Crux

 Published by the Canadian Mathematical Society.

The Back Files

The CMS is pleased to offer free access to its back file of all issues of Crux as a service for the greater mathematical community in Canada and beyond.

Journal title history:
$>$ The first 32 issues, from Vol. 1, No. 1 (March 1975) to Vol. 4, No. 2 (February 1978) were published under the name EUREKA.
$>$ Issues from Vol. 4, No. 3 (March 1978) to Vol. 22, No. 8 (December 1996) were published under the name Crux Mathematicorum.
> Issues from Vol 23., No. 1 (February 1997) to Vol. 37, No. 8 (December 2011) were published under the name Crux Mathematicorum with Mathematical Mayhem.
$>$ Issues since Vol. 38, No. 1 (January 2012) are published under the name Crux Mathematicorum.

CONTENTS

The Olympiad Corner: No. 97 R.E. Woodrow 193
Problems: 1361-1370 201
Solutions: $1067,1122,1215,1225,1249-1259$ 203

A PUBLICATION OF THE CANADIAN MATHEMATICAL SOCIETY
UNE PUBLICATION DE LA SOCIÉTÉ MATHÉMATIQUE DU CANADA

Founding Editors: Léopold Sauvé, Frederick G.B. Maskell Editor: G.W. Sands Technical Editor: K.S. Williams Managing Editor: G.P. Wright

GENERAL INFORMATION
Crux Mathematicorum is a problem-solving journal at the senior secondary and university undergraduate levels for those who practise or teach mathematics. Its purpose is primarily educational, but it serves also those who read it for professional, cultural or recreational reasons.

Problem proposals, solutions and short notes intended for publication should be sent to the Editor:

G.W. Sands
Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta
Canada T2N 1N4

SUBSCRIPTION INFORMATION

Crux is published monthly (except July and August). The 1989 subscription rate for ten issues is $\$ 17.50$ for members of the Canadian Mathematical Society and $\$ 35.00$ for non-members. All prices quoted are in Canadian dollars. Cheques and money orders, payable to the CANADIAN MATHEMATICAL SOCIETY, should be sent to the Managing Editor:

Graham P. Wright
Canadian Mathematical Society
577 King Edward
Ottawa, Ontario
Canada K1N 6N5

ACKNOWL EDGEMENT

The support of the Departments of Mathematics and Statistics of the University of Calgary and Carleton University, and of the Department of Mathematics of the University of Ottawa, is gratefully acknowledged.

Canadian Mathematical Society, 1988
Published by the Canadian Mathematical Society
Printed at Carleton University

THE OLYMPIAD CORNER No. 97
 R.E. WOODROW

All communications about this column should be sent to Professor R.E. Woodrow, Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4.

The first item is the 29th I.M.O. (Sydney \& Canberra). I would like to thank Bruce Shawyer and Richard Nowakowski for collecting information and sharing it with me.

This year a record 268 students from 49 countries participated in the contest written July 9-21 at Sydney and Canberra, Australia. The maximum team size for each country was again six students, the same as for the last five years.

The six problems of the competition were assigned equal weights of seven points each (the same as in the last seven I.M.O.'s) for a maximum possible individual score of 42 (and a maximum possible team score of 252). For comparison see the last seven I.M.O. reports in [1981: 220], [1982: 223], [1983: 205], [1984: 249], [1985: 202], [1986: 169] and [1987: 207].

This year first place (gold) medals were awarded to students with scores from 32 to a perfect 42. There were 5 perfect papers (compared to 22 in 1987 at Havana) and 4 more students scored 40 or 41 . In all 17 gold medals were awarded. The second place (silver) medals were awarded to the 48 students with scores in the range $23-31$. There were 66 third place (bronze) medals awarded to students with scores in the interval 14-22. In addition honourable mention was given any student receiving full marks on at least one problem. Congratulations to the following seventeen students who received a gold medal.

Name	Country	Score
Nicusor Dan	Romania	42
Nicolai Filonov	U.S.S.R.	42
Hong Yu He	China	42
Bao Chau Ngo	Vietnam	42
Adrian Vasiu	Romania	42
Xi Chen	China	41
Sergei Ivanov	U.S.S.R.	41
Julien Cassaigne	France	40
Ravi Vakil	Canada	40
Dimitri Tuliakov	U.S.S.R.	37
Dimitri Ivanov	U.S.S.R.	36
Thorsten Kleinjung	W. Germany	35
Terence Tao	Australia	34
Andreas Siebert	E. Germany	33
Wolfgang Stoecher	Austria	33
Shoni Dar	Israel	32
Mats Persson	Sweden	32

The international jury (comprised of the team leaders from the participating countries) set out to give a paper that was somewhat harder than the one given last year in Havana. An indication of their success is the width of the gold medal band this year, and the rather astonishing absence of the U.S.A. from the ranks of gold medalists! Nevertheless the jury awarded medals to 49% of the participants, down only slightly from the 50.6% in 1987. Terence Tao of Australia celebrated his thirteenth birthday during the contest and was paraded around the cafeteria by his teammates. He adds a gold this year with a score of 32 to the silver (Havana) and bronze (Warsaw) he won previously. While there were no female gold medalists this year, Zvesdelina Stankova (Bulgaria) and Jianmei Wang (China) were the highest placed females with scores of 29. Also, Stankova was awarded a Special Prize (a John Conway wooden puzzle) for her solution to question 6.

As the I.M.O. is officially an individual event, the compilation and comparison of team scores is unofficial, if inevitable. These team scores were compiled by adding up the individual scores of the team members. The totals are given in the following table. Congratulations to the winning team from the U.S.S.R. and to the teams from Romania and China who tied for second place not far behind.

Rank	Country	Score (Max 252)	Prizes			Total Prizes
			1st	2nd	3rd	
1.	U.S.S.R.	217	4	2	-	6
2.-3.	China	201	2	4	-	6
2.-3.	Romania	201	2	4	-	6
4.	W. Germany	174	1	4	1	6
5.	Vietnam	166	1	4	-	5
6.	U.S.A.	153	-	5	1	6
7.	E. Germany	145	1	4	-	5 (Team of 5)
8.	Bulgaria	144	-	4	2	6
9.	France	128	1	1	3	5
10.	Canada	124	1	1	2	4
11.	U.K.	121	-	3	2	5
12.	Czechoslovakia	120	-	2	2	4
13.-14.	Israel	115	1	-	4	5
13.-14.	Sweden	115	1	-	4	5
15.	Austria	110	1	1	1	3
16.	Hungary	109	-	2	2	4
17.	Australia	100	1	-	1	2
18.	Singapore	96	-	2	2	4
19.	Yugoslavia	92	-	-	4	4
20.	Iran	86	-	1	3	4
21.	Netherlands	85	-	-	3	3
22.	Republic of Korea	- 79	-	-	3	3
23.	Belgium	76	-	-	3	3
24.	Hong Kong	68	-	-	2	2
25.	Tunisia	67	-	-	3	3 (Team of 4)
26.	Colombia	66	-	-	3	3

27.-28.-29.	Finland	65	-	-	2	2
27.-28.-29.	Greece	65	-	-	1	1
27.-28.-29.	Turkey	65	-	-	3	3
30.	Luxembourg	64	-	1	2	3 (Team of 3)
31.	Morocco	62	-	-	2	2
32.	Peru	55	-	-	1	1
33.	Poland	54	-	1	-	1 (Team of 3)
34.	New Zealand	47	-	1	-	
35.	Italy	44	-	-	1	1 (Team of 4)
36.	Algeria	42	-	1	-	1 (Team of 5)
37.	Mexico	40	-	-	1	1
38.	Brazil	39	-	-	-	0
39.	Iceland	37	-	-	1	1 (Team of 4)
40.	Cuba	35	-	-	-	0
41.	Spain	34	-	-	-	0
42.	Norway	33	-	-	-	0
43.	Ireland	30	-	-	-	0
44.	Philippines	29	-	-	-	0 (Team of 5)
45.-46.	Argentina	23	-	-	-	0 (Team of 3)
45.-46.	Kuwait	23	-	-	-	0
47.	Cyprus	21	-	-	-	0
48.	Indonesia	6	-	-	-	0 (Team of 3)
49.	Ecuador	1	-	-	-	0 (Team of 1)

This year the Canadian team moved up to tenth place. The team members, scores and the leaders were as follows:

Ravi Vakil	40	(gold medal)
Patrick Surry	25	(silver medal)
Colin Springer	22	(bronze medal)
David McKinnon	15	(bronze medal)
Gurraj Sangha	11	(honourable mention)
Philip Jong	11	
Bruce Shawyer, Memorial University of Newfoundland		
Ron Scoins, Waterloo		
Richard Nowakowski, Dalhousie.		

The U.S.A. team slipped to sixth place, but members put in a solid performance. The team members were:

Jordan Ellenberg	31	(silver medal)
John Woo	31	(silver medal
Samuel Kutin	26	(silver medal
Tal Kubo	24	(silver medal
Eric Wepsic	23	(silver medal)
Hubert Bray	18	(bronze medal)

The leaders of the American team were:
Gerald Heuer, Concordia College
Gregg Patruno, Columbia University.

The next few Olympiads are:

1989
1990
1991
1992
1993

Braunschweig, West Germany
China
Sweden
East Germany
Turkey.

Canada has tentatively been awarded the honour for 1995.

We next give the problems of this year's I.M.O. competition. Solutions to these problems, along with those of the 1988 U.S.A. Mathematical Olympiad, will appear in a booklet entitled Mathematical Olympiads 1988 which may be obtained for a small charge from:

Dr. W.E. Mientka
Executive Director
M.A.A. Committee on H.S. Contests
917 Oldfather Hall
University of Nebraska
Lincoln, Nebraska, U.S.A. 68588

THE 29TH INTERNATIONAL MATHEMATICAL OLYMPIAD
Canberra, Australia
First Day
July 15,1988
Time: $41 / 2$ hours

1. Consider two coplanar circles of radii R and $r(R>r)$ with the same centre. Let P be a fixed point on the smaller circle and B a variable point on the larger circle. The line $B P$ meets the larger circle again at C. The perpendicular l to $B P$ at P meets the smaller circle again at A (if l is tangent to the circle at P then $A=P$).
(i) Find the set of values of $B C^{2}+C A^{2}+A B^{2}$.
(ii) Find the locus of the midpoint of $A B$.
2. Let n be a positive integer and let $A_{1}, A_{2}, \ldots, A_{2 n+1}$ be subsets of a set B. Suppose that
(a) Each A_{i} has exactly $2 n$ elements,
(b) each $A_{i} \cap A_{j}(1 \leq i<j \leq 2 n+1)$ contains exactly one element, and
(c) every element of B belongs to at least two of the A_{i}.

