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THF OLYMPIAD CORNFR; 52 

M.S. KLAMKIN 

I give one new problem set this month. It consists of 25 problems proposed 

(but unused) by various participating countries in past International Mathematics 

Olympiads. I will extend this list in forthcoming columns. As usual, I solicit 

from all readers elegant solutions to these problems with, if possible, extensions 

or generalizations. 

1( Proposed by Australia, 

A total of 1983 cities are served by ten alrlfnes. There is direct ser­

vice (without stopovers) between any two cities and all airline schedules run both 

ways. Prove that at least one of the airlines can offer a round trip with an odd 

number of landings . 

2, Proposed by Australia and the U.S.A. (independently). 

The altitude from a vertex of a given tetrahedron intersects the opposite 

face in its orthocenter. Prove that all four altitudes of the tetrahedron are con­

current. 

39 Proposed by Brazil, 

Which of the numbers l, 29 eeo, 1983 haye the largest number of positive 

divisors? 

i|, Proposed by Canada. 

Find all possible finite sequences (nQ? n 1 ? , .„, nA of Integers such that, 

for each i = o,i, ,.,,&, i appears 1n the sequence n„ tfrnes. 

5, Proposed by Canada, 

Let a0 = 0 and 

a A = k(a +1) + (fc+l)a + 2/k('kVl)a ( a T T ) f n = 0,1,2,..,, 
n+1 n n n n 

where k is a positive integer, Prove that a is a positive integer for n = l?2s399., 

6B Proposed by Cuba, 

Show that there exist infinitely many sets of 1983 consecutive positive 

integers each of which is divisible by some number of the form a 1 9 8 3, where a * l is 

a positive integer. 

7 , Proposed by Finland. 

Let r and s be integers, with s > 0, Show that there exists an interval I 
of length l/s and a polynomial P(x) with integral coefficients such that, for all 
x e Js 
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\P(x) - £| < -^. 
s sA 

8 , Proposed by Finland,, 

Let Ft [0,1] -> i? be a continuous function satisfying 

lF(.2x) = bF(x)9 0 < x < h 

I F(x) = b + (l-b)F(2x-l)9 } < x < 1, 

where £ = (i+<?)/(2+<2) and c > 0, Prove that 0 < F(x)-x < c for all x e (0,1). 

9 , Proposed by the German Democratic Republic* 

Let P l s P 2 s . . . , P be n d i s t i n c t points in a p l ane . Prove t h a t 

max P . P . > — ( n - 1 ) min P . P . . 
l<i<j<n W l<i<j<n ^ J 

10, Proposed by Great Britain. 

If the sides a^b^c of a triangle satisfy 

2(bc2 + (3a2 + ob2) = b2c + e2a + a2b + Zabc 9 

prove that the triangle is equilateral. Prove also that the equation can be satis­

fied by positive real numbers that are not the sides of a triangle. 

H i Proposed by Great Britain* 

Prove that there is a unique infinite sequence {uo>wi,W2»,..} of positive 

integers such that, for all n > 09 

n 
u* = I (n+r)u . 

n L
n r n-r 

12 fi Proposed by Israel, 

For a given set X of 1983 members there exists a family of subsets 

{Si,S29...9S.} such that 

(i) the union of any three of these subsets is the entire set X, and 

(ii) the union of any two of these subsets contains at most 1979 members. 

Determine the largest possible v^lue of k. 

13, Proposed by Israel. 

There are 1983 points on a given circle* and each is given one of the 

affixes ±1. Prove that, if the number of points with the affix +i is greater than 

17899 then at least 1207 of the points have the property that the partial sums that 

can be formed by summing their own affix and those of their consecutive neighbors 

on the circle up to any other point, in either direction on the circle9 are all 

strictly positive. 
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\L\ g Proposed by Mongolia. 

Show that there exist distinct natural numbers nl9n29... *n. such that 

-1984 , 1 1 1 s -1960 
TT < 2 5 - ( — + — + . . . + — ) < ir 

"1 n2 "k 

15, Proposed by Mongolia. 

