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THE OLYMPIAD CORNER: 76
M.S. KLAMKIN

All communications about this column should be sent to M.S. Klamkin,
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada,
T6G 2G1.

This month I give the problems of the 1986 Canadian Mathematical Olympiad
(received through secondary sources) and the 1986 U.S.A. Mathematical Olympiad
by courtesy of Walter Mientka. The U.S.A.M.O. was set by J. Konhauser, A.

Liu, G. Patruno, and I. Richards (chairman).

EIGHTEENTH CANADIAN MATHEMATICS OLYMPIAD (1986)
Wednesday, May 7, 1986 9:00 a.m. - 12:00 noon

1.

In the diagram AB and CD are of length 1 while angles ABC and CBD are 90°
and 30o respectively. Find AC.
2. A Mathlon is a competition in which there are M athletic events.
Such a competition was held in which only A4, B and C participated.
In each event p, points were awarded for first place, p, for second and p, for
third where p, > p, > p; > 0 and p,, p,, ps, are integers. The final score for
A was 22, for B was 9 and for C was also 9. B won the 100 metres. What is
the value of ¥ and who was second in the high jump?
3. A chord ST of constant length slides around a semicircle with
diameter AB. M is the mid-point of ST and P is the foot of the
perpendicular from S to 4B. Prove that angle SP¥ is constant for all
positions of ST.

er_l. Prove

1

4. For positive integers n and k%, define F(n,k) =
r

"M

that F(n,1) divides F(n,k).
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5. Let u,, u,, us,... be a sequence of integers satisfying the

recurrence relation u = u
n+2 nt+l

- . Suppose u, = 39 and u, = 45,
Prove that 1986 divides infinitely many terms of the sequence.

b3

THE FIFTEENTH U.S.A. MATHEMATICAL OLYMPIAD
April 22, 1986 Time: 3 1/2 hours

1. Part a. Do there exist 14 consecutive positive integers each of

which is divisible by one or more primes p from the interval
2 < p<11?
Part b. Do there exist 21 consecutive positive integers each of which is
divisible by one or more primes p from the interval 2 ¢ p ¢ 137
2. During a certain lecture, each of five mathematicians fell asleep
exactly twice. For each pair of these mathematicians, there was
some moment when both were sleeping simultaneously. Prove that, at some
moment, some three of them were sleeping simultaneocusly.
3. What is the smallest integer n, greater than one, for which the
root-mean-square of the first n positive integers is an integer?
Note: The root-mean-square of r numbers 8yyeeesa is defined to be

/2

[(a% +...+ a2)/n]"/%

4. Two distinct circles K, and K, are drawn in the plane. They
intersect at points 4 and B, where AB is a diameter of K,. A point
P on K, and inside of K, is also given.

Using only a "T-square" (i.e. an instrument which can produce the
straight line joining two points and the perpendicular to a line through a
point on or off the line), find an explicit construction for:

two points C and D on K, such that CD is
perpendicular to AB and CPD is a right angle.

5. By a partition w of an integer n > 1, we mean a representation of n

as a sum of one or more positive integers, where the summands must
be put in nondecreasing order. (E.g. if n = 4, then the partitions @w are
1+ 1+1+1,1+1+2,1+3,2+2, and 4.)

For any partition n, define A(nw) to be the number of 1’'s which appear in
7, and define B(w) to be the number of distinct integers which appear in m.
(E.g. if n = 13 and w is the partition 1 + 1 + 2 + 2 + 2 + 5, then A{m) = 2
and B{mw) = 3.)
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Prove that, for any fixed n, the sum of A{m) over all partitions w of n
is equal to the sum of B(w) over all partitions n of n.

X b 4 X
I now give scolutions to some problems from Corner 62 [1985: 36].

1. Proposed by Ausiralia.
A total of 1983 cities are served by ten airlines. There is direct
service (without stopovers) between any two cities and all airline schedules
run both ways. Prove that at least one of the airlines can offer a round trip

with an odd number of landings.

Solution.
More generally, suppose there are n airlines Al’ AZ""’ An and m cities
Cl, CZ""’Cm with m > 2”7, We will show that there is at least one airline Az

having a round trip with an odd number of landings. For n = 1, the result is

immediate since the one airline must serve at least 3 cities and CICZC301 is a

round trip with 3 landings. We now use induction and assume the result is
valid for n -~ 1 airlines for n > 1. We can assume that all the round trips by

An consist of an even number of landings, otherwise our proof is done. Now we
can separate the cities served by An into the two non-empty classes
{DL’DZ"°"DP} and {El’EZ""’ES} where r + 3 = m, so that each flight by An

flies only between a D-city and an E-city. [For a proof of this, consider any

city, say D Call each city linked by An to D, an E-city, call all the

1
cilies linked by An to any of these E-cities a D-city, etc. If any cities

1

remain, pick one and call it a D-city. Call each city linked to it by An an

E-city, etc, Continue until all cities have been considered. No
contradiction can arise since all the round trips have an even number of

landings.] Since r + s = m > Zn, at least one of r, s, say r, is greater than

21 But the cities D,,D ,D_ are linked only by the n-1 airlines

PIRRK

Al’ Az,..., An-l’ and hence by the inductive hypothesis at least one of them
offers a round trip with an odd number of landings. For the original problem,
we only have to note that 2'° = 1024 < 1983.

To show that the above general result is sharp, we give a schedule for

m = 2" cities for which there are no round trips with an odd number of
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landings. Let the cities be Fk where £ = 0, 1,..., 2"_1. We now write each

such k as an n-digit binary number (possibly starting with a number of zero
digits). We link Fi and Fj with Al if the first digits of i and j are

distinct, with A2 if the first digits are the same but the second digits are
different, ..., with An if the first n - 1 digits are the same but the last
(nth) digits are different. Then for any i, all round trips by Az have an
even number of landings since the 1th digit alternates.

2. Proposed by Australia and the U.S.A. (independently).
The altitude from a vertex of a given tetrahedron intersects the

opposite face in its orthocenter. Prove that all four altitudes of the

tetrahedron are concurrent.

Sclution.

Let PABC be the tetrahedron and H be the foot of the altitude from P.
Since AH and PH are orthogonal to BC, so also is AP. Similarly, ABLPC and
ACLPB. A tetrahedron whose opposite sides are orthogonal in pairs is said to
be orthocentric. It is a known result (see p.71 of N. Altshiller-Court,
Modern Pure Solid Geometry, Chelsea, New York, 1964, for a synthetic proof)
that the four altitudes of an orthocentric tetrahedron are concurrent.

For practice in vector geometry, give a vector solution of the above
problem.