For which values of n can one assign to every element of B one of the numbers 0 and 1 in such a way that each A_{i} has 0 assigned to exactly n of its elements?
3. A function f is defined on the positive integers by

$$
\begin{gathered}
f(1)=1, f(3)=3 \\
f(2 n)=f(n) \\
f(4 n+1)=2 f(2 n+1)-f(n) \\
f(4 n+3)=3 f(2 n+1)-2 f(n)
\end{gathered}
$$

for all positive integers n. Determine the number of positive integers n, less than or equal to 1988 , for which $f(n)=n$.

Second Day

July 16, 1988
Time: $41 / 2$ hours
4. Show that the set of real numbers x which satisfy the inequality

$$
\sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4}
$$

is a union of disjoint intervals, the sum of whose lengths is 1988.
5. $\quad A B C$ is a triangle right-angled at A, and D is the foot of the altitude from A. The straight line joining the incentres of the triangles $A B D, A C D$ intersects the sides $A B, A C$ at the points K, L respectively. S and T denote the areas of the triangles $A B C$ and $A K L$ respectively. Show that $S \geq 2 T$.
6. Let a and b be positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that

$$
\frac{a^{2}+b^{2}}{a b+1}
$$

is the square of an integer.

We next give solutions for the problems of the 20th Canadian Mathematics Olympiad (1988) posed in the last issue of the Corner [1988: 163]. The solutions come from R. Nowakowski, Dalhousie University, who is chairman of the Canadian Mathematics Olympiad Committee of the Canadian Mathematical Society.

1. For what values of b do the equations $1988 x^{2}+b x+8891=0$ and $8891 x^{2}+b x+1988=0$ have a common root?

Solution.
From the equations we see that

$$
b=\frac{-8891-1988 x^{2}}{x} \text { and } b=\frac{-1988-8891 x^{2}}{x}
$$

respectively. Putting these two equal we find $x= \pm 1$. If $x=1$ is the common root then $b=-10879$, if $x=-1$ is the common root then $b=10879$.
2. A house is in the shape of a triangle, perimeter P metres and area A square metres. The garden consists of all the land within 5 metres of the house. How much land do the garden and house together occupy?

Solution.

The garden consists of 3 rectangular pieces and three sectors of a circle. The rectangular pieces all have width 5 metres and their total length is P metres. Their combined area is therefore $5 P$ square metres. At a corner of the house, with interior angle x, the angle within the sector is $360^{\circ}-180^{\circ}-x=180^{\circ}-x$. The sum of the angles in all three sectors is $3\left(180^{\circ}\right.$) - (sum of interior angles) $=360^{\circ}$. Therefore the sectors fit together to form a circle of radius 5 . Their combined area is 25π. The total area of house and garden is thus $A+25 \pi+5 P$ square metres.
3. Suppose that S is a finite set of points in the plane where some are coloured red, the others are coloured blue. No subset of three or more similarly coloured points is collinear. Show that there is a triangle
(i) whose vertices are all the same colour; and such that
(ii) at least one side of the triangle does not contain a point of the opposite colour.

Solution.
Consider the set of triangles whose vertices are in the set S. Call a triangle monochromatic if all its vertices are the same colour. Let T be a monochromatic triangle of least nonzero area. If every side of T contains a vertex of the other colour then the triangle formed by choosing such a vertex along each side of T is monochromatic and has smaller nonzero area, contrary to the choice of T.
4. Let

$$
x_{n+1}=4 x_{n}-x_{n-1}, x_{0}=0, x_{1}=1
$$

and

$$
y_{n+1}=4 y_{n}-y_{n-1}, y_{0}=1, y_{1}=2
$$

Show for all $n \geq 0$ that $y_{n}^{2}=3 x_{n}^{2}+1$.
Solution.
The result is proved by simultaneous induction on the two statements
(a) $\quad y_{n}^{2}=3 x_{n}^{2}+1$
and
(b) $\quad y_{n} y_{n-1}=3 x_{n} x_{n-1}+2$.

Both statements are true for $n=1$.

$$
\begin{align*}
y_{n+1}^{2} & \left.=\left(4 y_{n}-y_{n-1}\right)^{2}=16 y_{n}^{2}-8 y_{n} y_{n-1}+y_{n-1}^{2} \quad \text { (by definition of } y_{n+1}\right) \tag{i}\\
& =48 x_{n}^{2}+16-8 y_{n} y_{n-1}+3 x_{n-1}^{2}+1 \quad \text { (by induction and (a)) } \\
& =48 x_{n}^{2}+16-8\left(2+3 x_{n} x_{n-1}\right)+3 x_{n-1}^{2}+1 \quad \text { (by induction and (b)) } \\
& =48 x_{n}^{2}-24 x_{n} x_{n-1}+3 x_{n-1}^{2}+1=3\left(4 x_{n}-x_{n-1}\right)^{2}+1 \\
& \left.=3 x_{n+1}^{2}+1 . \quad \text { (by definition of } x_{n+1}\right)
\end{align*}
$$

(ii)

$$
\begin{aligned}
y_{n+1} y_{n} & \left.=\left(4 y_{n}-y_{n-1}\right) y_{n}=4 y_{n}^{2}-y_{n} y_{n-1} \quad \text { (by definition of } y_{n+1}\right) \\
& =4\left(3 x_{n}^{2}+1\right)-\left(3 x_{n} x_{n-1}+2\right) \quad \text { (by induction, (a) and (b)) } \\
& =3 x_{n}\left(4 x_{n}-x_{n-1}\right)+2 \\
& \left.=3 x_{n} x_{n+1}+2 . \quad \text { (by definition of } x_{n+1}\right)
\end{aligned}
$$

5. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ denote a set of integers where r is greater than 1. For each non-empty subset A of S, we define $p(A)$ to be the product of all the integers contained in A. Let $m(S)$ be the arithmetic average of $p(A)$ over all non-empty subsets A of S. If $m(S)=13$ and if $m\left(S \cup\left\{a_{r+1}\right\}\right)=49$ for some positive integer a_{r+1}, determine the values of $a_{1}, a_{2}, \ldots, a_{r}$ and a_{r+1}.

Solution.
For any n and $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ note that

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right)=\left(2^{n}-1\right) m(A)+1
$$

It follows that

$$
\begin{aligned}
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{r+1}\right) & =\left(2^{r+1}-1\right) m\left(S \cup\left\{a_{r+1}\right\}\right)+1 \\
& =\left[\left(2^{r}-1\right) m(S)+1\right]\left(1+a_{r+1}\right) .
\end{aligned}
$$

Thus

$$
\left[13\left(2^{r}-1\right)+1\right]\left(1+a_{r+1}\right)=\left(2^{r+1}-1\right) 49+1
$$

Solving for 2^{r} (and using $2^{r+1}=2 \cdot 2^{r}$),

$$
\begin{equation*}
2^{r}=\frac{12\left(a_{r+1}-3\right)}{13 a_{r+1}-85} \tag{1}
\end{equation*}
$$

Now the right side of (1) is a decreasing function of a_{r+1}. Since $a_{r+1}=1$ gives $2^{r}<1$, no integers less than $85 / 13$ need be considered as possible values for a_{r+1}, i.e. $a_{r+1} \geq 7$. Since $r \geq 2$ we also require

$$
\frac{12\left(a_{r+1}-3\right)}{13 a_{r+1}-85} \geq 4
$$

which works out to $a_{r+1} \leq 38 / 5$. Thus $a_{r+1}=7$, and we get $r=3$ and

$$
\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right)=\left(2^{3}-1\right) 13+1=92=2 \cdot 2 \cdot 23
$$

Therefore the only solution in positive integers (up to rearrangement) is $1+a_{1}=2$, $1+a_{2}=2,1+a_{3}=23$, i.e.

$$
a_{1}=1, a_{2}=1, a_{3}=22
$$

The other 13 essentially different integral solutions are left for the reader.

The results of the 1988 Canadian Mathematics Olympiad are as follows:

Gurraj Sangha	1st Prize
David McKinnon	2nd Prize
Philip Jong	3rd Prize
Peter Copeland	4th Prize
Graham Denham	4th Prize
Samuel Maltby	4th Prize
Phil Reiss	4th Prize
Patrick Surry	4th Prize

It is worth noting that the highest scores on the contest were given to Ravi Vakil followed by Colin Springer, but neither person was eligible for an official prize. They were able to represent Canada at the I.M.O. because of the different eligibility criteria.

There were some ambiguities in the format and wording of the 1988 C.M.O. For instance, I received some comments on the subscripts and superscripts in problem 4 which, from the way they were printed on the exam sheet, offered potential for confusion. (Reportedly, none of the top students were fazed by this.) Readers who tried the problems printed in last month's Corner may have noticed other difficulties. For example, "set of integers" in problem 5 should likely have been "set of positive integers", and the question of rearrangements more clearly specified to limit the number of solutions to 1 instead of 14 (if nonpositive integers are allowed) or 72 (if also permutations are allowed). E.T.H. Wang pointed out that at least five points are needed in problem 3. A more serious possible confusion in problem 3 was conveyed to me by Alan Mekler of Simon Fraser University who points out that "side of the triangle" could also be taken to mean the line determined by two of the vertices. With this interpretation the problem is a good bit more challenging. What about the good contestant who reads the more difficult interpretation, but does not arrive at the solution? I reproduce below the elegant solution of Alistair Lachlan of Simon Fraser University for the problem as it was relayed to me by Alan Mekler.
3. [1988: 163] 1988 Canadian Mathematics Olympiad.

Suppose that S is a finite set of points in the plane where some are coloured red, the others blue. No subset of three or more similarly coloured points is collinear. Show that there is a triangle
(i) whose vertices are all the same colour; and such that
(ii) at least one side of the triangle does not contain a point of the opposite colour.

Solution by A. Lachlan and A. Mekler, Simon Fraser University.
Note that S must contain at least 5 points, otherwise there are trivial counterexamples with no monochromatic triangles. We prove the result with "side of the triangle" interpreted to mean the entire line containing the side.

Suppose we have a counterexample with b blue points and r red points, and $b+r \geq 5$. If either b or r equals 3 or less, then it is easy to see that there is a triangle of the required type; thus $b>3$ and $r>3$. Call any line containing 2 red points a "red line". There are exactly $\binom{r}{2}$ red lines, and, since we have a counterexample, each red line must have a blue point on it. However, any blue point can be on at most $r / 2$ red lines. Thus

$$
b \geq\binom{ r}{2} /\left(\frac{r}{2}\right)=r-1
$$

Similarly $r \geq b-1$, hence $|r-b| \leq 1$. In particular, as $b, r>3,\binom{b}{2}>r$ and $\binom{r}{2}>b$.
Now, since every red line contains a blue point and $\binom{r}{2}>b$, there is a blue point B_{1} which lies on two distinct red lines, say the lines containing (distinct) red points Q_{1}, Q_{2} and Q_{3}, Q_{4}, respectively. Let $B_{2}, \ldots, B_{\mathrm{b}}$ enumerate the rest of the blue points. Choose red points $R_{2}, \ldots, R_{\mathrm{b}}$ so that R_{i} lies on the line $B_{1} B_{i}$. Notice that these points exist and are distinct. As well, at most one of Q_{1}, Q_{2} is among R_{2}, \ldots, R_{k} and similarly for Q_{3}, Q_{4}. Counting the points we have

$$
r \geq\left|\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\} \cup\left\{R_{2}, \ldots, R_{b}\right\}\right| \geq b+1
$$

so that $r>b$. Similarly $b>r$, a contradiction.

