic inequality we get 

&ir2r3 + a2nr\ + a3n^2 v fli + fl2 + &3 
&i + a2 + a 3 - a\ , a2 , as 

^2^3 ^3^1 1̂̂ 2 
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or 

Q>\T?Ti + Wiri + aerify > 4 52rif2f3 (4) a\T\ + a2T2 + dzTz ' 

with equality if and only if T\ = r2 = 7% i.e. Mis the incenter of AABC. Now (1), (2), and 
(4) yield 

\DEF\> s2rxr2n ' ^ y A i A ^ A s '-';.' 
L J - R(aiTt + a2r2 + a^n) Raia2az(\t + A2 + A3) 

= s^FX1X2XA^ ^ 
iZ2 

where we used aia2a3 = 4JRFand Ai + A2 + A3 = 1. (3) and (5) yield the desired result. 

II. Generalizations by Murray 5. Klamkin, University of Alberta. 

[Klamkin also proved (5), having noted that the original inequality then 

follows from the fact that the maximum of [A'B'C') is F/4, occurring when the three 

cevians are the three medians (see [1978: 256]). In the process he obtained (4), using 

a\T\ + a2r2 + a$r$ = 2F- r[a\ + a2 + a3), 

where r is the inradius of A ABC, to write it in the form 

T\ r2 r$" r ' ^ ' 

He then went on to say ...] 
We now give some generalizations of (6). For n, m real, n > 0, we have by Holder's 

inequality that 

flf+a|+of 
r1} r$ r$, 

1 
n+T 

1 (air i + a2T2 + 03^3) 

1 1 

n 
n+T 

a? 

A. 

n+T n 
(a1r1) i+T + 

ri 

n+1 n 
(a2r2)

n+1 + a? 

rl 

n+T 
(^3^3) 

71+T 

or 

771+n m+7l 772+71 
„ n+1 , n n+1 , n n+1 

= ai + ^2 + &3 

a ! + a ! + a i I r ^ a ^ a 2 + a3)
n > 

r\ r\ r\\ 
If m = 1, (7) becomes 

i i + ^ l + M ) fll + ft2 + &3 
rf r\ r% rn 

Putting n = 1 as well yields (6). 
The above inequalities and all others of the type 

x + y + z > w 
can be extended to 

m+n m+n m+n 
n n+1 , n n+1 , _ n+1 a\ + a2 + a% 

n+1 

(7) 
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F(x) + F(y) + F(z)>F(x+y+ z) > F(w) 

where F is an increasing concave function with F(0) = 0 (F is then subadditive). For 

example, letting F(x) = x where 0 < A < 1, (6) becomes 

a.i 
A 

+ 
C2 

. r 2 . 

A 

+ A3 

.r3J 
—£.\ JL —S > 

i4iso solved by the proposer. There was one partial solution submitted. 

1 2 5 3 . [1987: 179] Proposed by Richard I. Hess, Rancho Palos Verdes, California. 

Player A starts with $3 and player B starts with $10. On each turn a fair 

coin is tossedj with the outcome that either B pays A $3 or A pays B $2. Play continues 

until one player wins by having won all the other player's money. Which player is more 

likely to win? 

Solution by the proposer. 

Let pi by the probability that A wins when A starts with $t and B starts with 

$13 — i We want to find pg. By the conditions of the problem, 

Pi = 2<Pi-2 + Pi*s), 1 < * < 12, 

where we define 

Thus 

so that 

Continuing, 

Pi = 0 for i < 0, pi = 1 for i > 13. 

1 1 1 1 1 3 1 
PZ = jPl + 5P6 = 5P4 + 5P9 = lV2 + gP? + %Pl2 

= IB*5 + 3P10 + 15 = 32P3 + ^ P 8 + M , 

(1) 

25 

so that 

Now (1) and (2) yield 

3 , 9 , 3 , 11 3„ , 15„ ,•-„ 
= $>2 + -%Vi + 5P12 + | - = 5P5 + jgPio + g~ 

3 . j . 2 7 . _L 1 1 5 

276p3 = 27p8 + 115. (2) 

« 9 7 ^ x 

^3 = M<5 
so J3 is more likely to win. 

Also solved by HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; 

FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; and R.D. SMALL, University of New 
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Brunswick, Fredericton. None of these solutions was as succinct as the proposer's. There 
was also one incorrect solution received. 

* * * 

1254. [1987: 179] Proposed by Walther Janous, Ursulinengymnasiumy Innsbruck, 

Austria. 