3. Proposed by Brazil.

Which of the numbers 1,2,...,1983 have the largest number of
positive divisors?

Solution.

The divisors of a number n with prime decomposition

pla* p2a2 v pmam
are all the terms of the product expansion of
(1 + py t e ¥ plal)(l tp, b pzaz) cee (1 4 P, t eee ¥ pmam)°

Consequently, the number of its positive divisors N(n) is given by

(1 + al)(l + a?) oo (1 + am). Since this number only depends on the
exponents a, and not the prime factors, it will be maximized for a given m if

the primes Pys«esp, are chosen to be the first m primes. Thus we need only
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consider numbers of the form 22, 2232, 223P5°, and 223°5°7% since 2-3.5-7-11 >

1983. Moreover, it is easy to see we may assume a > b > ¢ > d. With a little

trial and error, we find the maximum N¥(n) for each of the latter forms are:
N(2'°) = 11, N(2%.3%) = 28, N(22-32.52) = N(2%.-32%.5) = 36,
N(24.3.5.7) = 40.

Hence 2%:3:5:7 = 1680 has the largest number of divisors.

4. Proposed by Canada .
Find all possible finite sequences {no,nl,...,nk} of integers such
that, for each { = 0, 1,..., k%, i appears in the sequence n, times.

Editorial note: Such sequences are called self-descriptive strings and
are treated in the following two papers:
[1] M.D. McKay, M.S. Waterman, Self-descriptive strings, Math. Gazette 66
(1982) 1-4.
[2] T. Gardiner, Self-descriptive lists - a short investigation, Math.
Gazette 68 (1984) 5-10.

It is shown in [1] that for k¥ > 6, a self-descriptive string exists and
is unique, and is given by the second row of the table

Number (i) 0 1 2 3 4 ... k-4 k-3 k-2 k-1

Occurrence (ni) k-3 2 1 0 0o ... 0 1 0 0 0 .

The only self-descriptive strings for ¥ < 6 are {1,2,1,0}, {2,0,2,0}, and
{2,1,2,0,0}. For a related paper, see L. Sallows and V.L. Eijkhout,
Co-descriptive strings, Math. Gazette 70 (1986) 1-10.

5. Proposed by Canada.

Let ao = 0 and

= k(an+1) + (k+1)an + 24%(k+1)an(an+I) , n=0,1,2,...,

a
n+l

where k is a positive integer. Prove that a is a positive integer for

n=1,2,3,...

Solution.

Since ag = 0, a; = k. We solve the given recurrence equation for a_ in
terms of an+1:
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an+1 - (2k+1)an - k = 24%(k+1)an(an+1)
2 2 2 2 .
a 1 + (2&+1) a, + k7 - 2(2&+J)an+1an - 2kan+1 + 2k(2k+1)an
- 2
= 4k(k+1)(an+an)
2 2 _
a - Zkan - 2(2kk1)an+1an + (an+1 k)" = 0
S0
2k + 2(2k+1)a_ . j4[k+(2k+1)a 1° - 4(a_ ,—k)°
n+l ntl n+l

a =
n A

i

_ 7 7 7
k4 (2ktl)a | % J(4k Hkas,  + (4k°+ak)a_

k(an+1+1) + (k+1)an+1 - 2¢%(k+1)aﬁ+1(an+1+1)

since a < a We now add this equation to the given equation with n

n+l’
replaced by n + 1 to give

a + a = 2k(a
n

42 + 1) + 2(k+1)dn+1

ntl

or

a = (4k+2)an+ -a, + 2k.

1

It now follows by induction that a is a positive integer for n = 2,3,4,...

n+a

For extensions of this result see M.S. Klamkin, Perfect squares of the

form (m‘—l)aﬁ + t, Math. Mag. 42 (1969) 111-113.

6. Proposed by Cuba.
Show that there exist infinitely many sets of 1983 consecutive
positive integers each of which is divisible by some number of the form 31983,

where @ # 1 is a positive integer.

Solution by Curtis Cooper, Central Missouri State University,

Warrensburg, Missouri.

The following proof is due to S.M. Akers Jr. (solution III to problem
106, Math. Mag. 25 (1952) 222; reprinted in R. Honsberger, Mathematical
Horsels, M.A.A., 1978, pp.136-137). It shows by induction on n that for any
integer m > 1 there exists a set of n consecutive natural numbers each of
which is divisible by a number of the form am, where a # 1 is a positive
integer.

(i) For n = 1, a” for any integer a > 1 satisfies the requirement.

{ii) Suppose for n > 1, the n consecutive natural numbers Al’ AZ""’ An

are each divisible by an mth power > 1. Now we look for n + 1 consecutive
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numbers with the same property. Let

&?, ag,..., aﬁ > 1
divide
Al’ Az,..., An’
respectively, and let L = a?ag see az. Next let An+1 = An + 1 and
A=4 (141" - 1], Then
At A, At Ay o0, AF A1
are n + 1 consecutive numbers divisible by
a? . ag se sy aﬁ ’ (L+1)m

respectively. Thus the result is true by induction.

1. Proposed by Finland.

Let r and 5 be integers, with s > 0. Show that there exists an
interval I of length 1/s and a polynomial P(x) with integral coefficients such
that, for all x € I,

|P(x) - r/s| < 1/s?.

Solution.

Let n be a positive integer and P(x) = r{(l - (sx—l)zn)/s, %g < x < %5‘

Then |sx-1] ¢ %u Clearly, P(x) is an integral polynomial and

_ir 2n ri{ -2n
|P(x) - r/s| = E(sx—l) < |§12 .
. o ri,-2n 1
Finally, we can choose n sufficiently large so that g-2 < — (Just take
s

2n > logzlrsl).

X % X
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PROBLEMS

Proélem proposals and sctutions shoutd 8e sent te the edilon, whode
addread appeans on the pront page of tALL {(ssue. Proposalsd should, whenewven
posaiéte, de accompanied &y a solutieon, references, and other insighta which
ane Likety to e of Aelp to the editor. An aatenisk (X) apten ¢ numéen
indicatesr a prodlem submitted without a solution.

Oaliginae proéeems are particutanty sought. But othen intereating
proélems may also 8e acceptadle provided Chey are nol Loo welld Rnown and
regenences are given ads to theln provenance. Ordinarilty, (f the oaiginator of
a proélem can ée Located, Lt shouéd not &e suébmitled &y somebody elare without
Als on Ren peamission.

To gacieitate thein consideration, goun solutions, typewritien o neally
Aandwritten on aigned, aseparate sheets, should preferatldy be mailed to the
editon tefore ganueary I, 1987, atthough sotutions nrecelved agften thet date
witl atso &e considened until the time when o solutlion (4 pubiliafed.