PROBLEMS

Problem proposals and solutions should be sent to the editor, whose address appears on the inside front cover of this issue. Proposals should, whenever possible, be accompanied by a solution, references, and other insights which are likely to be of help to the editor. An asterisk (*) after a number indicates a problem submitted without a solution.

Original problems are particularly sought. But other interesting problems may also be acceptable provided they are not too well known and references are given as to their provenance. Ordinarily, if the originator of a problem can be located, it should not be submitted by somebody else without his or her permission.

To facilitate their consideration, your solutions, typewritten or neatly handwritten on signed, separate sheets, should preferably be mailed to the editor before April 1, 1989, although solutions received after that date will also be considered until the time when a solution is published.
1361. Proposed by J.T. Groenman, Arnhem, The Netherlands.

Let $A B C$ be a triangle with sides a, b, c and angles α, β, γ, and let its circumcenter lie on the escribed circle to the side a.
(i) Prove that $-\cos \alpha+\cos \beta+\cos \gamma=\sqrt{2}$.
(ii) Find the range of α.
1362. Proposed by M.S. Klamkin, University of Alberta, Edmonton, Alberta. Determine the sum

$$
\sum_{j=0}^{n} \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
j+k
\end{array}\right]\left[\begin{array}{l}
n \\
j
\end{array}\right]\left[\begin{array}{l}
n \\
k
\end{array}\right] \omega^{-j-2 k}
$$

where ω is a primitive cube root of unity.
1363. Proposed by P. Erdos, Hungarian Academy of Sciences.

Let there be given n points in the plane, no three on a line and no four on a circle. Is it true that these points must determine at least n distinct distances, if n is large enough? I offer $\$ 25$ U.S. for the first proof of this.
1364. Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, Massachusetts.
Let a and b be integers. Find a polynomial with integer coefficients that has $\sqrt[3]{a}+\sqrt[3]{b}$ as a root.
1365. Proposed by G. Tsintsifas, Thessaloniki, Greece.

Prove that

$$
\frac{3}{\pi}<\frac{\sin A}{\pi-A}+\frac{\sin B}{\pi-B}+\frac{\sin C}{\pi-C}<\frac{3 \sqrt{3}}{\pi}
$$

where A, B, C are the angles (in radians) of an acute triangle.
1366. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

Prove or disprove that

$$
\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{y+z}}+\frac{z}{\sqrt{z+x}} \geq \frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{2}}
$$

for all positive real numbers x, y, z.
1367. Proposed by Richard K. Guy, University of Calgary.

Consider arrangements of pennies in rows in which the pennies in any row are contiguous, and each penny not in the bottom row touches two pennies in the row below.

For example,
 is allowed, but

isn't.

How many arrangements are there with n pennies in the bottom row? To illustrate, there are five arrangements with $n=3$, namely

1368. Proposed by Florentin Smarandache, Craiova, Romania.

Let $A B C D$ be a tetrahedron and $A_{1} \in C D, A_{2} \in C B, C_{1} \in A D, C_{2} \in A B$ be four coplanar points. Let $E=B C_{1} \cap D C_{2}$ and $F=B A_{1} \cap D A_{2}$. Prove that the lines $A E$ and $C F$ intersect.
1369. Proposed by G.R. Veldkamp, De Bilt, The Netherlands.

The perimeter of a triangle is 24 cm and its area is $24 \mathrm{~cm}^{2}$. Find the maximal length of a side and write it in a simple form.
1370. Proposed by Peter Watson-Hurthig, Columbia College, Burnaby, British Columbia.
Let $L(n)$ be the number of steps required to go from n to 1 in the Collatz sequence

$$
C_{1}(n)=n, \quad C_{k+1}(n)= \begin{cases}3 C_{k}(n)+1 & \text { if } C_{k}(n) \text { is odd } \\ C_{k}(n) / 2 & \text { if } C_{k}(n) \text { is even }\end{cases}
$$

It is notoriously unknown whether $L(n)$ exists for all positive integers n. Show that there exist infinitely many n such that

$$
L(n)=L(n+1)=L(n+2)
$$

SOLUTIONS

No problem is ever permanently closed. The editor will always be pleased to consider for publication new solutions or new insights on past problems.
1067. [1985: 221; 1987: 27] Proposed by Jack Garfunkel, Flushing, N.Y.
(a) If $x, y, z>0$, prove that

$$
\frac{x y z\left(x+y+z+\sqrt{x}^{2} \overline{+y}^{2} \overline{+z}^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)(y z+z x+x y)} \leq \frac{3+\sqrt{3}}{9} .
$$

II. Generalization by Murray S. Klamkin, University of Alberta.

We show more generally that

$$
\frac{T_{n}^{3 / n}\left(T_{1}+\sqrt{S_{2}}\right)}{S_{2} T_{2}} \leq \frac{n+\sqrt{n}}{n\binom{n}{2}}
$$

where

$$
\begin{gathered}
T_{1}=x_{1}+x_{2}+\cdots+x_{n} \\
T_{2}=\sum_{i \neq j} x_{i} x_{j}
\end{gathered}
$$

$$
\begin{gathered}
T_{n}=x_{1} x_{2} \ldots x_{n} \\
S_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
\end{gathered}
$$

The given inequality is then the case $n=3$.
By the Maclaurin and power mean inequalities,

$$
T_{n}^{1 / n} \leq \sqrt{T_{2} /\binom{n}{2}} \leq T_{1} / n \leq \sqrt{S_{2} / n}
$$

Thus

$$
T_{1}+\sqrt{S_{2}} \leq(\sqrt{n}+1) \sqrt{S_{2}}
$$

and

$$
\frac{T_{n}^{3 / n}}{T_{2}} \leq \frac{1}{\binom{n}{2}} \sqrt{T_{2} /\left(\frac{n}{2}\right)} \leq \frac{1}{\binom{n}{2}} \sqrt{S_{2} / n}
$$

which yield the result.
1122. [1986: 50; 1987: 197] Proposed by Richard K. Guy, University of Calgary, Calgary, Alberta.
Find a dissection of a $6 \times 6 \times 6$ cube into a small number of connected pieces which can be reassembled to form cubes of sides 3,4 , and 5 , thus demonstrating that $3^{3}+4^{3}+5^{3}=6^{3}$. One could ask this in at least four forms:
(a) the pieces must be bricks, with integer dimensions;
(b) the pieces must be unions of $1 \times 1 \times 1$ cells of the cube;
(c) the pieces must be polyhedral;
(d) no restriction.

Editor's comment.
CHARLES H. JEPSEN, Grinnell College, has sent in a 10-brick solution to part (a), improving his 11-brick solution mentioned on [1987: 197]. Here it is in layers, with the 10 bricks labelled A to J.

A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	E
D	D	D	D	D	E
D	D	D	D	D	F

layer 1

A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	E
D	D	D	D	D	E
D	D	D	D	D	F

layer 2

A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	C
A	A	A	A	B	E
D	D	D	D	D	E
D	D	D	D	D	F

layer 3

A	A	A	A	B	G
A	A	A	A	B	G
A	A	A	A	B	G
A	A	A	A	B	G
D	D	D	D	D	G
D	D	D	D	D	F

layer 4

H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
I	I	I	J	J	J

layer 5

H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
H	H	H	H	H	G
I	I	I	J	J	J

layer 6

When reassembled, A forms the 4 -cube, the 3 -cube is

C	C	C
C	C	C
C	C	C

layer 1

E	E	E
I	I	I
J	J	J

layer 2

E	E	E
I	I	I
J	J	J

layer 3
and the 5 -cube is

H	H	H	H	H
H	H	H	H	H
H	H	H	H	H
H	H	H	H	H
H	H	H	H	H

layer 1

H	H	H	H	H
H	H	H	H	H
H	H	H	H	H
H	H	H	H	H
H	H	H	H	H

layer 2

D	D	D	D	G
D	D	D	D	G
D	D	D	D	G
D	D	D	D	G
D	D	D	D	G

layer 3

D	D	D	D	G					
D	D	D	D	G					
D	D	D	D	G					
D	D	D	D	G					
D	D	D	D	G					
layer 4 4						B	B	B	G
B	B	B	B	G					
B	B	B	B	G					
B	B	B	B	G					
F	F	F	F	G					
layer 5									

This still leaves the possibility of an 8-or 9-brick solution for (a).
1215. [1987: 53; 1988: 119] Proposed by Edward T.H. Wang, Wilfrid Laurier University, Waterloo, Ontario.
Let a, b, c be nonnegative real numbers with $a+b+c=1$. Show that

$$
a b+b c+c a \leq a^{3}+b^{3}+c^{3}+6 a b c \leq a^{2}+b^{2}+c^{2} \leq 2\left(a^{3}+b^{3}+c^{3}\right)+3 a b c,
$$

and for each inequality determine all cases when equality holds.
Comment by Murray S. Klamkin, University of Alberta.
It should have been noted with the published solution [1988: 119] that all the given inequalities are known. To see this, we convert the inequalities to homogeneous form by multiplying selectively by $a+b+c$ and using the elementary symmetric functions

$$
T_{1}=a+b+c, \quad T_{2}=b c+c a+a b, \quad T_{3}=a b c .
$$

The given inequalities are then equivalent to

$$
T_{1} T_{2} \leq\left(T_{1}^{3}-3 T_{1} T_{2}+3 T_{3}\right)+6 T_{3} \leq T_{1}\left(T_{1}^{2}-2 T_{2}\right) \leq 2\left(T_{1}^{3}-3 T_{1} T_{2}+3 T_{3}\right)+3 T_{3},
$$

and all of these are known elementary inequalities. The first and third inequalities are both

$$
T_{1}^{3}+9 T_{3} \geq 4 T_{1} T_{2}
$$

or equivalently

$$
\sum a(a-b)(a-c) \geq 0
$$

a special case of the Schur inequality

$$
\sum a^{n}(a-b)(a-c) \geq 0
$$

The middle inequality reduces to the well known Cauchy inequality $T_{1} T_{2} \geq 9 T_{3}$ or

$$
(a+b+c)(1 / a+1 / b+1 / c) \geq 9 .
$$

1225. [1987: 86] Proposed by David Singmaster, The Polytechnic of the South Bank, London, England.
What convex subset S of a unit cube gives the maximum value for V / A,
where V is the volume of S and A is its surface area? (For the two-dimensional case, see Crux 870 [1986: 180].)