The set {l929... ,49} is partitioned into three subsets. Show that at 

least one of the subsets contains three different numbers a>b,c such that a\b - a. 

IB g Proposed by The Netherlands* 

Prove that in any parallelepiped the sum of the lengths of the edges does 

not exceed twice the sum of the lengths of the four principal diagonals. 

17, Proposed by Poland. 

Riven nonnegative rea l numbers x\>x2,... 9x« and p o s i t i v e i n t e g e r s k9m9n 

such t h a t km < n3 prove t h a t 

k k 
n{ II x. - l ) < m Y (x. - 1 ) . 

18, Proposed by Romania. 

A polynomial P(x) of degree 990 satisfies 

P(k) = F., fc = 99299939...919829 

where {F.} is the Fibonacci sequence, defined by 

*1 =F2=U Fn+± =Fn +Fn_±, n - 2,3,4,... . 

Prove that P(l983) = F1983 - l. 

19, Proposed by Sweden. 

Let a and b be integers. Is it possible to find integers p and q such 

that the integers p+na and q+rib are relatively prime for any integer n? 

20 , Proposed by Sweden. 

AB is the diameter of a circle y with center 0, A segment BD is bisected 

by the point C on y» and AC and DO intersect at P. Prove that there is a point E 

on AB such that P lies on the circle with diameter AE. 

21, Proposed by the U.S.A. 

The sum of all the face angles at all but one of the vertices of a given 

simple polyhedron is 5160°, Find the sum of all the face angles of the polyhedron. 

22 i Proposed by the U.S.A. 

Determine all pairs (a9b) of positive real numbers with a * l such that 
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l o g b < loq A(b+1)9 

23, Proposed by the U.S.S.R. 

A tetrahedron is Inscribed in a unit sphere. The tetrahedron is such 

that the center of the sphere lies in its interior. Show that the sum of the edge 

lengths of the tetrahedron exceeds 69 

24, Proposed by the U«S»S*R« 

The proper divisors of the natural number n are arranged in increasing 

order, x1 < x2 < .** < x,e Find all numbers n such that 

#5 + XQ - 1 = n& 

25 i Proposed by the U.S.S.R, 

A triangle Ti is constructed with the medians of a right triangle T, If 

Ri and R are the circumradli of T\ and T9 respectively, prove that Rl > 5i?/6. 

I now give comments and solutions to various problems from earlier columns* 

17, ri981: 17; 198*4: 1451 From a 1973 Moscow Olympiad. 

Twelve painters live in 12 houses which are built along a circular street 

and are painted some white, some blue* Each month one of the painters, taking with 

him enough white and blue paint, leaves his house and walks along the road in the 

clockwise sense. On the way, he repaints every house (starting with his own) the 

opposite colour. He stops work as soon as he repaints some white house blue. In a 

year, each painter undertakes such a journey exactly once* Show that at the end of 

a year each house will be painted its original colour, provided that at the begin­

ning of the year at least one house was painted blue* 

II. Comment by Leroy F„ Meyers^ The Ohio State University. 

This problem is equivalent to Problem 705 T1982; 3251. In particular, my solu­

tion to Mo, 705 showed that there are always exactly two complete circuits, a fact 

that was not brought out explicitly in the original solution to the present problem* 

H-2, T1981: 114; 1984: 1481 From Kozepiskolai Matematikai Lapok 60 (1979) 140* 

Let n be a positive integer. As a first step, we have given the sequence 

(ai, a23 ...» a-}, where k = 2n and each a. is 1 or -l. As a second step, we form 

the new sequence fa1a2, £2^3* ...» a,a] and continue to repeat this process to 

generate new sequences. Show that, by at most the 2 th iterated step, we arrive at 

a constant sequence with every term equal to 1. 
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II. Comment by Leroy F, Meyers3 The Ohio State University, 

This problem is really Ducci's problem in disguise. See my note "Ducci's Four-

Number Problem: A Short Bibliography" [1982: 262-266]. For a proof that the coef­

ficients of (x+y)m are all odd when m = 2n-l, see my solution to Problem 90 [1982: 

2791 or the earlier solution in [1976: 34]. 

l\L\ % [1983: 138] From the 1983 Netherlands Invitational Mathematics Examination. 