11431. [1986: 106] (Corrected) Proposed by Hidetosi Fukagawa, Yokosuka
High School, Tokai-City, Aichi, Japan.

Disjoint, non-touching spheres O, and 0, are inside and tangent to
a sphere O. Four spheres S,, S,, S;, S4, each tangent to two of the others as
well as to 0,, 0,, and O, are packed in a ring in that order inside O and
around O, and O0,. Show that

where ri is the radius of Sj.

X
1151. Proposed by Jack Garfunkel, Flushing, N.Y.

Prove (or disprove) that for an obtuse triangle ABC,

m +m +m < sS3
a b c -

where ma, m, m denote the medians to sides a, b, ¢ and s denotes the

b
semiperimeter of 44BC. Equality is attained in the equilateral triangle.
1152. Proposed by J.T. Groenman, Arnhem, The Netherlands.

Prove that
b3 cos%-g ig b cos%(ﬁ - 9)
where o, 8, 7 are the angles of a triangle and the sums are cyclic over these

angles.
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1153. Proposed by Richard K. Guy, University of Calgary, Calgary,

Alberta.
1 2 3 T4 s 6
e . ...3 ...... - N
14
20
33
1B 3D 9B 29B 7A 21D 12B 11U 20U
2D 6D 5B 19U 15D () 22D 18B 15U
27TA 2D 26D 20A 8D 8A 16A 31A 33A
5D 3A 25B 30D 14A 9A 16B 24D 23B
28D 35A 3U 30U SU 13D 22A 32U 32D
4U 21A 21D 19U 17D 10A 32U 34A 33A

The answers are distinct 2- and 3-digit decimal numbers, none beginning
with zero. Each of the above sets of answers is a primitive Pythagorean
triple, in increasing size, so that the third member is the hypotenuse.

A = across, B = back, D = down, U = up. For example, 1B has its tens & units
digits in the squares labelled 2 & 1 respectively; 11U is a 3-digit number
with its tens & units digits in squares 16 & 11 respectively.

1154. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

Let A, B, and C be the angles of an arbitrary triangle. Determine
the best lower and upper bounds of the function
f(4,B,C) = X sin%.— b sin% sing
(where the summations are cyclic over 4, B, C) and decide whether they are

attained.

—
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1155. Proposed by Roger Izard, Dallas, Texas.

In triangle ABC cevians AD, BE, and CF meet at point 0. Peints F,
B, C, and E are concyclic. Points A, F, D, and C are also concyclic. Show

that AD, BE, and CF are altitudes.
1156. Proposed by Hidetosi Fukagawa, Yokosuka High School, Aichi, Japan.

At any point P of an ellipse with semiaxes @ and b {(a > b), draw a
normal line and let @ be the other meeting point. Find the least value of
length PQ, in terms of a and b.

*
1157. Proposed by Staniey Rabinowitz, Digital Equipment Corp., Nashua,

New Hampshire.

Find all triples of positive integers (r,s,t), r ¢ s, t, for which
(rs +r+ 1)(st + s+ 1)(tr + t + 1) is divisible by (rst - 1)2. This problem
was suggested by Routh’s Theorem (see Crux [1981: 199]).

1158. Proposed by Svetoslav Bilchev, Technical University, Russe,
Bulgaria.

Prove that

} 1,4 A26—3JZ
(V2 + l)cosg - sing
where the sum is cyclic over the angles A, B, C of a triangle. When does

equality occur?
1159. Proposed by George Tsintsifas, Thessaloniki, Greece.

Let ABC be a triangle and P some interior point with distances
AP = x,, BP = Xx,, CP = X5, Show that
(b + ¢c)x, + (c + a)x, + (a + b)x,; 2 8F ,
where a, b, ¢ are the sides of 4ABC and F is its area.
1160. Proposed by Clark Kimberling, University of Evansville, Evansville,
Indiana.
Let 4’, B’, C’ be the first points of intersection of the angle
bisectors of a triangle ABC with its incircle I'. The tangents to ' at A‘, B’,
¢’ form a triangle A’’B’’C’’. Prove that the lines AA’’, BB’’, CC'’ are

concurrent.
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SOLUTIONS

No protéem (o even peamanentéy ctosed. The editon wilé always &e pleased
te considen gor publicetion new solutions on new insights on past preélems.

(0 0]
-3

[1983: 313; 1985: 63; 1985: 1231 Proposed by Vedula N. Murty,
Pennsylvania State University, Capitol Campus.

If A > puand a > b > ¢ > 0, prove that

bZACZP + CZAaZy + aZAbzﬂ > (bc)A+” + (ca)A+F + (ab)

with equality just when a = b = c.

Adp

Further generalizations by M.S. Klamkin, University of Alberta, Edmonton,
Alberta.

I. First we show that if ay 285 2 +00 2 a > 0 and either A > u > O
or 0 > a > u, then
a?Aagy + agﬂagy + ...+ aiAaiy > (alaz)A+“ + (&2a3)A
+ (a al) (1)
with equality if and only if a; =2, = o0 = 2.
From inequality (6) on [1980: 107], we have that if Xy > X, >
> X > 0 and m > 1 then
xlxz + x2x3 L XZXI > X1X2 + x xg + ... 4 an? . (2)
Suppose A > u > 0, and put X, = a?“ and m = A/u. Then x, > x, 2 «.. > x_ >0

i 1 =72 = = "n

and m > 1, so (2) becomes
2A_2u Zp 2A
aja, 2%aja, (3)

where the sums here and below are cyclic over al, a an. Consequently,

PEREY
by (3} and the A.M.-G.M. inequality,

aZAaZy + aZpaZA

2x_2u 1 72 1 72 Atu
= a, a Z‘E 7y > = (al 2) .

172
From the second inequality, equality in (1) implies that @y T 8y, T ... T oA,
If 0> A > pand ay > a, D oees 2 a > 0, then 0 < -A < -y and
-1 -1 -1 -1
a, > a 4 2 eee 2 a, > ay >0,

so applying (1) we have



=1, 2(-p), -1 2(-A) =1, 2(-p), ~1,2(=A) -1 =1 | —p-A
(a_ ™) (an—l) + ... + (d1 ) (an ) > {an an—l) + ...
-1 -1, —p—-A
+ (a1 a, )
or
2p_2A 231 2 A ' LA
a a4 + .+ a;"a " 2 (an n—l) + + (dlan)
which is again (1).
IT1. Next we prove that if Xy 2 X Y e 2 X >0and 0 ¢ a ¢ 1, then
the function
2-a_a

Fla,n) = = SFIE

is a nonincreasing function of «, that is,

F(al,n) > F(az,n) for 0 < oy < %, < 1.