Editor's comment.

The best anyone has done with this problem ("anyone" being either RICHARD I. HESS, Rancho Palos Verdes, California; or the proposer) is to consider, analogous to the two-dimensional case, sets S_{r} obtained by rounding the edges and corners of the unit cube to cylindrical and spherical caps of radius r. For these sets the maximum V / A was found numerically to be at $r=0.25848326$, where $V=0.851069, A=4.5930139$, and

$$
V / A=0.18529641
$$

Can someone improve on this?

1249*. [1987: 150] Proposed by D.S. Mitrinovic and J.E. Pecaric, University of Belgrade, Belgrade, Yugoslavia.
Prove the triangle inequalities
(a) $\quad \sum \sin ^{4} A \leq 2-\frac{1}{2}\left[\frac{r}{R}\right]^{2}-3\left[\frac{r}{R}\right]^{4} \leq 2-5\left[\frac{r}{R}\right]^{4}$
(b) $\quad \sum \sin ^{2} 2 A \geq 6\left[\frac{r}{R}\right]^{2}+12\left[\frac{r}{R}\right]^{4} \geq 36\left[\frac{r}{R}\right]^{4}$
(c) $\quad \sum \sin 2 B \sin 2 C \leq 5\left[\frac{r}{R}\right]^{2}+8\left[\frac{r}{R}\right]^{3} \leq 9\left[\frac{r}{R}\right]^{2}$
where the sums are cyclic over the angles A, B, C of a triangle, and r, R are the inradius and circumradius respectively.

Solution by Vedula N. Murty, Pennsylvania State University at Harrisburg.
The inequality $r / R \leq 1 / 2$ proves the second inequalities of (a), (b), and (c).
For the remaining inequalities we put $x=r / R, y=s / R$ where s is the semiperimeter. We claim that the first inequalities of (a), (b), and (c) are equivalent respectively to:

$$
\begin{gathered}
L=y^{4}-y^{2}\left(6 x^{2}+8 x\right)+25 x^{4}+8 x^{3}+20 x^{2}-16 \leq 0, \\
M=y^{4}-y^{2}\left(6 x^{2}+8 x+4\right)+25 x^{4}+8 x^{3}+32 x^{2}+16 x \leq 0, \\
N=y^{4}+y^{2}\left(2 x^{2}-8 x-4\right)+x^{4}-24 x^{3}+16 x \leq 0,
\end{gathered}
$$

where $0<x \leq 1 / 2$ and $0<y$. To prove this we need only note the following identities:

$$
\begin{aligned}
& \sum \sin ^{4} A= {\left[\left[\sum \sin A\right]^{2}-2 \sum \sin B \sin C\right]^{2}-2\left[\sum \sin B \sin C\right]^{2}+4 \rrbracket \sin A \sum \sin A } \\
& \sum \sin ^{2} 2 A=\left[\sum \sin 2 A\right]^{2}-2 \sum \sin 2 B \sin 2 C \\
& \sum \sin 2 B \sin 2 C=4 \rrbracket \cos ^{2} A+4 \rrbracket \sin ^{2} A+4 \rrbracket \cos A
\end{aligned}
$$

$$
\begin{gathered}
\sum \sin 2 A=4 \prod \sin A=2 x y \\
\sum \sin B \sin C=\frac{y^{2}+x^{2}+4 x}{4} \\
\sum \sin A=y \\
\prod \sin A=\frac{x y}{2} \\
\prod \cos A=\frac{y^{2}-(x+2)^{2}}{4}
\end{gathered}
$$

Substitution of these expressions and some algebraic simplification proves the assertion.
Next note that

$$
L-M=4\left[y^{2}-\left(3 x^{2}+4 x+4\right)\right]
$$

and

$$
M-N=8 x^{2}\left[\left(3 x^{2}+4 x+4\right)-y^{2}\right]
$$

Steinig (see [1], item 5.8) proved that

$$
y^{2} \leq 3 x^{2}+4 x+4
$$

therefore $L \leq M$ and $N \leq M$. Thus if we prove that $M \leq 0$ we immediately establish $L \leq 0$ and $N \leq 0$.

It remains to prove $M \leq 0$. The equation $M=0$ is a quadratic in y^{2} and has two real roots

$$
y_{1}^{2}=3 x^{2}+4 x+2-2 \sqrt{1-x^{2}+4 x^{3}-4 x^{4}}
$$

and

$$
y_{2}^{2}=3 x^{2}+4 x+2+2 \sqrt{1-x^{2}+4 x^{3}-4 x^{4}}
$$

Thus

$$
M=\left(y^{2}-y_{1}^{2}\right)\left(y^{2}-y_{2}^{2}\right),
$$

and to show $M \leq 0$ we must show

$$
y_{1}^{2} \leq y^{2} \leq y_{2}^{2}
$$

For this we note the known inequality

$$
2+10 x-x^{2}-2(1-2 x)^{3 / 2} \leq y^{2} \leq 2+10 x-x^{2}+2(1-2 x)^{3 / 2}
$$

(see [1], item 5.10), and we now verify that

$$
\begin{equation*}
y_{1}^{2} \leq 2+10 x-x^{2}-2(1-2 x)^{3 / 2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}^{2} \geq 2+10 x-x^{2}+2(1-2 x)^{3 / 2} \tag{2}
\end{equation*}
$$

for $0<x \leq 1 / 2$.
(1) is equivalent successively to

$$
\begin{gathered}
3 x^{2}+4 x+2-2 \sqrt{1-x^{2}+4 x^{3}-4 x^{4} \leq 2+10 x-x^{2}-2(1-2 x)^{3 / 2}} \\
2 x^{2}-3 x+(1-2 x)^{3 / 2} \leq \sqrt{1-x^{2}+4 x^{3}-4 x^{4}}
\end{gathered}
$$

and by squaring and rearranging,

$$
\begin{gathered}
8 x^{4}-24 x^{3}+22 x^{2}-6 x \leq\left(6 x-4 x^{2}\right)(1-2 x)^{3 / 2} \\
2 x(x-1)(2 x-1)(2 x-3) \leq 2 x(3-2 x)(1-2 x)^{3 / 2}
\end{gathered}
$$

which is true (for $0<x \leq 1 / 2$) since the left side is negative and the right side positive.
Similarly, (2) is equivalent to

$$
\begin{gathered}
3 x^{2}+4 x+2+2 \sqrt{1-x^{2}+4 x^{3}-4 x^{4} \geq 2+10 x-x^{2}+2(1-2 x)^{3 / 2}} \\
\sqrt{1-x^{2}+4 x^{3}-4 x^{4}} \geq-2 x^{2}+3 x+(1-2 x)^{3 / 2} \\
-8 x^{4}+24 x^{3}-22 x^{2}+6 x \geq\left(6 x-4 x^{2}\right)(1-2 x)^{3 / 2} \\
2 x(1-x)(1-2 x)(3-2 x) \geq 2 x(3-2 x)(1-2 x)^{3 / 2}
\end{gathered}
$$

and finally

$$
1-x \geq \sqrt{1-2 x}
$$

which is clearly true by squaring.

Reference:

[1] O. Bottema et al, Geometric Inequalities.
Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria. One other reader noted that the three right-hand inequalities followed easily.
1250. [1987: 151] Proposed by J.T. Groenman, Arnhem, The Netherlands.

We have a regular octahedron with vertices $A_{1}, A_{2}, \ldots, A_{6}$. Let P be a point and let $n_{1}, n_{2}, \ldots, n_{8}$ be the distances from P to the eight faces of the octahedron. Let

$$
S_{1}=\sum_{i=1}^{6}{\overline{P A_{i}}}^{2}, \quad S_{2}=\sum_{j=1}^{8} n_{j}^{2}
$$

Prove that S_{1} / S_{2} is independent of P.
Solution by Richard I. Hess, Rancho Palos Verdes, California.
Define the vertices as

$$
\begin{array}{ll}
A_{1}=(0,0,1), \quad A_{2}=(0,0,-1), & A_{3}=(1,0,0), \\
A_{4}=(-1,0,0), \quad A_{5}=(0,1,0), & A_{6}=(0,-1,0)
\end{array}
$$

and let $P=(x, y, z)$. Then

$$
\begin{aligned}
S_{1}= & x^{2}+y^{2}+(z-1)^{2}+x^{2}+y^{2}+(z+1)^{2}+(x-1)^{2}+y^{2}+z^{2}+(x+1)^{2} \\
& +y^{2}+z^{2}+x^{2}+(y-1)^{2}+z^{2}+x^{2}+(y+1)^{2}+z^{2} \\
= & 6\left(x^{2}+y^{2}+z^{2}+1\right)
\end{aligned}
$$

The eight faces are all at distance $d=1 / \sqrt{3}$ from the origin with normals ($\pm d, \pm d, \pm d$), where all eight choices of + or - are taken. For each such normal $\mathbf{n}_{i}, 1 \leq i \leq 8, \mathbf{n}_{i} \cdot(x, y, z)$ gives the distance $q_{i}=(\pm x \pm y \pm z) / \sqrt{3}$ from P to the plane through the origin with normal \mathbf{n}_{i}. The sum of the squares of the distances from P to the two faces of the octahedron parallel to this
plane is then

$$
\left(q_{i}+d\right)^{2}+\left(q_{i}-d\right)^{2}=2 q_{i}^{2}+2 d^{2} .
$$

Thus

$$
\begin{aligned}
S_{2} & =\frac{1}{2} \sum_{i=1}^{8}\left(2 q_{i}^{2}+2 d^{2}\right) \\
& =\frac{2}{3}\left[(x+y+z)^{2}+(x+y-z)^{2}+(x-y+z)^{2}+(-x+y+z)^{2}+4\right] \\
& =\frac{8}{3}\left(x^{2}+y^{2}+z^{2}+1\right)
\end{aligned}
$$

Therefore $S_{1} / S_{2}=9 / 4$ irrespective of P.
Also solved by JORDI DOU, Barcelona, Spain; HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; ZUN SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; D.J. SMEENK, Zaltbommel, The Netherlands; C. WILDHAGEN, Tilburg University, Tilburg, The Netherlands; and the proposer.
1251. [1987: 179] Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, Massachusetts. (Dedicated to Léo Sauvé.)
(a) Find all integral n for which there exists a regular n-simplex with integer edge and integer volume.
(b) Which such n-simplex has the smallest volume?