What is the smallest amount, in cents, that cannot be made up with at most 

ten of the coins of denominations l£, 5$, 10<£, 25$, 50$, and 100$ ? 

Comment by E. Frederick Lang3 M*D.3 Grosse Pointe3 Michigan, 

No solution was provided for this problem, but the answer given [1983: 142] was 

444. I gave the problem to my grandson Christopher D. Lang, who is 15 years old a u 

attends Athens High School in Troy, Michigan. He found that the correct answer is 

394. 

F 12̂ 43 5, C1983: 237; 1984: 150] From KozSpiskolai Matematikai Lapok (March 

1983). 

Choose 400 different points inside a unit cube. Show that 4 of these points 

lie inside some sphere of radius 4/23. 

II. Solution by Fred Galvin3 University of Kansas. 

The elegant solution given earlier showed that 376 points suffice. We show, 

less elegantly but more efficiently, that 321 points suffice. 

Let n and k be positive integers, let r be a positive real number, and suppose 

there are n points XlsX2s*..,X in the unit cube such that no fe+l of them belong to 

a ball of radius r. Let B. be the ball of radius r centered at X. and 

B = Bi u Bo u ... u B . i z. n 

No point belongs to k+l of the B^s. For if, say, P belonged to B i ^ n . . . nBfe+1» 

then XlsX2,...jX. would all belong to the ball of radius r centered at P, contra­

dicting the hypothesis. Hence, with the bars denoting volume, we have 

k\B\ > \B1\ + \B2\ + . . . + |B I , x n 
t h a t i s , 

|B | > | r r r 3 « | . (1) 

On the other hand, since B is contained in the "rounded cube1' consisting of all 

points at distance at most r from the unit cube, we have 
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\B\ < 1 + er + 3TTP2 + |TTP 3 , (2) 

Thus, combining ( l ) and (2) gives 

n < k(-^ + - ^ + — + l ) . 
M-TTP"3 2ur 4-r 

For 7< = 3 and r = 0,1739, we get n < 320e0988„ #., so for 321 points Inside a unit 
cube, 4 of them will H e inside some sphere of radius 0,1739 < 4/23, 

] 8 ("1984-: 401 From the 1983 Brazilian Mathematical Olympiad* 

Show that the equation 

i l l - 1 

x y z 1983 

has a finite number of solutions, where x,y3z are natural numbers. 

Solution by K«S» Murray^ Brooklyn^ N.Y. 

We may assume that x < y < z in any solution te,2/,s). Thus 3/x > 1/1983, so 

x < 3*1983 and the number of possibilities for x is finite. Then, for each possible 

value of x 9 it is seen from 

2 _1 1 2 
y " 1983 x* ° f ^ " (l/1983)-(l/a?)* 

that the number of possibilities for y is also finite. Finally, for each possible 

(x,y\ the equation gives only one possible value of z . • 

The above solution clearly Indicates how an inductive proof would go for the 

following more general theorem: 

For every rational w and every positive integer s the equation 

1 1 1 — + _ + a a o + — . = w 
X\ Xo X 

has a finite number > 0 of solutions in positive integers x\>X2>* * • *x • 

In fact, this theorem appears, with a complete proof by induction on s , on 
pages 85-86 of Wa Sierpirtski

fs 250 Problems in Elementary Number Theory (American 

Elsevier, New York, I97o)0 

29 [1984: 40 1 From the 1983 Brazilian Mathematical Olympiad. 

Triangle ABC is equilateral and has side a. Squares BCPq, CAM, and ABRS 

are constructed, and they are the bases of three square pyramids with vertices Vi, 

V2» V3s all the edges being of length a. The pyramids are rotated about BC, CA, 

and AB until VlsV2sV3 all coincide. Show that, after the rotations, MNPQRS is a 

regular hexagon. 
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Solution by K.S* Murray3 Brooklyn3 N«Y. 