Note that
1% %1 x, 1%
Fla,n) = x —E + xz _3 + .e. + XZ Tl ,
1ix 21x X
1 2 n
and thus
%1% (x 1% [x x 1% [x
F'la,n) = Xy §E- ¢n Eg + Xg }3 in o + 4 X2 _l en _l
1 1] 2 2 1 ¥n *n
and
2[%2)" 2[%2) . 2[%3)" 2[*s 2[%1)" 2%
F''(a,n) = x; |—| ¢n |—] + x |—| n |—| + .. + x_|—]| fn" |—
11x X 2 X nix X
1 1 2] 2 n n
Since F’’(a,n) > 0, F is convex. Thus we need only show that F’(1,n) < O,
that is,
X, Xx,fn fg + X, X,fn fg + + x x.¢n fi < 0 (4)
1727 % “273 x vt nl x| - 7
1 2 n
We do this by induction on n.
When n = 3, (4) is equivalent to
y z X
Xyen[.f] + yzén[?] + zxen[-z-] <0 (5)

for x > y > z > 0. When y = z, the left side of (5) is just
xyén %] + yzénl + yxen[é] = 0,
so we may assume ¥ > y > z » 0. Moreover, since (5) is homogeneous in x, y,
z, we can set z = 1. Inequality (5) then reduces to
xyény - xyénx ~ yény + xénx < 0,

or



and so we wish to prove that the function
xénx

rlx) = I
increases for x > 1. This can be done analytically. It also follows

geometrically by rewriting f(x) as

1 dt

1/x T

f(x)z—i———r’
3

since the above expression gives the average height under the decreasing curve

= %-for % <t < 1. (A similar method was used in [1980: 75].)

Now, assuming that F/(1,k) < 0 and noting that X1 > X, > X1 we have

k+1 + X X,én Xl
k k+1 k k+171 k+1

that

F7{1,k+1) Fi(l,k) - XXy én {

bgw

Xy b'¢
*r+1 1
= F(1,k) + 2x,%x,en|—— en + x X,én
l 17k Xy kel X k+171 X+l J
<0+0=20
by the induction hypothesis and (5). Thus F’(1,n) ¢ 0 for all n > 3, and so
F(a,n) is nonincreasing in a. In particular, F(O,n) > Fla,n) > F(1,n), or
2 2-a_«a
b3 Xy > = Xy X, > = X1X2 (6)
for 0 ¢ a < 1.
Letting ay 2 a2 cor 2 @ >0 and A > u > 0, we put
x, =a M
i i
and
Y
Rl u
then Xy 2 X, Y oeeo 2 X, >0 and 0 < a < 1, and the second inequality of (6)
reduces to (1).
If instead we assume ay > a, 2 eoe 2 a > 0and 0 > A > u, then we put
Atu
i " “n+l-i
and
2A
o =
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then again Xy 2 %p 2 eee 2 X >0and 0 < a < 1, and (6) becomes

2A 2A
(A+u) (2 = =) (A+p) e
E‘a Atp a A+u 5 s aA+y a,\+,u
n n-1 = n n-1
or
21 _2A Atu
= 4y p-1 2 z<anan—l) !

which is (1) in this case as well.

ITI. For our final generalization we shall prove that if x >y > z > 0O

and t > 0, then
t

pr+yﬁf+zg]zx+y+z. 1)

Letting
t

t t
H(t) :X[Z-] +y[-}z?] +Z[§.] - X -y -2z,
we have H(0) = 0, and so it is enough to prove that H(¢) is nondecreasing for

t > 0. Then
t

o =< off o v nfg « o) ol
o <l g i) enef] o ) o)

and since H’’(t) > 0, H is convex. Thus it suffices to show that H’(0) > O,

and

that is,
xé’n[.j.’.] + yen[.z..] + zen[f] > 0.
z X y
As before, we can assume x > y > z = 1, and so we must prove
xény - yfnx + énx - ény > 0

or
inx < ¢ny
x-1-"y-1

for x > y > 1. This can be rewritten as

1 Y 1
[far [ La
1 e

x-1 = y-1

and so follows by another average height argument.

Now assume @ > b > ¢ > Oand A > u, A + u < 0. Put
—(A+u) oy = b—(A+y) , = C—(A+y)

X = a ,
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Then x > y 2 z > Oand t > 0, so (7) implies that

a—(HH) Fg—]hu . b"(’\“‘) [—Z—]A“H N c'(M'“) [%],\-.,,, ) a—(Am) + b-(A+IJ) + C*(Aﬂl)' —_

Multiplying by (abc)A+“, we obtain Murty’s original inequality. If instead we
assume @ > b > ¢ > O and A > u, A + p > 0, then we put

v = C—(A+;J) , y= b—(A+,u) .z = a-(/\+/.1)
and
-1 _ %M
t =1 it
Again, x > y >z > Oand t > 0, and (7) implies Murty’s inequality.
X X *

Qlﬁf [1984: 2621 Proposed by George Tsintsifas, Thessaloniki, Greece.
(a) For all possible sets of n distinct points in a plane, let
T(n) be the maximum number of equilateral triangles having their vertices
among the n points. Evaluate T(n) explicitly in terms of n, or (at least)
find a good upper bound for T(n).

(b) If a = T{n)/n, prove or disprove that the sequence {an} is

monotonically increasing.

(c) Prove or disprove that lim a, = ~—
400
I. Partial solution by Walther Janous, Ursulinengymnasium, Innsbruck,
Austria. 1.
(a) We limit ourselves to the 2 -

triangular lattice formed with equilateral
triangles, with n rows of points, the ith
row having i points, as shown. Let tn be
the number of all possible equilateral noe

triangles with vertices among these [n ; 1] lattice points. Then:

t, =0, t, =1, ¢t =5,

Furthermore, we have the following recursion formula for tn:
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L] I( &
13 2 5\ &
.--.f..,.."_ r)
[ s [ ® \‘a <
1 (inclusion-exclusion) l
tn = (3tn_1 - 3tn—2 + tn—S) + (n - 1) , where n > 4.
This is equivalent to
(tn - Ztn—l + tn_z) - (tn_1 - 2tn—2 + tD_S) =n-1 (1)
or
bn - bn—l =n-1 (2)

t, - 2t, + t, = 3, (2) implies that

where b= t_ - 2t +t . Since b,
n n n-1 n-2

bn=(n-1)+...+4+3+3=[’2’],

and so

QO
1]
™M

Finally, we have
n+1]

4 3
and t; = 5 = [3] + [3], so
ntl i n+2
t, = =) = [7)
i=3
All the above were for n > 4, but we see that this final formula holds for

n=1,2,3 as well. Thus, if k = [n;l ’
J

T(k) [HZZ] 1

k? n+1]2
| 2

so T(k) is of order at least k2/6. (In particular, part (c) is true.)
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II. Partial solution by Jordan B. Tabov, Sofia, Bulgaria.
[Editor’s note: Tabov also found the formula tn = [HZZ] above, and thus
T(n) 1

~ 2 g ]

that lim

We shall now prove that
Tim (%)

n2

1
<7

Given any n points, there are [;] segments connecting these points in pairs.