Let ABC be a triangle and n > 1 a natural number. Show that 

< 1 if n= 1, 

<3v^/2 if n=2, 
< 3^/2 if n > 3, 

Y sin n(B-C) 

where the sum is cyclic. 

Solution by Murray S. Klamkin, University of Alberta. 

Letting 

x = n{B-C), y= n(C-A), z= niA-B), (1) 

and denoting the given sum by Sn, our problem is to find the extrema of 

| 5 n | = | sin x + sin y 4- sin z| 
subject to x + y + z = 0. Our solution is via Lagrange multipliers. The Lagrangian is 

Jf = sin x + sin y + sin z - X(x + y + z). 

The critical points will satisfy j£ = J% = J% = 0 or 
cos x = cos y = cos z = A. (2) 

Since x+ y + z= 0, it follows easily that 

cos2z + cos2y + cos2z = 1 + 2 cos x cos y cos z. 
Thus 

3A2=1 + 2A3, 
so that A = 1 or -1/2. Now by (2), if A = 1 then sin x = 0 etc., while if A •= -1/2 then 
sin x = ±v^/2 etc. Thus 

\Sn\ <3V2/2 (3) 

for all critical points. 
Without loss of generality we may assume A < B < C. Then if n = 1, (1) and (2) with 

A = —1/2 imply that 

i 4 - B = -120° = 5 - C , 
and so C— A = 240° which is impossible. Thus for n = 1 any critical points in the interior of 
the feasible region will correspond to A = 1, in which case 

|5 f t | . = 0. 
For n = 2 and A = -1/2, (1) and (2) imply 

{A - B , 5 - C} c {-60° , -120°} 

and it is easily seen that the only solution is the degenerate triangle C - 120 , B = 60 , 
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A = 0 . Thus for n = 2 strict Inequality holds in (3) at critical points. For n > 3 we have a 

nondegenerate solution 

giving equality i n (3). 

• • It remains to check that the given inequalities hold on the boundary of the region 

containing those points (z,y,z) which actually correspond to triangles ABC. This boundary 

contains precisely all degenerate triangles* those in which at least one of A, JB, C is 0. 

A = B = 0 gives 

\Sn\ =0 
which satisfies the inequalities for all n. For A = 0 we get 

| Sn | = 1 sin n(B - C) + sin nC- sin nB\ 

= |sin(180n-2nC) + sin.nC-Mn(180n-nC)| 
f (sin 2nC| ,' Tiodd 

[ |2 sin nC— sin 2nC|, raeven. 

For n odd, we have |5n | . < 1. We have |5i| = 1 for the degenerate triangle C = 135°, 
B - 45 . For n even, we let 

/(C) = 2sinnC r-sin2nC; 
for which 

/'(C) = 2ncos nC — 2n cos 2nC 
= 2n(l + cos nC — 2 cos2nC), 

so that / takes on its extreme values when cos nC= 1 or —1/2. Then we get respectively 

sin 110=0,../(C) = 0 
and 

sin nC= ±/J/2, sin 2nC= ± # A | / (C) | < 3#/2 . 
Thus \Sn\ < 3^/2 holds on the boundary for all n > 1. 

In summary, all three given inequalities are correct and best possible, with equality 
holding for n = 1 and 2 only for degenerate triangles. 

We now consider the analogous problem with cos instead of sin. Putting 

Cn= T cos n(B-C), 

clearly Cn < 3, with equality for equilateral triangles. To obtain the minimum value for Cn,. 

we proceed as before, using Lagrange multipliers. Again with the substitution (1), the 

Lagrangian is 

<y = cos x + cos y + cos z — \{x + y + z) 

and the equations for the critical points are 

sin x = sin y = sin z = A. (4) 

The identity we use here (again for x + y + z = 0) Is 
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sin 2x + sin 2y + sin 2z = - 4 sin x sin y sin z. (5) 

If cos x, cos t/, and cos z are not all the same sign, then from (4) 

Cn = T c o s x> - 1 . (6) 

We note that when n = 1, equality in (6) holds only if two of cos(J5 — C), cos(C — A), 

cos(A — B) equal —1, i.e. only for degenerate triangles. If cos x, cos t/, cos z all have the 

same sign, then from (5) 

3 sin 2x= - 4 sin3x, 

3 cos x= -2(1 -cos2x), 

so 

(2 cos x + l)(cos x — 2) = 0, 

that is, cos x= —1/2. Thus 

Cn > -3 /2 . 