Solution by the proposer.
(a) If the edge of the n-simplex is a, the volume is given by

$$
\frac{a^{n}}{n!} \sqrt{\frac{n+1}{2^{n}}}
$$

This expression will be rational only if $n+1$ is a square or twice a square. It can then be made integral by choosing a to be large enough. If $n+1$ is a square, then we must have 2^{n} a square, so n is even. Thus $n+1$ will be the square of an odd number, so

$$
\begin{equation*}
n=4 k^{2}+4 k \tag{1}
\end{equation*}
$$

for some positive integer k. If $n+1$ is twice a square, then we have

$$
\begin{equation*}
n=2 k^{2}-1 \tag{2}
\end{equation*}
$$

for some positive integer $k>1$. Equations (1) and (2) give all possible values for n.
(b) ${ }^{*}$ I don't have a rigorous solution to this part. It seems clear that the smallest integral volume occurs for the smallest n, since n ! contains many primes and these can't all be cancelled by the $n+1$ term in the numerator. Thus these primes must appear in a, and the term a^{n} increases much faster than n ! does. So it appears that the smallest volume occurs when $n=7$ and $a=2 \cdot 3 \cdot 5 \cdot 7=210$. The volume then is

$$
2 \cdot 3^{5} \cdot 5^{6} \cdot 7^{6}=893397093750
$$

Also solved (part (a)) by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria. There was one partial solution submitted.

The proposer is probably correct about part (b), although one reader claims the minimum volume to be 1 , occurring when $n=1=a!$ Okay then, assuming $n>1$, can anyone give a simple argument for part (b)?
1252. [1987: 179] Proposed by George Tsintsifas, Thessaloniki, Greece.

Let $A B C$ be a triangle and M an interior point with barycentric coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$. We denote the pedal triangle and the Cevian triangle of M by $D E F$ and $A^{\prime} B^{\prime} C^{\prime}$ respectively. Prove that

$$
\frac{[D E F]}{\left[A^{\prime} B^{\prime} C^{\prime}\right]} \geq 4 \lambda_{1} \lambda_{2} \lambda_{3}(s / R)^{2}
$$

where s is the semiperimeter and R the circumradius of $\triangle A B C$, and [X] denotes the area of figure X.
I. Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

We will prove the stronger result

$$
\frac{[D E F]}{\left[A^{\prime} B^{\prime} C^{\prime}\right]} \geq \frac{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right)}{2}\left[\frac{s}{R}\right]^{2}
$$

with equality if and only if M is the incenter of $\triangle A B C$. The given inequality then follows via

$$
\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right) \geq 8 \lambda_{1} \lambda_{2} \lambda_{3}
$$

Let $F=[A B C]$ and r_{1}, r_{2}, r_{3} the distances from M to the sides a_{1}, a_{2}, a_{3}, respectively, of $\triangle A B C$. Then

$$
\begin{equation*}
\lambda_{1}=\frac{[M B C]}{F}=\frac{a_{1} r_{1}}{2 F}, \quad \lambda_{2}=\frac{a_{2} r_{2}}{2 F}, \quad \lambda_{3}=\frac{a_{3} r_{3}}{2 F} . \tag{1}
\end{equation*}
$$

Furthermore, since

$$
[D E M]=\frac{r_{1} r_{2} \sin C}{2}=\frac{c r_{1} r_{2}}{4 R}, \text { etc. }
$$

we have

$$
\begin{align*}
{[D E F] } & =[D E M]+[E F M]+[F D M] \\
& =\frac{a_{1} r_{2} r_{3}+a_{2} r_{3} r_{1}+a_{3} r_{1} r_{2}}{4 R} \tag{2}
\end{align*}
$$

From p. 89 of Bottema et al, Geometric Inequalities, we take

$$
\begin{equation*}
\left[A^{\prime} B^{\prime} C^{\prime}\right]=\frac{2 \lambda_{1} \lambda_{2} \lambda_{3} F}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right)} \tag{3}
\end{equation*}
$$

Finally by the weighted arithmetic-harmonic inequality we get

$$
\frac{a_{1} r_{2} r_{3}+a_{2} r_{3} r_{1}+a_{3} r_{1} r_{2}}{a_{1}+a_{2}+a_{3}} \geq \frac{a_{1}+a_{2}+a_{3}}{\frac{a_{1}}{r_{2} r_{3}}+\frac{a_{2}}{r_{3} r_{1}}+\frac{a_{3}}{r_{1} r_{2}}}
$$

or

$$
\begin{equation*}
a_{1} r_{2} r_{3}+a_{2} r_{3} r_{1}+a_{3} r_{1} r_{2} \geq \frac{4 s^{2} r_{1} r_{2} r_{3}}{a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}} \tag{4}
\end{equation*}
$$

with equality if and only if $r_{1}=r_{2}=r_{3}$, i.e. M is the incenter of $\triangle A B C$. Now (1), (2), and (4) yield

$$
\begin{align*}
{[D E F] } & \geq \frac{s^{2} r_{1} r_{2} r_{3}}{R\left(a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}\right)}=\frac{4 s^{2} F^{2} \lambda_{1} \lambda_{2} \lambda_{3}}{R a_{1} a_{2} a_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)} \\
& =\frac{s^{2} F \lambda_{1} \lambda_{2} \lambda_{3}}{R^{2}}, \tag{5}
\end{align*}
$$

where we used $a_{1} a_{2} a_{3}=4 R F$ and $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$. (3) and (5) yield the desired result.
II. Generalizations by Murray S. Klamkin, University of Alberta.
[Klamkin also proved (5), having noted that the original inequality then follows from the fact that the maximum of $\left[A^{\prime} B^{\prime} C^{\prime}\right]$ is $F / 4$, occurring when the three cevians are the three medians (see [1978: 256]). In the process he obtained (4), using

$$
a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}=2 F=r\left(a_{1}+a_{2}+a_{3}\right)
$$

where r is the inradius of $\triangle A B C$, to write it in the form

$$
\begin{equation*}
\frac{a_{1}}{r_{1}}+\frac{a_{2}}{r_{2}}+\frac{a_{3}}{r_{3}} \geq \frac{a_{1}+a_{2}+a_{3}}{r} \tag{6}
\end{equation*}
$$

He then went on to say ...]
We now give some generalizations of (6). For n, m real, $n \geq 0$, we have by Hölder's inequality that

$$
\begin{aligned}
& {\left[\frac{a_{1}^{m}}{r_{1}^{n}}+\frac{a_{2}^{m}}{r_{2}^{n}}+\frac{a_{3}^{m}}{r_{3}^{n}}\right]^{\frac{1}{n+1}}\left(a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}\right)^{\frac{n}{n+1}}} \\
& \quad \geq\left[\frac{a_{1}^{m}}{r_{1}^{n}}\right]^{\frac{1}{n+1}}\left(a_{1} r_{1}\right)^{\frac{n}{n+1}}+\left[\frac{a_{2}^{m}}{r_{2}^{n}}\right]^{\frac{1}{n+1}}\left(a_{2} r_{2}\right)^{\frac{n}{n+1}}+\left[\frac{a_{3}^{m}}{r_{3}^{n}}\right]^{\frac{1}{n+1}}\left(a_{3} r_{3}\right)^{\frac{n}{n+1}} \\
& \quad=a_{1}^{\frac{m+n}{n+1}}+a_{2}^{\frac{m+n}{n+1}}+a_{3}^{\frac{m+n}{n+1}}
\end{aligned}
$$

or

$$
\begin{equation*}
\left[\frac{a_{1}^{m}}{r_{1}^{n}}+\frac{a_{2}^{m}}{r_{2}^{n}}+\frac{a_{3}^{m}}{r_{3}^{n}}\right] r^{n}\left(a_{1}+a_{2}+a_{3}\right)^{n} \geq\left[a_{1}^{\frac{m+n}{n+1}}+a_{2}^{\frac{m+n}{n+1}}+a_{3}^{\frac{m+n}{n+1}}\right]^{n+1} \tag{7}
\end{equation*}
$$

If $m=1$, (7) becomes

$$
\frac{a_{1}}{r_{1}^{n}}+\frac{a_{2}}{r_{2}^{n}}+\frac{a_{3}}{r_{3}^{n}} \geq \frac{a_{1}+a_{2}+a_{3}}{r^{n}}
$$

Putting $n=1$ as well yields (6).
The above inequalities and all others of the type

$$
x+y+z \geq w
$$

can be extended to

$$
F(x)+F(y)+F(z) \geq F(x+y+z) \geq F(w)
$$

where F is an increasing concave function with $F(0)=0$ (F is then subadditive). For example, letting $F(x)=x^{\lambda}$ where $0<\lambda<1$, (6) becomes

$$
\left[\frac{a_{1}}{r_{1}}\right]^{\lambda}+\left[\frac{a_{2}}{r_{2}}\right]^{\lambda}+\left[\frac{a_{3}}{r_{3}}\right]^{\lambda} \geq\left[\frac{a_{1}+a_{2}+a_{3}}{r}\right]^{\lambda}
$$

Also solved by the proposer. There was one partial solution submitted.
1253. [1987: 179] Proposed by Richard I. Hess, Rancho Palos Verdes, California. Player A starts with $\$ 3$ and player B starts with $\$ 10$. On each turn a fair coin is tossed, with the outcome that either B pays $A \$ 3$ or A pays $B \$ 2$. Play continues until one player wins by having won all the other player's money. Which player is more likely to win?