Each of these segments may be a side of 2 equilateral triangles. Therefore
T(n) cannot exceed g{n] = %n(n - 1),

2
A better lower bound for lim ?(n)

n?
may be obtained by considering a hexagonal
geoboard H formed by equilateral triangles .
as shown in the figure, with & lattice
points on each side (including the endpoints).
The total number of lattice points in H is
3k% + p(k), where p(k) is linear. k points

Let h(k) be the number of equilateral
triangles with vertices among the points of H. The number of such triangles
with 2 or 3 vertices on the outer ring of H is a polynomial of degree 2 in &,
and the number with no vertices on the ocuter ring is of course h(4 - 1). The
number of equilateral triangles with exactly one vertex on the outer ring
works out to be 7k® + a polynomial of degree 2. Thus

hik)y = h(k - 1) + 7k® + g(k),

where g(k) is a polynomial of degree 2, and so

hik) = 7
i

i® + a polynomial of degree 3
1

= ;&4 + a polynomial of degree 3.

i b

Hence
%‘4
1i T(n) > lim = %6
n2 (3k2)2

This result and the result obtained from triangular gecboards lead me to
formulate the following



Conjecture: lim

(since l
5

I11

1

!
6 62

T(n)

nz

1
632

S S &

1
z .

veo)e

. Comment by the Editor.
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This problem is by no means answered and quite a few questions remain.

If so, what is it?

(1)

(2)

Does lim

T(n

)

nz

exist?

What configuration of n points yields the maximum number of

equilateral triangles?

(3)
(4)

What is the answer to part (b) of the original problem?

Two solvers independently found, using different proofs, that the

triangular grid with n points on each side has exactly {nzz] equilateral

triangles.

four-element subsets of an (n + 2)-element set?

Is there a natural correspondence between such triangles and the

Part (c) was also answered by FRIEND H. KIERSTEAD JR., Cuyahoga Falls,

Ohio.
X X ¥
1017. [1985: 511 Proposed by Alian Wm. Johnson Jr., Washington, D.C.
If the figure on the left is a pandiagonal magic square, then so is
the figure on the right.
A B C D A B N M
E F G H E F J I
I J K L H G K L
M N O P D C O P

Both figures are arrangements of the same 16 arbitrary numbers

A,B,C,..

.,P, and both have A in the upper left corner cell.

Enumerate all the

ways the arbitrary 4,B,C,...,P can be arranged to form pandiagonal magic

squares in which A4 is fixed as shown.

Soiution by the proposer.
From Crux 605 [1982: 22] it follows that every pandiagonal fourth-order

magic square is composed of 8 disjoint pairs of numbers, each of which sums to

half the magic sum, and that these 8 pairs can be written and situated as

follows:
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f+s | f-y | f+t |-
f -z f +u f+w r +
f-t}|f+x | Ff-s5|f
f-w f-v|Ff+z|f

(Here, subtracting f from each

subtracting %4F + G) from each

be the magic sum, and

& O o8 u

By (1) and (3),

s =

which, with (1), gives

By (2) and (4),

u =
vV =

These last four equations show

terms of £, w, x, y, 2.

In particular, the cell in the upper left corner equals

entry results in

entry

[

-%&w + X -y - z)

(w+ x+y+ 2)

of the array in Crux 605.)

MOE = X

i
o O o O

the same configuration as

Thus 4f will

%(w -x -y + z)

—%{w -x+y -2z

that every cell in (%) can be expressed in

f+%-(w+x+y+z)

whose value does not change if w, x, y, z are
that

possible ways.
+

+

4

T T T T

Moreover we find

t
t
u
u
v

v

It

ST NN
+ + + o+ o+ o+

17}

f

and thus permuting w, x, y, z will not

(*¥), only their position.

nw i n = u
1

(w
(x
(w
(y
(w

(x

permuted in any of the 24

+ + o+ + 4+

+

z)
y)
X)
z)

y)
z)

(x)

(1)
(2)
(3)
(4)

change the values of the entries in

Note that (f + t) + (f - t), for example, is

unchanged by such a permutation, so the resulting array will still be in the



- 150 -

form (*). Therefore there are at least 24 ways to arrange the 16 arbitrary
4,B,C,...,P into a pandiagonal fourth-order magic square with A in the upper
left corner.

There are in fact exactly 24 such megic squares. This follows from
Frénicle’s 1693 enumeration of all (essentially different) fourth-order magic
squares on the integers 1,2,3,...,16. He counted only those squares with the
properties that

(i) the smallest of the four corner cells occurs in the upper left
corner, and

(ii) of the two cells rookwise adjacent to the upper left corner cell,
the cell in the top row is the smaller.

These two properties ensure that rotations and reflections are not counted as
different. The resulting 880 magic squares are displayed and categorized on
pp.188-198 of W.H. Benson and O. Jacoby, New Recreations with Magic Squares,
Dover, 1976. Of these, 48 turn out to be pandiagonal (type I in Benson and
Jacoby’s list), with 12 having 1 in the upper left corner. Since we do not
wish property (ii) above, we double this figure, arriving at the same 24 magic

squares {(and only those) found earlier.

X % b3

1018. [1985: 511 Proposed by Kurt Schiffler, Schorndorf, Federal
Republic of Germany.
Let ABC be a triangle with incentre I. Prove that the Euler lines
of triangles IBC, ICA, IAB, and ABC are all concurrent.