As before, for n > 2 equality holds for the nondegenerate triangle 

,4 = 6 0 ° - 1 2 0 ° ? 5 = 6 0 ° , ( 7 = 6 0 ° + ^ ° ; 

for n•= 2 equality holds only for a degenerate triangle; and for n = 1 there are no solutions. 

Now we consider the boundary. For A = B = 0, 

Cn = 1 + 2 cos n C > - l , 

and for n = 1 equality holds only for a degenerate triangle. For A = 0, 

Cn = cos n(B - C) + cos nC + cos nS 

=• cos(180n - 2nd) + cos nC + cos(180n - nC) 

f -cos 2n(7, n odd 

[ cos 2nC + 2cos nC, n even. 

Thus for n odd, Cn > — 1, and for n even, 

Cn = 2 cos2nC + 2 cos n C - 1 

= 2(cos nC + 1/2)2 - 3/2 > -3 /2 . 

Hence, excluding degenerate triangles, we have shown that 

> cos n(B- C) 

Also solved by the proposer. Two partial solutions were received. 

> - 1 if n= 1, 
> - 3 / 2 if n= 2, 
> -3 /2 if n > 3. 

1 2 5 5 . [1987:180] Proposed by J. T. Groenman, Arnhem, The Netherlands. 

(a) Find all positive integers n such that 213 + 210 + 2n is the square of 

an integer. 
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* 
(b) Find all positive integers n such that 214 + 210 + 2R Is the square of an 

integer. 

I. Solution to (a) by several readers, 

Rewrite 

213 + 210 + 2n = y2 

as 

210(8 + 1) + 2* = y\ 

(25*3)2 + 2?l = t/2, 

and finally 

2n = t / 2 - 9 6 2 = ( y + 96)(2/-96). 

Thus each of y + 96 and y — 96 must be a power of 2, and since they differ by 192 we must 

have 

y + 96 = 256 = 28, 

so 

y - 9 6 = 64 = 26, 

and hence the only solution is n = 8 + 6 = 14. 

II. Solution to (b) by Kee—wai Lau} Hong Kong. 

We shall see that 

214 + 2S0 + 2n 

is the square of an integer if and only if n = 4, 13,. 15, 16, or 19. 

For 1 < n < 10 it can be checked easily that 214 + 210 + 2n is the square of an integer 

only for n = 4. We now assume n > 11 and let k = n — 10 > 1. Then 

214 + 2 i 0 + 2n = (32)2(2k + 17), 

so we want to know when 2* + 17 is the square of an integer. Now it has been proved ([1], 

[2]) that the only positive integers kfoi which y2 — 17 = 2h is solvable in integers are 3, 5, 6, 

and 9. Hence our result. 

References: 

[1] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arithmetica 38 

(1981) 389-410. 

[2] N. Tzanakis, On the Diophantine equation y2 - D = 2h, J. Number Theory 17 (1983) 

144-164. 

III. Editor's comments. 

The proposer pointed out a similar problem on [1982: 46], with solution as in 

I above. 

Two readers, LEROY F. MEYERS and P. PENNING, independently considered the 

general Diophantine equation 
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2a + 2b + 2c = x2 (1) 

for a, b, c, xnonnegativeintegers, a< b < c. They found the "basic" solutions 

21 + 21 + 25 = 62, (2) 

2o + 2*
+* + 22k = (1 + 2h)\ k>0, (3) 

2° + 24 + 25 = 72, (4) 

and 

2° + 24 + 29 = 232, (5) 

from which further solutions can be derived by multiplying both sides by an arbitrary even 

positive power of 2. Thus, of the five values of n given in II, 15 and 19 come from (4) and 

(5) respectively (by multiplying by 210), and 4, 13 and 16 similarly come from (3). Neither 

Meyers nor Penning could show that there are no other solutions to (1). Any further "basic" 

solution, however, will have a = 0 and 2 < b < c where c is odd. Does some reader know 

whether additional solutions exist? 

Part (a) solved by HANS ENGELHAUPT, Gundelsheim, Federal Republic of 

Germany; RICHARD I HESS, Rancho Palos Verdes, California; WALTHER JANOUS, 

Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong; STEWART 

METCHETTE, Culver City, California; LEROYF. MEYERS, The Ohio State University; P. 