I t is clear that af ter the ro ta t ion , when Vi,V2»V3 occupy the common position V5 

the points MfNsP9Q,R,S are all coplanar. We show that then the hexagon MNPQRS is 

parallel to ABC and contains V. For convenience, l e t a = 2e I t follows easi ly that 

the a l t i tudes of V-ABC and Vx-BCPQ are 2/Tjl and /2 9 respect ively. Now le t D,E,F,G 

be the centroids of ABC9 BC9 BCPQ5 and PQ5 respect ively, and l e t 9 be the angle of 

rotat ion of BCPQ about BC that brings Vi into coincidence with V. We have the 

following configurations: 

V J i 

After the rotation 

4= + cos 6 = /2 sin 6 , 

In order for Vi to coincide with V, the following equations must be satisfied: 

(1) 

sine + /2cos9 = 2/2739 (2) 

And if n is to be at the same height as V9 we must have 

2 Sin 9 = 2i/273. (3) 

It follows easily that (3) satisfies both (l) and (2), 

The rest follows by the symmetry of the configuration MNPQRS with center V9 

3, [1984: 401 From the 1983 Brazilian Mathematical Olympiad, 

1 1 
Show that l + - + , . . + - 1s not an integer for any natural number n > 2. 

Comment by M»S»K» 

This is a known problem. For example, see Problem 85, pages 21 and 155, in the 
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highly recommended book Selected Problems and Theorems in Elementary Mathematics, 

by D.O. Shklyarsky, N.Ne Chentsov, and I.M. Yaglom, Mir Publishers, Moscow, 1979. 

(The book can be obtained (in English) through Imported Publications, Inc., 320 

West Ohio Street, Chicago, Illinois 60610,) 

For n > 2, there is always a positive integer m such that 2 < n < 2 . Com­

bining the fractions using the least common denominator, which must be of the form 

2mk with k odd, we obtain 

„,„ l + even no. sum = •— 
2mk 

which cannot be an integer,, 

It is also known more generally that if a and d are positive integers, then 

1 1 
- + -—? + 
a a+d @ ' * a+(n-l )d 

is never an integer except in the trivial case a - n = l, 

L\ B F1984: 401 From the 1983 Brazilian Mathematical Olympiad, 

Show that all the points of a circle can be coloured, each with one of two 

colours, in such a way that no inscribed right triangle has Its three vertices all 

of the same colour. 

Solution by Paul Wagner3 Chicago3 Illinois, 

Just colour any point and its diametrically opposite point with different 

colours, 

Rider by M,S.K. 

Determine whether or not it is possible to two-colour a circle In such a way 

that the three vertices of any inscribed angle of measure 360°/k are all of the same 

colour, where k > 2 is an integer. 

5, [1984: 401 From the 1983 Brazilian Mathematical Olympiad, 

(a) Prove that l ̂  nJn < 2 for every natural number n > i, 
(b) Find the smallest re^l number k such that n < n/n < k for every natural 

number n > 1. 

Solution by Gali Salvatore3 Perkins3 Quebec. 

(b) Let f(x) = xJx« The following facts about this function are known and 

easy to prove by calculus (see Til, or see the graph of the function in [2]): f(x) 

is strictly increasing for 0 < x < e, has an absolute maximum at x - e, is strictly 

decreasing for x > e, and approaches 1 as x + °°, Since 2 < e < 35 we therefore have 
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1 < nyfn < k for n = 3 ,4- ,5 , . . . when k = V39 and no smaller ft will do. Since also 

f(2) = / ( 4 ) and / ( l ) = 1, i t follows that 1 < *Vn < 7: holds for every natural number 

n when k = 3 /3 , and no smaller fc will do. 

(a) This follows from n < n t l < ( l + l ) n , or from part (b) since Vss < 2. 

REFERENCES 

1. Problem 55 (proposed by Louis Rotando, solution by Robert Plummer), The 
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88 (1981) 235-2529 esp. p. 236. 

6, [1984: 40] F:ram the 1983 Brazilian Mathematical Olympiad. 

A sphere being given, show that the largest number of spheres congruent to 

and tangent to the given sphere, no two of which have any interior point in common, 

is at least 12 and at most 14. 

Try to refine this estimate. 

Solution by Angelo N, Barone3 University of Sao Paulo. 