Solution by G.R. Veldkamp, de Biit, The Netheriands, and W.A. van der
Spek, Leeuwarden, The Netherlands.
Let I' be the circumcircle of 4A4RC,
with center O and radius R, and let r be
the radius of the incircle of 44BC. Let
G be the median point, so that GO is the
Euler line of 44BC. Let D be the
intersection of AI with I, that is, the
midpoint of arc BC. Then it is well-known
(e.g. Theorem 292, page 185 of R.A. Johnson’s

Advanced Euclidean Geometry) that D is the
center of a circle passing through B, I, and

. This means that D is the circumcenter of
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4BIC, so that
CD = ID. (1)
Let G, be the median point of 4BIC, so that DG, is the Euler line of this
triangle.
Let 0, be the midpoint of BC. Then since G and G, are median points,
G G,

= = 2.
ml Glol
Thus GG,|lAID, and hence, letting E be the intersection of GG, and 0D,
T . L (2)
G.E T
and
IE = g,—po, ., (3)

It also follows that the Euler line DG, of 4BIC will intersect the Euler line
GO of AABC between G and O. We let S be the point of intersection.
Let F be the foot of the perpendicular from I to AB. Since (BAD = (BCD,
AAFI ~ 4CO,D, and hence
I FT r

— = = . (4)
cD 0,D 0,D

Applying the theorem of Menelaus to the triangle GOE with the transversal

SG,D, we have

GS 0D IG,

B Cen

S L by (2)
o= 5 aT

- &5 .00 D by (1)
0s ED Al

- & R D by (3)
- &5 3R 10, by (4)
0S 200, r

- G5 3R
0S 2r ’

that is,

&

o5 3R

Now if we consider the Euler lines of 4AIB or 4ACIA rather than 4BIC, we will



arrive at the same ratio; thus the Euler lines of 44IB, 4CI4, and 4BIC all
intersect the Euler line of 44BC in the same point S (we call this point the
Schiffler point of 4ABC).

Also solved by D.J. SHEENK, Zaltbommel, The Netherlands.
X X X

1019. [1985: 51] Proposed by Weixuan Li and Edward T.H. Wang, Wilfrid
Laurier University, Waterloo, Ontario.
Determine the largest constant & such that the inequality
¥ (¢asin x + (1 - a)tan x
holds for all a ¢ & and for all x € [0,n/2).
{The inequality obtained when « is replaced by 2/3 is the Snell-Huygens
inequality, which is fully discussed in Problem 115 [1976: 98-89, 111-113,
137-138].)

Solution by Richard I. Hess, Rancho Palos Verdes, California.

Let

Flx) m=asin x + (1 - a)tan ¥ - x
and suppose @ = §.+ ¢. Then for x << 1,

. x3 s
= - +
sin x = x - & O(x*®)

x*® s
tan x = x + 3_.+ 0(x%)

and so
Fix) = Zrerx - v 0x%)) + (L -e)x+ X+ 0x%) - x
{x) = 3 e)x 7 X w = €)X o
:—%_3_4»0(}(5)@

For suitably small x this must be negative for ¢ > 0, so the given inequality

won’t hold unless ¢ < 0. Thus the largest value of & is g .

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; M.S. KLAMKIN, University of
Alberta, Edmonton, Alberta; EDWIN M. KLEIN, University of Wisconsin,
Whitewater, Wisconsin, KEE-WAI LAU, Hong Kong; JORDAN B. TABOV, Sofia,
Bulgaria; A. TAMANAS, Thornton Heath, Surrey, England; and the proposers.

% * ¥
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1020. [1985: 51} Proposed by J.T. Groenman, Arnhem, The Netherlands.
Solve, for x € [0,2a), the equation ~—

176cos x + 64sin x = 75cos 2x + 80sin 2x + 101.

Solution by Edwin M. Kiein, University of Wisconsin, Whitewater,
Wisconsin,

Clearly x # m, so using the substitution t = tan(x/2) we have

. _ 2t 1~ t*2
Sin ¥ T e ; COS X = e
1 4+ 2 1+ t2
and thus
_ 42
sin 2x = 28in X cos X = 2511———2—1
(1 + t2)2
= 2 4
cos 2x = 1 - 2sin®x = L 61% + ¢ .
(1 + t2)2

The given equation then simplifies to
176(1 ~ £9) + 128¢(1 + ¢2) = 75(1 - 6¢2 + t9) + 320¢(1 - £2) + 101(1 + t2)2
or
352t4 - 448t3 - 248t2% + 192t = O
or
8t(2t - 1)(2¢t - 3)(1l¢ + 8) = 0.
Hence, tan(x/2) = 0, 1/2, 3/2, -8/11 and so the solutions are
2arctan 0 = O
2arctan 1/2 ~ 53.13°
2arctan 3/2 ~ 112.62°
x = 2m - 2arctan 8/11 ~ 287.95 .

X

i

4

X

X

Also solved by HAYO AHLBURG, Benidorm, Alicante, Spain,; SAM BAETHGE, San
Antonio, Texas; FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; KEE-WAI LAU,
Hong Kong; J.A. McCALLUM, Medicine Hat, Alberta;,; STANLEY RABINOWITZ, Digital
Equipment Corp., Nashua, New Hampshire; D.J. SMEENK, Zaltbommel, The
Netherlands; and the proposer. There were two partial solutions received.

* X X

1021. [1985: 82] Proposed by Allan Wm. Johnson, Washington, D.C.
In the etymeclogical decimal addition

SERGE
~ DE
NIMES

DENIM
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A

maximize NIMES (where I = I), the city in southern France that gave its name

to denim cloth.

Solution.

16256
86
70361

86703 .

Found by J.T. GROENMAN, Arnhem, The Netherlands; RICHARD I, HESS, Rancho
Palos Verdes, California; J.A. McCALLUM, Medicine Hat, Alberta; GLEN E. MILLS,
Valencia Community College, Orlando, Florida; and the proposer. There was one
incorrect solution submitted. The proposer notes that the word jean, as 1in
Jjeans, comes from the word Genoa (Gé&nes in French) where this fabric was
produced and exported. Leroy F. Meyers is reminded of the homophonous verse

Gal, amant de la reine, alla, tour magnanime,
Galamment de 1’'Aréne & la Tour Magne, & Nimes.

X X X

lggg? [1985: 82] From a Trinity College, Cambridge, examination paper

dated June 7, 1901.

Show that, for n = 1,2,3,...,

kglArctan E: = gﬁ - Arctan_%.— Arctan E—%_T .
Solution by M. Parmenter, Memorial University of Newfoundland, St.
John's, Newfoundland.
We will prove this by induction.
When n = 1, the equation to be proved reads
Arctan2 = %E-- g-~ Arctan % .

This is correct since ArctanZ + Arctan %-: ;-.