PENNING, Delft, The Netherlands; ZUN SHAN and EDWARD T.H. WANG, Wilfrid 

Laurier University, Waterloo, Ontario; C WILDHAGEN, Tilburg University, Tilburg, The 

Netherlands; and the proposer 

Hess, Lau, Meyers, Penning, and the proposer found all five solutions to (b), while 

Janous, Metchette, and Shan and Wang only missed one. 
* * * 

1 2 5 6 . [1987: 180] Proposed by DJ. Smeenk, Zaltbommel, The Netherlands. 

Let ABC be a triangle with sides satisfying a3 = 63 + c3. Determine the 

range of angle A. 

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. 

We consider the following more general situation. Let r > 2 and a, b, c be positive 

real numbers such that 

ar=br+cr. (1) 
We shall determine that a, b, c are the sides of a triangle ABC, and that the range of angle 
A is 

[arccos(l-2<2- r>' r)>f). (2) 

In particular when r = 3 we get 

A6[arccos( l -2- 1 / 3 ) , | ) 

or approximately 



- 2 1 9 -

78.1° < A < 90°. 
Without loss of generality let a - 1. Then by (1) b,c < 1. We also assume b > c. 

Then from (1) 

c< 1/21"", b=(l-cr)1/r. 

We first claim that a, b, c form a triangle. Indeed, we have to check b + c> 1, i.e., 

(1 - cr)Ur + c> 1. 
This inequality is either easily verified directly or it follows from Minkowski's inequality. 

Letting the triangle be ABC, by the law of cosines we have 

^ ^ ( l - Q ' - H - o ' - l 
2c(l - c r ) ' - r 

•v-?": + *''-l-m, (3) 
2tx'T{\ - t)Ur 

where we have put t = cr (and thus 0 < t < 1/2). Let's now discuss f (t) on the interval 
(0,1/2]. Differentiation of (3) and a simplification (of medium length) leads to 

nt)-*'r - ( 1 - *)*'*+ * ~ 2* 
2r[«(l - t ) ] 1 + W r 

Thus the sign of / ' (t) is equal to the sign of 

z(t) = l-2t+t2'r-{l-t)2'r. 

Now 
z'{t) = -2 + |[<(2-r) "• + (1 - 0 ( 2" r ) ' 1 

and 
z-(t) = 2 ( 2 - r)[f(2-2r) / ! • _ ( ! _ f)(2-2r) ,rj 

r2 

As r > 2 and £ < 1/2, we infer z"(t) < 0, i.e. zis concave. From this we get 

z(t) > mm{z{0) , 41/2)} = 0. 

Consequently f'(t) > 0, i.e. / increases on (0,1/2]. Finally, from (3) we have 
/ ( l /2) = l - 2 < 2 - r ) ' r 

and 
lim/(f) = 0, 

and the range (2) follows. 
[Editofs note: this generalization was also essentially obtained by the proposer. 

From his solution the range of A comes out to be 

[2 arcsin(rV2"/2) , TT/2); 

same as (2), but a bit simpler-looking.] 

Also solved by SEUNG-JIN BANG, Seoul, Korea; HANS ENGELHAUPT, 

Gundelsheim, Federal Republic of Germany; J.T. GROENMAN, Arnhem, The Netherlands; 
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RICHARD I. HESS, Rancho Palos Verdes, California] KEE-WAI LAU, Hong Kong; ZUN 
SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; and the 
proposer. 

* * * 

1257. [1987: 180] Proposed by Jordan Stoyanov, Bulgarian Academy of Sciences, 

Sofia, Bulgaria. 

Find all rational x such that Zx2 — 5a: + 4 is the square of a rational number. 

Solution by P. Penning, Delft, The Netherlands. 

We consider the more general equation 

ax2 + bx+ c2 = y2, 

where a, b, c are rational numbers. This may be rewritten as 

x(ax+ b) = (y + c)(y- c) 

and then as 
y + c = ax + b = 

which is equivalent to the system 

r> (1) 
x y — c ' v ' 

rx — y = c 
ax— ry = —b — re. 

Solving for x, we get 
x^2cr + b 

r2 — a 

where (from (1)) all rational solutions x will be found by allowing r to take on all possible 
rational values. 

In the original problem, a=3 , 6 =-5 , c=2so that the solution is 

« 4r — 5 
r.2 3 

, r rational. 

Also solved by RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER 

JANOUS, Ursulinengymnasium, Innsbruck, Austria; ZUN SHAN and EDWARD T.H. 