Solution by the proposer.
Let p_{i} by the probability that A wins when A starts with $\$ i$ and B starts with $\$ 13-i$. We want to find p_{3}. By the conditions of the problem,

$$
p_{i}=\frac{1}{2}\left(p_{i-2}+p_{i+3}\right), \quad 1 \leq i \leq 12
$$

where we define

$$
p_{i}=0 \text { for } i \leq 0, p_{i}=1 \text { for } i \geq 13 .
$$

Thus

$$
\begin{aligned}
p_{3} & =\frac{1}{2} p_{1}+\frac{1}{2} p_{6}=\frac{1}{2} p_{4}+\frac{1}{4} p_{9}=\frac{1}{4} p_{2}+\frac{3}{8} p_{7}+\frac{1}{8} p_{12} \\
& =\frac{5}{16} p_{5}+\frac{1}{4} p_{10}+\frac{1}{16}=\frac{5}{32} p_{3}+\frac{9}{32} p_{8}+\frac{3}{16},
\end{aligned}
$$

so that

$$
\begin{equation*}
9 p_{3}=3 p_{8}+2 \tag{1}
\end{equation*}
$$

Continuing,

$$
\begin{aligned}
9 p_{3} & =\frac{3}{2} p_{6}+\frac{3}{2} p_{11}+2=\frac{3}{4} p_{4}+\frac{3}{2} p_{9}+\frac{11}{4} \\
& =\frac{3}{8} p_{2}+\frac{9}{8} p_{7}+\frac{3}{4} p_{12}+\frac{11}{4}=\frac{3}{4} p_{5}+\frac{15}{16} p_{10}+\frac{25}{8} \\
& =\frac{3}{8} p_{3}+\frac{27}{32} p_{8}+\frac{115}{32},
\end{aligned}
$$

so that

$$
\begin{equation*}
276 p_{3}=27 p_{8}+115 \tag{2}
\end{equation*}
$$

Now (1) and (2) yield

$$
p_{3}=\frac{97}{195}<\frac{1}{2}
$$

so B is more likely to win.
Also solved by HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; and R.D. SMALL, University of New

Brunswick, Fredericton. None of these solutions was as succinct as the proposer's. There was also one incorrect solution received.
1254. [1987: 179] Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
Let $A B C$ be a triangle and $n \geq 1$ a natural number. Show that

$$
\left|\sum \sin n(B-C)\right| \begin{cases}<1 & \text { if } n=1 \\ <3 \sqrt{3} / 2 & \text { if } n=2 \\ \leq 3 \sqrt{3} / 2 & \text { if } n \geq 3\end{cases}
$$

where the sum is cyclic.
Solution by Murray S. Klamkin, University of Alberta.
Letting

$$
\begin{equation*}
x=n(B-C), y=n(C-A), z=n(A-B) \tag{1}
\end{equation*}
$$

and denoting the given sum by S_{n}, our problem is to find the extrema of

$$
\left|S_{n}\right|=|\sin x+\sin y+\sin z|
$$

subject to $x+y+z=0$. Our solution is via Lagrange multipliers. The Lagrangian is

$$
\mathscr{L}=\sin x+\sin y+\sin z-\lambda(x+y+z)
$$

The critical points will satisfy $\mathscr{L}_{x}=\mathscr{L}_{y}=\mathscr{L}_{x}=0$ or

$$
\begin{equation*}
\cos x=\cos y=\cos z=\lambda \tag{2}
\end{equation*}
$$

Since $x+y+z=0$, it follows easily that

$$
\cos ^{2} x+\cos ^{2} y+\cos ^{2} z=1+2 \cos x \cos y \cos z
$$

Thus

$$
3 \lambda^{2}=1+2 \lambda^{3}
$$

so that $\lambda=1$ or $-1 / 2$. Now by (2), if $\lambda=1$ then $\sin x=0$ etc., while if $\lambda=-1 / 2$ then $\sin x= \pm \sqrt{3} / 2$ etc. Thus

$$
\begin{equation*}
\left|S_{n}\right| \leq 3 \sqrt{3} / 2 \tag{3}
\end{equation*}
$$

for all critical points.
Without loss of generality we may assume $A \leq B \leq C$. Then if $n=1$, (1) and (2) with $\lambda=-1 / 2$ imply that

$$
A-B=-120^{\circ}=B-C,
$$

and so $C-A=240^{\circ}$ which is impossible. Thus for $n=1$ any critical points in the interior of the feasible region will correspond to $\lambda=1$, in which case

$$
\left|S_{n}\right|=0
$$

For $n=2$ and $\lambda=-1 / 2,(1)$ and (2) imply

$$
\{A-B, B-C\} \subseteq\left\{-60^{\circ},-120^{\circ}\right\}
$$

and it is easily seen that the only solution is the degenerate triangle $C=120^{\circ}, B=60^{\circ}$,
$A=0^{\circ}$. Thus for $n=2$ strict inequality holds in (3) at critical points. For $n \geq 3$ we have a nondegenerate solution

$$
A=60^{\circ}-\frac{120^{\circ}}{n}, B=60^{\circ}, C=60^{\circ}+\frac{120^{\circ}}{n}
$$

giving equality in (3).
It remains to check that the given inequalities hold on the boundary of the region containing those points (x, y, z) which actually correspond to triangles $A B C$. This boundary contains precisely all degenerate triangles, those in which at least one of A, B, C is 0 . $A=B=0$ gives

$$
\left|S_{n}\right|=0
$$

which satisfies the inequalities for all n. For $A=0$ we get

$$
\begin{aligned}
\left|S_{n}\right| & =|\sin n(B-C)+\sin n C-\sin n B| \\
& =|\sin (180 n-2 n C)+\sin n C-\sin (180 n-n C)| \\
& =\left\{\begin{array}{l}
|\sin 2 n C| \quad, n \text { odd } \\
|2 \sin n C-\sin 2 n C|, \\
n \text { even. }
\end{array}\right.
\end{aligned}
$$

For n odd, we have $\left|S_{n}\right| \leq 1$. We have $\left|S_{1}\right|=1$ for the degenerate triangle $C=135^{\circ}$, $B=45^{\circ}$. For n even, we let

$$
f(C)=2 \sin n C-\sin 2 n C
$$

for which

$$
\begin{aligned}
f^{\prime}(C) & =2 n \cos n C-2 n \cos 2 n C \\
& =2 n\left(1+\cos n C-2 \cos ^{2} n C\right)
\end{aligned}
$$

so that f takes on its extreme values when $\cos n C=1$ or $-1 / 2$. Then we get respectively

$$
\sin n C=0, f(C)=0
$$

and

$$
\sin n C= \pm \sqrt{3} / 2, \sin 2 n C= \pm \sqrt{3} / 2,|f(C)| \leq 3 \sqrt{3} / 2
$$

Thus $\left|S_{n}\right| \leq 3 \sqrt{3} / 2$ holds on the boundary for all $n>1$.
In summary, all three given inequalities are correct and best possible, with equality holding for $n=1$ and 2 only for degenerate triangles.

We now consider the analogous problem with cos instead of sin. Putting

$$
C_{n}=\sum \cos n(B-C)
$$

clearly $C_{n} \leq 3$, with equality for equilateral triangles. To obtain the minimum value for C_{n}, we proceed as before, using Lagrange multipliers. Again with the substitution (1), the Lagrangian is

$$
\mathscr{L}=\cos x+\cos y+\cos z-\lambda(x+y+z)
$$

and the equations for the critical points are

$$
\begin{equation*}
\sin x=\sin y=\sin z=\lambda \tag{4}
\end{equation*}
$$

The identity we use here (again for $x+y+z=0$) is

$$
\begin{equation*}
\sin 2 x+\sin 2 y+\sin 2 z=-4 \sin x \sin y \sin z . \tag{5}
\end{equation*}
$$

If $\cos x, \cos y$, and $\cos z$ are not all the same sign, then from (4)

$$
\begin{equation*}
C_{n}=\sum \cos x \geq-1 \tag{6}
\end{equation*}
$$

We note that when $n=1$, equality in (6) holds only if two of $\cos (B-C), \cos (C-A)$, $\cos (A-B)$ equal -1 , i.e. only for degenerate triangles. If $\cos x, \cos y, \cos z$ all have the same sign, then from (5)

$$
\begin{gathered}
3 \sin 2 x=-4 \sin ^{3} x \\
3 \cos x=-2\left(1-\cos ^{2} x\right)
\end{gathered}
$$

So

$$
(2 \cos x+1)(\cos x-2)=0
$$

that is, $\cos x=-1 / 2$. Thus

$$
C_{n} \geq-3 / 2
$$

As before, for $n>2$ equality holds for the nondegenerate triangle

$$
A=60^{\circ}-\frac{120^{\circ}}{n}, B=60^{\circ}, C=60^{\circ}+{\frac{120^{\circ}}{n}}^{\circ} ;
$$

for $n=2$ equality holds only for a degenerate triangle; and for $n=1$ there are no solutions.
Now we consider the boundary. For $A=B=0$,

$$
C_{n}=1+2 \cos n C \geq-1,
$$

and for $n=1$ equality holds only for a degenerate triangle. For $A=0$,

$$
\begin{aligned}
C_{n} & =\cos n(B-C)+\cos n C+\cos n B \\
& =\cos (180 n-2 n C)+\cos n C+\cos (180 n-n C) \\
& = \begin{cases}-\cos 2 n C, & n \text { odd } \\
\cos 2 n C+2 \cos n C, & n \text { even. }\end{cases}
\end{aligned}
$$

Thus for n odd, $C_{n} \geq-1$, and for n even,

$$
\begin{aligned}
C_{n} & =2 \cos ^{2} n C+2 \cos n C-1 \\
& =2(\cos n C+1 / 2)^{2}-3 / 2 \geq-3 / 2
\end{aligned}
$$

Hence, excluding degenerate triangles, we have shown that

$$
\sum \cos n(B-C) \begin{cases}>-1 & \text { if } n=1 \\ >-3 / 2 & \text { if } n=2 \\ \geq-3 / 2 & \text { if } n \geq 3\end{cases}
$$

Also solved by the proposer. Two partial solutions were received.
1255. [1987: 180] Proposed by J.T. Groenman, Arnhem, The Netherlands.
(a) Find all positive integers n such that $2^{13}+2^{10}+2^{n}$ is the square of an integer.
(b) ${ }^{*} \quad$ Find all positive integers n such that $2^{14}+2^{10}+2^{n}$ is the square of an integer.
I. Solution to (a) by several readers. Rewrite

$$
2^{13}+2^{10}+2^{n}=y^{2}
$$

as

$$
\begin{gathered}
2^{10}(8+1)+2^{n}=y^{2} \\
\left(2^{5} \cdot 3\right)^{2}+2^{n}=y^{2}
\end{gathered}
$$

and finally

$$
2^{n}=y^{2}-96^{2}=(y+96)(y-96) .
$$

Thus each of $y+96$ and $y-96$ must be a power of 2 , and since they differ by 192 we must have

$$
y+96=256=2^{8}
$$

so

$$
y-96=64=2^{6}
$$

and hence the only solution is $n=8+6=14$.
II. Solution to (b) by Kee-wai Lau, Hong Kong.

We shall see that

$$
2^{14}+2^{10}+2^{n}
$$

is the square of an integer if and only if $n=4,13,15,16$, or 19 .
For $1 \leq n \leq 10$ it can be checked easily that $2^{14}+2^{10}+2^{n}$ is the square of an integer only for $n=4$. We now assume $n \geq 11$ and let $k=n-10 \geq 1$. Then

$$
2^{14}+2^{10}+2^{n}=(32)^{2}\left(2^{k}+17\right)
$$

so we want to know when $2^{k}+17$ is the square of an integer. Now it has been proved ([1], [2]) that the only positive integers k for which $y^{2}-17=2^{k}$ is solvable in integers are $3,5,6$, and 9. Hence our result.

References:

[1] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arithmetica 38 (1981) 389-410.
[2] N. Tzanakis, On the Diophantine equation $y^{2}-D=2^{k}$, J. Number Theory 17 (1983) 144-164.
III. Editor's comments.

The proposer pointed out a similar problem on [1982: 46], with solution as in I above.