Assume the equation for n = s. Then when n = s + 1, the left side of the

above equation is

s+l 2 s 2 2
¥ Arctan — = X Arctan — + Arctan ———
k=1 k2 k=1 k? (s + 1)2
3n 1 1 2

— - Arctan T Arctan TTT + Arctan . >

We wish to prove this is equal to
3n Arot 1 \ 1
7~ T BrC 5+ 1 ct s + 2’

that is, we have to prove
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2 _ L1 1
Arctan «m—————_; = Arctan 5 Arcta\ng-q:—-:Z .
(s + 1)
But these are all first quadrant angles and
1 1
tan{Arctan é-— Arctan - i 2] == 5 +1
1+ s(s + 2)
_ 2
T s(s ¥ 2y + 1
_ 2
ST
(s + 1)2

as required.

Also solved by MICHAEL W. ECKER, University of Scranton, Scranton,
Pennsylvania; JACK GARFUNKEL, Flushing, N.Y.; J.T. GROENMAN, Arnhem, The
Netherlands; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS,
Ursul inengymnasium, Innsbruck, Austria; M.S. KLAMKIN, University of Alberta,
Edmonton, Alberta; VEDULA N. MURTY, Penn State University, Capitol Campus; BOB
PRIELIPP, University of Wisconsin, Oshkosh, Wisconsin; NATARAJAN SIVAKUMAR,
student, University of Alberta, Edmonton, Alberta; EDWARD T.H. WANG, Wilfrid
Laurier University, Waterloo, Onfaric, and WONG NGAI YING, Hong Kong. For
more involved Arctangent summations, see M.L. Glasser and M.S. Klamkin, "On
some inverse tangent summations”; Fibonacci Quart. 14 (1976) 385-388.

% % X

1024. [1985: 82] Proposed by William Tunstall Pedoe, student, The High
School of Dundee, Scotland.
Prove that an odd number which is a perfect square cannot be

perfect.

I. Solution by Frank P. Battles and Laura L. Kelleher, Massachusetts
Maritime Academy, Buzzards Bay, Massachusetts.

If a number is perfect the sum of its divisors is twice the number itself
and hence this sum is even. Consider a number which is an odd perfect square.
Since it is odd, all of its divisors are odd. Since it is a perfect square,
it has an odd number of divisors. It follows that the sum of its divisors is

odd, and hence this number is not a perfect number.

IT1. Solution by Edwin M. Klein, University of Wisconsin, Whitewater,
Wisconsin.

More generally, if n is a perfect square or twice a perfect square, then
n is not perfect, because o(n) is odd (cf. David M. Burton, Elementary Number
Theory, p.118 ex. 7{(b) and p.224 ex. 2(b)).
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Also solved by SAM BAETHGE, San Antonio, Texas; RICHARD I. HESS, Rancho
Palos Verdes, California; WALTHER JANOUS, Ursul inengymnasium, Innsbruck,
Austria; FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; M.S. KLAMKIN,
University of Alberta, Edmonton, Alberta; KEE-WAI LAU, Hong Kong; LEROY F.
MEYERS, The Ohio State University, Columbus, Ohio; BOB PRIELIPP, University of
Wisconsin, Oshkosh, Wisconsin; DAN SOKOLOWSKY, Brooklyn, N.Y.; STAN WAGON,
Smith College, Northampton, Massachusetis; EDWARD T.H. WANG, Wilfrid Laurier
University, Waterloo, Ontario;, KENNETH M. WILKE, Topeka, Kansas; and the
proposer., Prielipp and Wagon used the known result that any odd perfect
number is of the form pam2 where p is a prime and p and o are both congruent
to I mod 4 (e.g. see p.i128 of Beck, Bleicher, and Crowe, Excursions into
Mathematics). Meyers suspects that no perfect kth power (k > 1) is a perfect

number; any comments from out there?
b3 X %

1025. [1985: 831 Proposed by Peter Messer, M.D., Mequon, Wisconsin.

A paper square ABCD is folded Y ¢ B
so that vertex C falls on AB and side CD \\\\\\J
is divided into two segments of lengths
¢ and m, as shown in the figure. Find the
minimum value of the ratio ¢/m.
I. Solution by Sam Baethge, San Antonio, Texas.
Without loss of generality let 4B = 1 x C B

similar right triangles.

4
and label the figure as shown by using the //\\\\\\\\
}2_ 2 /
L= y 2
?.

Then
o + o + Je2 - x2 = 1,
Jez - x* Jez - x2 m
. xm
Since m + ¢ = 1, ¢/m is minimized when ¢ e /er;;
is minimized. Thus we substitute for = /92 52

and solve for ¢, yielding

(x + €)(1 - 2) + (€2 - x2) = Je#? - x*

(¢ + x)(1 - ¢ 4+ ¢ - x) = {£% - x*

{(¢ + x)2(1 - x)2 = ¢2 - x*
(¢ + x)(1 - x})2 = ¢ - x
(1 - x)2 - 1] = -x - x(1 - x)2
<[l + (1 - x)2] - x% - 2x + 2 _ 2

¢ = = -x + - .
2x - x* ¢ X -
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Then

de 2

= -1+ —_ —

I (x - 2)2
For g%-: 0, (x ~2)2z=2o0orx=2-J2. Then ¢ = 2/2 - 2 and m = 3 - 2.7, and
S0

¢/m = Eﬁg;:_g,: (22 - 2)(3 + 2/2) = 22 + 2.
3 - 2/2

o
Note that the minimum occurs when the acute angles at C are each 45 .

IT. Solution by Dan Sokolowsky, Brooklyn, N.Y.
Let E denote the point dividing CD into segments of length ¢ and m. By
problem 995 of this journal ([1984: 319], solution [1986: 58]) the inradius of

ACAE has length m = DE, so
hypotenuse of 4CAE
inradius ot 4CAE

This ratio is the same for similar triangles. We therefore lose no generality

4
m

in confining curselves to the set ¢, of all right triangles which have common
inradius 1, in which case the stated problem is equivalent to the following:
[1] Minimize the hypotenuse h over all triangles in ¢,.
Let 4 = 4A4CAE € ¢, and let I denote
its incenter. Then

(CIE = 180 - (LICE + (IEC)

180° - %41ACE + LAEC)

i

(] [=)
180 - 45
(=]

= 135 ,

and thus [1] is equivalent to a special case of

[2] Given (PIQ and a circular arc K
from PI to QI with radius 1 and center I,
let CE be a tangent to K with C on IP and
E on IQ. Determine the minimum length of
CE.
It is well known that CE is minimum when it
meets IP and IQ at equal angles
« = (180° - cPIQ)/2, and thus I

min CE = 2cot a.

o
In the special case of our problem, « = %41800 - 1350) = 22%-. Hence

min ¢/m = 2cot 22%? = 2(J2 + 1).
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ITI. Comment by the proposer.