WANG, Wilfrid Laurier University, Waterloo, Ontario; C WILDHAGEN, Tilburg 
University, Tilburg, The Netherlands; and the proposer. Their solutions, although all correct, 

varied greatly in appearance with the above and with each other. Two other readers sent in 
incomplete answers. 

* * * 

1258. [1987: 180] Proposed by Ian Witten, University of Calgary, Calgary, Alberta. 
Think of a picture as an m * n matrix A of real numbers between 0 and 1 

inclusive, where an represents the brightness of the picture at the point (i,j). To reproduce 
the picture on a computer we wish to approximate it by an m * n matrix B of 0's and l's, 
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such that every ffpartff of the original picture is ffclose11 to the corresponding part of the 

reproduction. These are the ideas behind the following definitions. 

A subrectangle of an m * n grid is a set of positions of the form 

{(hj)\n< i< r2, st<j< s2} 

where 1 < rt < r2 < m and 1 < s\ < 82 < n are constants. For any subrectangle R, let 

(iJ)eR 
where A and B are as given above, and define 

d(A,B) = max d(R), 

the maximum taken over all subrectangles R. 

(a) Show that there exist matrices A such that d{AJB) > 1 for every 0—1 matrix 

B of the same size, 

(b) Is there a constant c such that for every matrix A of any size, there is some 

0—1 matrix B of the same size such that d(A,B) < c? 

I. Solution to (a) by C. Wildhagen, Tilburg University, Tilburg, The Netherlands. 

If jR is a subrectangle of [m] * [n], let ^ denote the submatrix of A 

consisting of those entries of A whose indices belong to R} and define 

Then we have to show that there exists some m * n matrix A with entries in the interval 

[0,1] such that for each m * n {0,1}—matrix B, 

\w(AR)-w(BR)\>l (1) 

for some subrectangle R of [m] x [n]. 

Let m = 3 and n - 11. Choose a number c so that 

1/12 < e < 1/11. 

Take for A the 3 * 11 matrix with each entry equal to 6. Suppose B is some 3 * 11 

{0,l}-matrix for which (1) fails for every R. Then 

(i) any submatrix R ofB of area at most 11 contains at most one 1, for otherwise 

\w(AR) - w(BR)\ > 2 - lie > 2 - 11/11 = 1; 

(ii) any submatrix RofB of area at least 12 contains at least one 1, for otherwise 

\w{AR) - w(BR)I > 12e>l . 

It follows from (i) that each row of B contains at most one 1. If B has a zero row, then it is 

easy to see that B must contain either a 2 « 6 or a 3 « 4 submatrix of 0Js, contradicting (ii). 

Thus B contains exactly three Ts, one in each row. Let them be located in columns ji, j2, h 

from top to bottom. Note that from (i) and (ii), 
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| j i - J2 | , | J2 - .73 | =5 or 6, 

since a 2 * 5 subrectangle must contain at most one 1, and a 2 * 6 subrectangle at least one 

1. On the other hand, by (i) a 3 » 3 rectangle cannot contain two l's, so \fa — fa\ > 3. Now 

it is easy to see that without loss of generality we must have ji = 1, fa = 6, fa- 11; but then B 

has a 3 « 4 zero submatrix, contradicting (ii). Thus (1) must hold for some R, for each 

3 x 11 {0,l}-matrix B. 

II. Solution to (a), and comment, by the editor. 

With the choice e = 2/23, the above proof actually shows that the given 

matrix A has the following stronger property: for every 3 ^ 11 {0,1}—matrix J3, there is 

some subrectangle R such that 

K ^ ) - w ( 2 ^ ) | > 24/23. 

We now give a slightly more complicated argument to raise this bound further to 21/19. 

This is the best the editor has been able to do, and shows that, if it exists, the constant c 

referred to in part (b) must be greater than 21/19. 