Two readers, LEROY F. MEYERS and P. PENNING, independently considered the general Diophantine equation

$$
\begin{equation*}
2^{a}+2^{b}+2^{c}=x^{2} \tag{1}
\end{equation*}
$$

for a, b, c, x nonnegative integers, $a \leq b \leq c$. They found the "basic" solutions

$$
\begin{gather*}
2^{1}+2^{1}+2^{5}=6^{2} \tag{2}\\
2^{0}+2^{k+1}+2^{2 k}=\left(1+2^{k}\right)^{2}, k \geq 0 \tag{3}\\
2^{0}+2^{4}+2^{5}=7^{2} \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
2^{0}+2^{4}+2^{9}=23^{2} \tag{5}
\end{equation*}
$$

from which further solutions can be derived by multiplying both sides by an arbitrary even positive power of 2 . Thus, of the five values of n given in II, 15 and 19 come from (4) and (5) respectively (by multiplying by 2^{10}), and 4,13 and 16 similarly come from (3). Neither Meyers nor Penning could show that there are no other solutions to (1). Any further "basic" solution, however, will have $a=0$ and $2 \leq b<c$ where c is odd. Does some reader know whether additional solutions exist?

Part (a) solved by HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong; STEWART METCHETTE, Culver City, California; LEROY F. MEYERS, The Ohio State University; P. PENNING, Delft, The Netherlands; ZUN SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; C. WILDHAGEN, Tilburg University, Tilburg, The Netherlands; and the proposer.

Hess, Lau, Meyers, Penning, and the proposer found all five solutions to (b), while Janous, Metchette, and Shan and Wang only missed one.
1256. [1987: 180] Proposed by D.J. Smeenk, Zaltbommel, The Netherlands.

Let $A B C$ be a triangle with sides satisfying $a^{3}=b^{3}+c^{3}$. Determine the range of angle A.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
We consider the following more general situation. Let $r>2$ and a, b, c be positive real numbers such that

$$
\begin{equation*}
a^{r}=b^{r}+c^{r} . \tag{1}
\end{equation*}
$$

We shall determine that a, b, c are the sides of a triangle $A B C$, and that the range of angle A is

$$
\begin{equation*}
\left[\arccos \left(1-2^{(2-r), r}\right), \frac{\pi}{2}\right) \tag{2}
\end{equation*}
$$

In particular when $r=3$ we get

$$
A \in\left[\arccos \left(1-2^{-1 / 3}\right), \frac{\pi}{2}\right)
$$

or approximately

$$
78.1^{\circ} \leq A<90^{\circ} .
$$

Without loss of generality let $a=1$. Then by (1) $b, c<1$. We also assume $b \geq c$. Then from (1)

$$
c \leq 1 / 2^{1 / r}, \quad b=\left(1-c^{r}\right)^{1 / r} .
$$

We first claim that a, b, c form a triangle. Indeed, we have to check $b+c>1$, i.e.,

$$
\left(1-c^{r}\right)^{1 / r}+c>1
$$

This inequality is either easily verified directly or it follows from Minkowski's inequality.
Letting the triangle be $A B C$, by the law of cosines we have

$$
\begin{align*}
\cos A & =\frac{\left(1-c^{r}\right)^{2 / r}+c^{2}-1}{2 c\left(1-c^{r}\right)^{1 / r}} \\
& =\frac{(1-t)^{2 / r}+t^{2 / r}-1}{2 t^{1 / r}(1-t)^{1 / r}}=f(t) \tag{3}
\end{align*}
$$

where we have put $t=c^{r}$ (and thus $0<t \leq 1 / 2$). Let's now discuss $f(t)$ on the interval ($0,1 / 2$]. Differentiation of (3) and a simplification (of medium length) leads to

$$
f^{\prime}(t)=\frac{t^{2 / r}-(1-t)^{2 / r}+1-2 t}{2 r[t(1-t)]^{1+1 / r}}
$$

Thus the sign of $f^{\prime}(t)$ is equal to the sign of

$$
z(t)=1-2 t+t^{2 / r}-(1-t)^{2 / r}
$$

Now

$$
z^{\prime}(t)=-2+\frac{2}{r}\left[t^{(2-r) / r}+(1-t)^{(2-r) / r}\right]
$$

and

$$
z^{\prime \prime}(t)=\frac{2(2-r)}{r^{2}}\left[t^{(2-2 r) / r}-(1-t)^{(2-2 r) / r}\right] .
$$

As $r>2$ and $t \leq 1 / 2$, we infer $z^{\prime \prime}(t)<0$, i.e. z is concave. From this we get

$$
z(t) \geq \min \{z(0), z(1 / 2)\}=0
$$

Consequently $f^{\prime}(t) \geq 0$, i.e. f increases on ($0,1 / 2$]. Finally, from (3) we have

$$
f(1 / 2)=1-2^{(2-r) / r}
$$

and

$$
\lim _{t \rightarrow 0} f(t)=0,
$$

and the range (2) follows.
[Editor's note: this generalization was also essentially obtained by the proposer. From his solution the range of A comes out to be

$$
\left[2 \arcsin \left({ }^{r} \sqrt{2} / 2\right), \pi / 2\right) ;
$$

same as (2), but a bit simpler-looking.]
Also solved by SEUNG-JIN BANG, Seoul, Korea; HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; J.T. GROENMAN, Arnhem, The Netherlands;

RICHARD I. HESS, Rancho Palos Verdes, California; KEE-WAI LAU, Hong Kong; ZUN SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; and the proposer.
1257. [1987: 180] Proposed by Jordan Stoyanov, Bulgarian Academy of Sciences, Sofia, Bulgaria.
Find all rational x such that $3 x^{2}-5 x+4$ is the square of a rational number.
Solution by P. Penning, Delft, The Netherlands.
We consider the more general equation

$$
a x^{2}+b x+c^{2}=y^{2}
$$

where a, b, c are rational numbers. This may be rewritten as

$$
x(a x+b)=(y+c)(y-c)
$$

and then as

$$
\begin{equation*}
\frac{y+c}{x}=\frac{a x+b}{y-c}=r \tag{1}
\end{equation*}
$$

which is equivalent to the system

$$
\begin{gathered}
r x-y=c \\
a x-r y=-b-r c .
\end{gathered}
$$

Solving for x, we get

$$
x=\frac{2 c r+b}{r^{2}-a}
$$

where (from (1)) all rational solutions x will be found by allowing r to take on all possible rational values.

In the original problem, $a=3, b=-5, c=2$ so that the solution is

$$
x=\frac{4 r-5}{r^{2}-3}, r \text { rational. }
$$

Also solved by RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; ZUN SHAN and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; C. WILDHAGEN, Tilburg University, Tilburg, The Netherlands; and the proposer. Their solutions, although all correct, varied greatly in appearance with the above and with each other. Two other readers sent in incomplete answers.
1258. [1987: 180] Proposed by Ian Witten, University of Calgary, Calgary, Alberta. Think of a picture as an $m \times n$ matrix A of real numbers between 0 and 1 inclusive, where $a_{i j}$ represents the brightness of the picture at the point (i, j). To reproduce the picture on a computer we wish to approximate it by an $m \times n$ matrix B of 0 's and 1 's,
such that every "part" of the original picture is "close" to the corresponding part of the reproduction. These are the ideas behind the following definitions.

A subrectangle of an $m \times n$ grid is a set of positions of the form

$$
\left\{(i, j) \mid r_{1} \leq i \leq r_{2}, s_{1} \leq j \leq s_{2}\right\}
$$

where $1 \leq r_{1} \leq r_{2} \leq m$ and $1 \leq s_{1} \leq s_{2} \leq n$ are constants. For any subrectangle R, let

$$
d(R)=\left|\sum_{(i, j) \in R}\left(a_{i j}-b_{i j}\right)\right|
$$

where A and B are as given above, and define

$$
d(A, B)=\max d(R)
$$

the maximum taken over all subrectangles R.
(a) Show that there exist matrices A such that $d(A, B)>1$ for every 0-1 matrix B of the same size.
(b) ${ }^{*} \quad$ Is there a constant c such that for every matrix A of any size, there is some $0-1$ matrix B of the same size such that $d(A, B)<c$?
I. Solution to (a) by C. Wildhagen, Tilburg University, Tilburg, The Netherlands. If R is a subrectangle of $[m] \times[n]$, let A_{R} denote the submatrix of A consisting of those entries of A whose indices belong to R, and define

$$
w\left(A_{R}\right)=\sum_{(i, j) \in R} a_{i j}
$$

Then we have to show that there exists some $m \times n$ matrix A with entries in the interval $[0,1]$ such that for each $m \times n\{0,1\}$-matrix B,

$$
\begin{equation*}
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|>1 \tag{1}
\end{equation*}
$$

for some subrectangle R of $[m] \times[n]$.
Let $m=3$ and $n=11$. Choose a number ϵ so that

$$
1 / 12<\epsilon<1 / 11
$$

Take for A the 3×11 matrix with each entry equal to ϵ. Suppose B is some 3×11 $\{0,1\}$-matrix for which (1) fails for every R. Then
(i) any submatrix R of B of area at most 11 contains at most one 1 , for otherwise

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right| \geq 2-11 \epsilon>2-11 / 11=1
$$

(ii) any submatrix R of B of area at least 12 contains at least one 1 , for otherwise

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right| \geq 12 \epsilon>1
$$

It follows from (i) that each row of B contains at most one 1 . If B has a zero row, then it is easy to see that B must contain either a 2×6 or a 3×4 submatrix of 0 's, contradicting (ii). Thus B contains exactly three 1 's, one in each row. Let them be located in columns j_{1}, j_{2}, j_{3} from top to bottom. Note that from (i) and (ii),

$$
\left|j_{1}-j_{2}\right|,\left|j_{2}-j_{3}\right|=5 \text { or } 6,
$$

since a 2×5 subrectangle must contain at most one 1 , and a 2×6 subrectangle at least one 1. On the other hand, by (i) a 3×3 rectangle cannot contain two 1 's, so $\left|j_{1}-j_{3}\right| \geq 3$. Now it is easy to see that without loss of generality we must have $j_{1}=1, j_{2}=6, j_{3}=11$; but then B has a 3×4 zero submatrix, contradicting (ii). Thus (1) must hold for some R, for each $3 \times 11\{0,1\}$-matrix B.
II. Solution to (a), and comment, by the editor.

With the choice $\epsilon=2 / 23$, the above proof actually shows that the given matrix A has the following stronger property: for every $3 \times 11\{0,1\}$-matrix B, there is some subrectangle R such that

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right| \geq 24 / 23
$$

We now give a slightly more complicated argument to raise this bound further to $21 / 19$. This is the best the editor has been able to do, and shows that, if it exists, the constant c referred to in part (b) must be greater than 21/19.