Let A1,A29e.,»A6 be the consecutive vertices of a regular hexagon with side 2p 

and center 0. We look at the regular tetrahedra OA^Ay, 0A3AtfA8, and 0A5A6A9, 

where A7sA8,A9 lie on the same side of the plane of the hexagon. We also look at 

the regular tetrahedra O A ^ A ^ , C^A^An, and 0A5A6A12, where A10,An,A12 lie on 

the other side of the plane of the hexagon. All the edges of the polyhedron 

A1A2...A12 have length ir and the distance from 0 to each of its vertices is 2r. 

Therefore the 12 spheres with centers A. and radius r are tangent to the sphere with 
IS 

center 0 and radius r. This shows that the number we are looking for is at least 12. 

We now consider two externally tangent congruent spheres of radius r and the 

cone tangent to one of them whose vertex is the centre of the other. The angle at 

the vertex of an axial section of the cone measures TT/3. The cone determines on 

the central sphere (i.e., the one with the vertex of the cone at its center) a spher­

ical cap whose 

height = r{l - ^ ) and area = 2TO>2(I - ^ • 

It is easy to verify that 15 times this area is strictly larger than the area of the 

sphere. Therefore the number we are looking for is at most 14. 

Comment by M.S.R. 

For a refinement of the estimate "at least 12 and at most 14" and for further 

comments, see Problem 826 in this issue. 
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GY. 2142, T1984: 75] From Koz^piskolai Matematikai Lapok 67 (1983) 80, 

A 12x12 chessboard has alternating black and white squares. In 

one operation, every square in a single row (or column) is repainted the opposite 

colour (white squares repainted black and black ones white). The operation is then 

repeated on another row (or column). Is it possible that, after a certain number 

of operations, all the squares on the chessboard are black? 

Unsigned solution. 

We assume that the rows and columns are numbered consecutively from top to 

bottom and left to right, respectively, and that the chessboard is oriented so that 

the top left square is white. Then all the squares will end up black if we first 

perform the operation on rows 1,3,5,7,9,11 and then on columns 2,4,6,8,10,12, 

Rider by M.S.K. 

What are all the possible numbers of black squares that one can obtain? 

GYi 2143, C1984; 75] From Kbzepiskolai Matematikai Lapok 67 (1983) 80, 

A word is any sequence of letters. Starting with the word AB9 new 

words are formed by the repeated use of the following rules in any order of suc­

cession: 

(i) If a word ends in B3 add, C at the end, 

(ii) If a word begins with A% double the word that follows the initial A (efgf, 

ABC -* ABCBC) . 

(ill) If a word contains three consecutive letters B, replace them by a single c. 

(iv) Omit two consecutive letters C if they occur anywhere in a word. 

Consider all the words formed In this way. Does the word AC figure among them? 

Comment by John Morvay^ Dallas_, Texas, 

This problem ts tde"tical (except for notation) with the MA-puzzle presented 

in Chapter I of Douglas R, Hofstadter!s Godel^ Esaher^ Bach (RQSIC Books, New York, 

1979), Later, in Chapter IX, Hofstadter shows that the B-eount of a word (the num­

ber of times B occurs In ft) can never be a multiple of 3. In particular, the 

F-count of a word cannot be zero, so AC is not a word in the system, Hofstadter's 

argument goes as follows: 

i, The B-count begins at l (not a multiple of 3), 

2, Rules (1) and (1v) leave the z?-count of any word unchanged, 

3, Rules (11) and (11f) affect the F-count of a word in such a way as never to 

create a multiple of 3 unless given one Initially. 
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GY, 2144, T1984: 75] From Kopgpiskolai Matematikai Lapok 67 (1983) 80. 

Determine all natural numbers n such that 2 - 1 equals the square 

or higher integral power of a natural number. 

Solution by Bob Prielipps University of Wisconsin-Oshkosh. 