Most of my mathematics revolves
around my ten-year hobby of origami.
A consequence of the above corner-to-
edge folding of a square is a method
of rapid folding of a square into thirds,
fifths, sevenths, and beyond. Labeling

the figure as shown, we can obtain
_ 2%
L R

and therefore, for example:

- if x = %-(easily found), then y %, so y folded in half yields one edge

folded into thirds.
- if x = %-(easily found), then y

g, which produces an edge folded into

fifths.
- if x = g-then y = gq which produces an edge folded into sevenths.

This method was discovered by Koji Fushimi and was reported in the
British Origami Magazine 95 (August 1982) p.20, with the comment that it was
the easiest and best method known for achieving thirds and fifths. For
another construction, see "Mathematics of origami" by Jacques Justin, in 115

(December 1985) pp.18-20 of the same magazine.

Also solved by LEON BANKOFF, Los Angeles, California; FRANK P. BATTLES
and LAURA KELLEHER, Massachusetts Maritime Academy, Buzzards Bay,
Massachusetts; JORDI DOU, Barcelona, Spain; JACK GARFUNKEL, Flushing, N.Y.;
J.T. GROENMAN, Arnhem, The Netherlands; WALTHER JANOUS, Ursul inengymnasium,
Innsbruck, Austria; FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; KEE-WAI
LAU, Hong Kong; D.J. SMEENK, Zaltbommel, The Netherlands; and the proposer.
Numerical sclutions of varying accuracy were found by RICHARD I. HESS, Rancho
Palos Verdes, California; J.A. McCALLUM, Medicine Hat, Alberta; and LA MOYNE

L. PORTER, Shaker Heights, Ghio.
% X b 4

1026. [1985: 83] Proposed by Stanley Rabinowitz, Digital Equipment
Corp., Nashua, New Hampshire.
D, E, and F are points on sides BC, CA, and AB, respectively, of
triangle ABC, and AD, BE, and CF concur at point H. If H is the incenter of
triangle DEF, prove that H is the orthocenter of triangle ARC.
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(This is the converse of a well-known property of the orthocenter.)

Let ¥ be the intersection of ED and CH.
In the complete quadrilateral with edges CE,
EH, HD, and DC, M and F divide CH harmonically,
that is, (CH,MF) = -1 (e.g. Theorem 2.8.10,
page 85 of [1]). Thus (e.g. Theorem 2.5.7,
page 75 of [1]), the cross ratio D(CA,EF)
must also be -1. That is,

I. Solution by Jordi Dou, Barcelona, Spain. N\\

sinCDE/sinEDA _
sinCDF/sinFDA
But DA bisects (EDF, so sinFDA = -sinEDA. Thus
sinCDE = sinCDF = sinFDB,

-1.

S

which implies that DC is perpendicular to DA. Therefore AD and similarly BE

and CF are altitudes of 4ABC, that is, H is the orthocenter of 44BC.
Reference:

[1] H. Eves, A Survey of Geometry (Revised Edition), Allyn and Bacon, 1972,

I1. Solution by J.T. Groenman, Arnhem, The Netherlands.
We use normal homogeneous trilinear coordinates with respect to 4DEF.

obtain » = (1,0,0), E = (0,1,0), F = (0,0,1), H = (1,1,1). Thus

HD is the line y = z , so A = (a,,a,;a,)
HE is the line x =z , so B = (b,,b,,b,)
HF is the line x =y , 80 C = (C,,C,,C,).

Also, B, D, C are collinear, and thus we get
bz bl bz

1 0 0 =0

or

In the same way,

and

Hence

whence b,2? = b,%. Since b, = b, would give B = (1,1,1) = H, we must have

We
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b, = -b, and hence B = (1,-1,1). This means that B (and similarly 4 and C) is
an excenter of 4DEF, It follows that AC, BC, and AB are the exterior angle-
bisectors of A4DEF, and thus are perpendicular to BE, AD, and CF respectively.
Therefore AD, BE, CF are the altitudes of A44BC and H is the orthocenter of
this triangle.

Also sclved by R.H. EDDY, Memorial University of Newfoundland, St.
John's, Newfoundland; WALTHER JANQOUS, Ursul inengymnasium, Innsbhruck, Austria;

DAN SOKOLOWSKY, Brooklyn, N.Y.; and the proposer.
X * *

1027. [1985: 248 (corrected)] Proposed by M.S. Klamkin, University of
Alberta, Edmonton, Alberta.
Determine all gquadruples (a,b,c,d) of nonzero integers satisfying
the Diophantine equation

1 1% _ 2
=+ H} = {a+ b +ec+d)

and such that a2 + b® + ¢c®* + d? is a prime.

1 i
abcd{a_ + 5 +

Solution par C. Festraets-Hamoir, Bruxelles, Belgique.

1 1 1 132 _ 2
abadkg + E-+ E.-l- EJ = {a+b+c+d)

1 1 1 1 2 2 2 2 2 2
abed|— + — + — 4+ —— + + -+ + + +
= [a2 bz oz g2 ab ac ad bBc Bd  od

= a2 + p? + 2 + d? + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

bed acd abd abc 2 2 2 2
= + + +d
ma+b+c+d a b c

e b%c3d? + a2c?d?® + a®*h3d? + a*b?*c? = abcd(a® + b® + c®* + d?).
Posons a® + b + ¢? + d® = p (p premier). On a
b2c23d? + a2c?d? + a*b3d? + a*b2c® =2 0 (mod p)
b2c2{(d? + a®) + a®d?*(c®* + b?*) = Q0 (mwod p)
b2c2{~-p2 ~ c2) + a?d?(c? + b?*) = 0 (mod p)
(a?d? - b2c2)(b* + c?*) = 0 (mod p)
a2d? - b%2¢c? = 0 (mod p) car (b%® + c2,p) = 1.
De m&me, on a
a?c?® - b3d*® = 0 (mod p).
D’oli, par addition
a?d® - b*c?® + a®c?® - b3d?® = 0 (mod p)
{a® - b®)(d® + c®*) =2 0 (mod p)
a? - b% = 0 (mod p) car (d? + c*,p) = 1.
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Par symétrie. on obtient

i}
o
N
1]
-~
N
H

= d? (mod p)

p=a%+ b+ c?+d?* = 4a® (mod p),
at =0 ou az =p

ce gqui est impossible. Donc. il n’existe aucun quadruple d’entiers positifs

non nuls (a,b,c,d) satisfaisant les conditions données.

Also solved by FRIEND H. KIERSTEAD JR., Cuyahoga Falls, Ohio; and the

proposer .

S