Let A be the $2 \times n$ matrix

$$
\left[\begin{array}{rrrr}
12 / 19 & 12 / 19 & \cdots & 12 / 19 \\
9 / 19 & 9 / 19 & \cdots & 9 / 19
\end{array}\right]
$$

where n is a sufficiently large positive integer. Suppose that B is a $2 \times n\{0,1\}$-matrix such that (to borrow the notation of the first proof)

$$
\begin{equation*}
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|<21 / 19 \tag{2}
\end{equation*}
$$

for all subrectangles R. Then it is clear that
(i) no column of B can be zeros;
(ii) the first row of B cannot have three consecutive 1 's, for otherwise there is a 1×3 subrectangle R for which

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|=3-3(12 / 19)=21 / 19 ;
$$

(iii) the first row of B cannot have two consecutive 0 's;
(iv) the first row of B cannot contain the submatrix 01010, for otherwise there is a 1×5 subrectangle R for which

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|=5(12 / 19)-2>21 / 19 ;
$$

(v) the second row of B cannot contain the submatrix 1101 (or 1011), for otherwise there is a 1×4 subrectangle R for which

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|=3-4(9 / 19)=21 / 19 ;
$$

(vi) the second row of B cannot contain the submatrix 00100, for otherwise there is a 1×5 subrectangle R for which

$$
\left|w\left(A_{R}\right)-w\left(B_{R}\right)\right|=5(9 / 19)-1>21 / 19 .
$$

We further claim that the first row of B cannot contain the submatrix 0110110 . Otherwise, by (i) there is a 2×7 submatrix of B which looks like

$$
01110110
$$

which by (v) must in fact be

$$
\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

which is impossible by (vi).
Now, by (ii), (iii), (iv), and this last result, the first row of B must, except for a couple of entries at each end, look like

$$
011010110101101 \cdots .
$$

Since for the submatrix 01101 and its corresponding 1×5 subrectangle R we have

$$
w\left(A_{R}\right)-w\left(B_{R}\right)=5(12 / 19)-3=3 / 19>0
$$

if n is large enough there is a long submatrix of the first row for whose corresponding subrectangle $R w\left(A_{R}\right)-w\left(B_{R}\right)$ becomes arbitrarily large, contradicting (2).

Part (b) remains completely open. The editor would be most interested in an answer to this question, or even in an improvement to the bound $21 / 19$. Readers might also like to try to increase the bound $21 / 19$ for $2 \times n$ matrices only, or the bound $24 / 23$ for matrices A with all entries equal.
1259. [1987: 181] Proposed by M.S. Klamkin, University of Alberta, Edmonton, Alberta.
If $x, y, z \geq 0$, disprove the inequality

$$
(y z+z x+x y)^{2}(x+y+z) \geq 9 x y z\left(x^{2}+y^{2}+z^{2}\right)
$$

Determine the largest constant one can replace the 9 with to obtain a valid inequality.
Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
Put $y=z=1, x \rightarrow \infty$. Then there must hold

$$
\frac{(2 x+1)^{2}(x+2)}{x\left(x^{2}+2\right)} \geq 9
$$

as $x \rightarrow \infty$. But the left side approaches 4 as $x \rightarrow \infty$, which disproves the given inequality and shows in fact that 9 cannot be replaced by any constant larger than 4 . We claim that 4 works. Indeed, as the inequality is homogeneous and symmetric we may put $z=1$, and then we have to show

$$
\begin{equation*}
(x y+x+y)^{2}(x+y+1) \geq 4 x y\left(x^{2}+y^{2}+1\right) \tag{1}
\end{equation*}
$$

Multiplying out and collecting terms leads to

$$
x^{3} y^{2}+x^{2} y^{3}+x^{3}+y^{3}+5 x^{2} y^{2}+5 x y^{2}+5 x^{2} y+x^{2}+y^{2} \geq 2 x^{3} y+2 x y^{3}+2 x y
$$

that is,

$$
x^{3}(y-1)^{2}+y^{3}(x-1)^{2}+(y-x)^{2}+5 x y(x y+x+y) \geq 0 .
$$

From this obviously true inequality the validity of (1) immediately follows. Furthermore, it also shows that (1) still holds true if we add $5 x y(x y+x+y)$ to the right-hand side. For the original inequality this means: if $x, y, z \geq 0$ then

$$
(x y+y z+z x)^{2}(x+y+z) \geq x y z\left[4\left(x^{2}+y^{2}+z^{2}\right)+5(x y+y z+z x)\right]
$$

with equality if and only if $x=y=z$.
A more general question would be: if $p, q, r, s>0$ are such that $q \neq s$ and $2 p+q=3 r+s$, determine the largest constant $C=C(p, q, r, s)$ such that

$$
(x y+y z+z x)^{p}\left(x^{q}+y^{q}+z^{q}\right) \geq C x^{r} y^{r} z^{r}\left(x^{s}+y^{s}+z^{s}\right)
$$

holds for all $x, y, z \geq 0$.
Also solved (usually by the same method) by HANS ENGELHAUPT, Gundelsheim, Federal Republic of Germany; J.T. GROENMAN, Arnhem, The Netherlands; RICHARD I. HESS, Rancho Palos Verdes, California; KEE—WAI LAU, Hong Kong; GILLIAN NONAY and EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; and the proposer. One incomplete and one incorrect solution were also received.

We have a little space left over this issue, so here's a "filler" the editor cut out of the Thunder Bay Chronicle-Journal around 1978.

MATH IS OFF

A two-inch garden hose will carry four times as much water as a one-inch hose.

CMS SUBSCRIPTION PUBLICATIONS
 1989 RATES
 CANADIAN JOURNAL OF MATHEMATICS

Editors-in-Chief: D. Dawson and V. Dlab
This internationally renowned journal is the companion publication to the Canadian Mathematical Bulletin. It publishes the most up-to-date research in the field of mathematics, normally publishing articles exceeding 15 typed pages. Bimonthly, 256 pages per issue.
Non-CMS Members $\$ 250.00 \quad$ CMS Members $\$ 125.00$
Non-CMS Members obtain a 10% discount if they also subscribe to the Canadian Mathematical Bulletin. Both subcriptions must be placed together.

CANADIAN MATHEMATICAL BULLETIN
Editors: J. Fournier and D. Sjerve
This internationally renowned journal is the companion publication to the Canadian Journal of Mathematics. It publishes the most up-to-date research in the field of mathematics, normally publishing articles no longer than 15 typed pages. Quarterly, 128 pages per issue. Non-CMS Members $\$ 120.00$ CMS Members $\$ 60.00$ Non-CMS Members obtain a 10% discount if they also subscribe to the Canadian Journal of Mathematics. Both subscriptions must be placed together.

Orders by CMS Members and applications for CMS Membership should be submitted directly to the CMS Executive Office.

Orders by non-CMS Members for the
CANADIAN MATHEMATICAL BULLETIN and the CANADIAN JOURNAL OF MATHEMATICS should be submitted using the form below:

CMS SUBSCRIPTION PUBLICATIONS

1989 RATES

CRUX MATHEMATICORUM

Editor: W. Sands

Problem solving journal at the senior secondary and university undergraduate levels. Includes "Olympiad Corner" which is particularly applicable to students preparing for senior contests. 10 issues per year. 36 pages per issue.
Non-CMS Members \$35.00 CMS Members \$17.50

APPL IED MATHEMATICS NOTES

Editors: H.I. Freedman and R. Elliott
Expository and newsworthy material aimed at bridging the gap between professional mathematicians and the users of mathematics.
Quarterly.
Non-CMS Members $\$ 12.00 \quad$ CMS Members $\$ 6.00$

CMS NOTES
Editors: E.R. Williams and P.P. Narayanaswami
Primary organ for the dissemination of information to the members of the C.M.S. The Problems and Solutions section formerly published in the Canadian Mathematical Bulletin is now published in the CMS Notes. 8-9 issues per year.
Non-CMS Members $\$ 10.00 \quad$ CMS Members FREE
Orders by CMS Members and applications for CMS Membership should be submitted directly to the CMS Executive Office.

Orders by non-CMS Members for
CRUX MATHEMATICORUM, the APPL IED MATHEMATICS NOTES or the CMS NOTES should be submitted using the form below:

La Société mathématique du Canada
The Canadian Mathematical Society

Please enter these subscriptions:
Crux Mathematicorum
Applied Mathematics Notes (\$12)
C.M.S. Notes
\square Please bill me
I am using a credit card
I enclose a cheque payable to the Canadian Mathematical Society

Master Card

!!!!! BOUND VOLUMES !!!!!

THE FOLLOWING BOUND VOLUMES OF CRUX MATHEMATICORUM ARE AVAILABLE AT \$10 PER VOLUME:

1 \& 2 (combined), 3, 4, 7, 8, 9, 10

PLEASE SEND CHEQUES MADE PAYABLE TO THE CANADIAN MATHEMATICAL SOCIETY TO: Canadian Mathematical Society

577 King Edward Avenue Ottawa, Ontario Canada K1N 6N5

Volume Numbers \qquad Mailing :
Address
\qquad volumes $X \$ 10.00=\$$ \qquad
!!!!! VOLUMES RELIÉS !!!!!
CHACUN DES VOLUMES RELIÉS SUIVANTS Ã $10 \$$:
$1 \& 2$ (ensemble), $3,4,7,8,9,10$
S.V.P. COMPLETER ET RETOURNER, AVEC VOTRE REMISE LIBELLÉE AU NOM DE LA SOCIÉTÉ MATHEMATIQUE DU CANADA, A L'ADRESSE SUIVANTE:

Société mathématique du Canada
577 avenue King Edward Ottawa, Ontario Canada K1N 6N5
volume (s) numéro(s) \qquad Adresse : \qquad
__ volumes $\times 10 \$=$ \qquad \$

PUBLICATIONS

The Canadian Mathematical Society
577 King Edward, Ottawa, Ontario K1N 6N5
is pleased to announce the availability of the following publications:

1001 Problems in High School Mathematics

Collected and edited by E.J. Barbeau, M.S. Klamkin and W.O.J. Moser.

Book I	Problems	$1-100$ and Solutions	$1-50$	58	pages	$(\$ 5.00)$
Book II	$:$	Problems	$51-200$ and Solutions	$51-150$	85	pages

The Canadian Mathematics 0lympiads (1969-1978)
Problems set in the first ten Olympiads (1969-1978) together with suggested solutions. Edited by E.J. Barbeau and W.0.J. Moser. 89 pages (\$5.00)

The Canadian Mathematics Olympiads (1979-1985)
Problems set in the 1979 to 1985 Olympiads together with suggested solutions. Edited by C.M. Reis and S.Z. Ditor. 104 pages. ($\$ 5.00$)

Prices are in Canadian dollars and include handling charges. Information on other CMS publications can be obtained by writing to the Executive Director at the address given above.