Let A be the 2 * n matrix 

12/19 12/19 ••• 12/19 

9/19 9/19 •-.. 9/19 

where n is a sufficiently large positive integer. Suppose that B is a 2 * n {0,1}—matrix such 

that (to borrow the notation of the first proof) 

\w(AR)-w(BR)\ < 21/19 (2) 

for all subrectangles R. Then it is clear that 

(i) no column of B can be zeros; 

(ii) the first row of B cannot have three consecutive Ps, for otherwise there is a 

1 x 3 subrectangle R for which 

\w(AR) - w(BR)\ = 3 -3(12/19) = 21/19; 

(iii) the first row of B cannot have two consecutive 0's; 

(iv) the first row of B cannot contain the submatrix 01010, for otherwise there is 

a 1 * 5 subrectangle R for which 

| w(AR)- w(BR) | = 5(12/19) - 2 > 21/19; 

(v) the second row of B cannot contain the submatrix 1101 (or 1011), for 

otherwise there is a 1 x 4 subrectangle R for which 

\w(AR) - w(BR) | = 3 - 4(9/19) - 21/19; 

(vi) the second row of B cannot contain the submatrix 00100, for otherwise there 

is a 1 x 5 subrectangle R for which 

| w(AR) - w(BR)\ = 5(9/19) - 1 > 21/19. 
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We further claim that the first row of B cannot contain the stibmatrix 0110110. 
Otherwise, by (i) there is a 2 x 7 submatrix of B which looks like 

0 110 110 
1 1 1 

which by (v) must in. fact be 

0 110 Tl0 
1001001 

which is impossible by (vi). 
Now, by (ii), (iii), (iv), and this last result, the first row of B must, except for a 

couple of entries at each end, look like 

0 110 10 110 10 110 1 - - . 
Since for the submatrix 01101 and its corresponding 1*5 subrectangle R we have 

v1(AR) - w(BR) = 5(12/19) - 3 = 3/19 > 0, 

if n is large enough there is a long submatrix of the first row for whose corresponding 

subrectangle R W(ATT) — ^ ^ J ? ) becomes arbitrarily large, contradicting (2). 

Part (b) remains completely open. The editor would be most interested in an answer 
to this question, or even in an improvement to the bound 21/19. Readers might also like to 
try to increase the bound 21/19 for 2 * n matrices only, or the bound 24/23 for matrices A 

with all entries equal. 
* * * 

1259. [1987:181] Proposed by M.S. Klamkin, University of Alberta, Edmonton, 

Alberta. 

If x,y,z > 0, disprove the inequality 
(yz + zx + xy)2(x + y + z) > 9xyz(a? + y2 + z2). 

Determine the largest constant one can replace the 9 with to obtain a valid inequality. 

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. 

Put y=z=l,x^m. Then there must hold 

(2x+ l)2(x+ 2 K 9 

x(x2 + 2) 

as x -> CD. But the left side approaches 4 as x -* GO, which disproves the given inequality and 

shows in fact that 9 cannot be replaced by any constant larger than 4. We claim that 4 

works. Indeed, as the inequality is homogeneous and symmetric we may put z = 1, and then 

we have to show 

{xy+x+ y)2(x+ y+ 1) > 4ZJ/(JC2 + y2 + 1). (1) 
Multiplying out and collecting terms leads to 

r V + x V + x3 + y3 + 5xV + hxy2 + 5x2y + x2 + y2 > 2x3t/ + 2xyz + 2xy, 
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that is, 

xz(y-l)2 + y\x-l)2 + (y-x)2 + 5xy(xy + x+ y) > 0. 
From this obviously true inequality the validity of (1) immediately follows. Furthermore, it 
also shows that (1) still holds true if we add 5xy(xy + x + y) to the right—hand side. For the 
original inequality this means: ifx,y,z > 0 then 

(xy+yz+ zx)\x + y + z) > xyrffi^ + y2 + z2) + 5(xy + yz+ zx)], 

with equality if and only ifx=y=z. 

A more general question would be: if p, q} r, s > 0 are such that q # s and 
2p + q= 3r + 5, determine the largest constant C- C(p,q,r,s) such that 

(xy + yz+ zx)p(xq + yq + zq) > Cxryrzr(xs + ys + zs) 

holds for all x} y, z > 0. 

Also solved (usually by the same method) by HANS ENGELHAUPT, Gundelsheim, 

Federal Republic of Germany] J.T. GROENMAN, Arnhem, The Netherlands; RICHARD L 

HESSy Rancho Palos Verdes, California] KEE-WAI LAU, Hong Kong; GILLIAN NONAY 

and EDWARD T.H. WANG, Wilfrid Lautier University, Waterloo, Ontario; and the 

proposer. One incomplete and one incorrect solution were also received. 
* * * 

We have a little space left over this issue, so here's a "filler" the editor cut out of the 
Thunder Bay Chronicle- Journal around 1978. 

MATH IS O F F 
A two—inch garden hose 

will carry four times as much 
water as a one—inch hose. 
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