The property clearly holds for n = 1. We show that it holds for no other 

natural number n. Suppose, on the contrary, that 

2n - 1 = x
k . (1) 

where n,x9k are natural numbers and n > 2, k > 2. Clearly x is odd. If k is even, 

then the right side of d ) is congruent to 1 modulo 4 while the left side is con­

gruent to -1 modulo 4: contradiction. For odd k9 rewrite fl) in the equivalent 

form 

2 =o? + 1 = U + D U -a? + „ #. - a? + 1). 

The second factor on the right divides 2n and it is odd since it has an odd number 

of odd addends. Hence this factor equals l, so 2n = x + 1 and k = 1: contradiction. 

(iY. 2145, [1984: 75] Frew Kozepiskolai Matematikai Lapok 67 (1983) 80. 

Solve the following system of equations: 

X3 + Z/3 + 2 3 = 8 , 

x 2 + y 2 + z2 - 2 2 , 

1 1 1 ^j8_ 
5? 1/ 3 #J/ * 

Solution by Glen E. Mills3 Pensaoola Junior College^ Florida. 

The last equation is equivalent to 

(z + ar)(s +?/) = 09 #3/2 * 0, 

We find all the complex solutions for which z = -j/. The solutions for which z = -x 

can then be obtained from these by permuting the values of x and y. 

If z = ~y, "the first equation gives #3 = 8, so 

x - 2 or 2o> or 2o)2, 

where co is a primitive cube root of unity. Then the second equation gives corre­

spondingly 

y2 = 9 or 11-20)2 or ll-2cot 

so 
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Thus the poss ib le so lu t i ons are 

(x, 2/, s ) = ( 2 , ±3 , +3) or (2oo9 ±Al-2o) 2
9 +Ai-2a) 2 ) or (2co2

9 ±Al^2a39 + / JT^co) , 

with s i m i l a r l y placed s igns cor responding . Conversely, i t i s e a s i l y v e r i f i e d t h a t 

a l l of these are in fac t so lu t ions of the system. 

F« ?L\'5l-\ , T1984: 75] From Kozepiskolai Matematikai Lapok 67 (1983) 80. 

Prove t h a t the equation 

x3 + 4#2 + 6x + a = 0 

cannot have three distinct real roots for any real number a. 

Solution by Glen E9 Mills3 Tensacola Junior College^ Florida. 

For any real e, P(x) = x3 -*• *-kr2 + 65? + o is a real polynomial function of de­

gree 39 and P1 (x) = 3x2 + Sx + 6 > 0 for all real x* Hence P(x) is strictly in­

creasing for all x and therefore has exactly one real zero for any real number c« 

it 

F8 24?5. T1984: 76] From RozSpiskolai Matematikai Lapok 67 (1983) 80. 

Let y be a circle with centre 0. Show that, of all the triangles ABC 

with incircle y9 it is the equilateral triangle for which the sum OA2 + OB2 + OC2 is 

minimal . 

Solution by MeSBK9 

If r is the fixed inradius^ then 

OA2 + OB2 + OC2 = r 2 ( c s c 2 | + c s c 2 | + c s c 2 § ) 9 

I t 1s a known i n e q u a l i t y t h a t Zcsc 2 (A/2) > 12 with e q u a l i t y j u s t when ABC i s equ i ­

l a t e r a l . For a proof, f i r s t note t h a t esc re i s convex for x e fo,Tr). Thus 

A B C A+B+C 
CSC - + CSC - + CSC 77 > 3 CSC ——— = 6 , 

I I I 0 

with equality just when A = B = C. Then, by the power mean inequality, 

oA oB oC A B C 
CSCZ- + CSCZ~ + CSCz-r CSC - + CSC - + CSC -

_2 £ _ 1 > f—JL. L___i)2 > 4 
3 " 3 J 

Whence min ((1A2+0B2+0C2) = 12r2, and this is attained just when ABC is equilateral, 

FB ^!3BS T1984: 76] From Kozepiskolai Matematikai Lapok 67 (1983) 80. 

Prove that, for natural numbers n > 1, 
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f 1 + f77 + fn2 + fn3 + . . . + A < n . 

Solution by Gali Salvatore3 Perkins^ Quebec. 

Let R(n) denote the express ion on the l e f t s ide of the proposed i n e q u a l i t y . 

For n > 1, we have 

R(n) - /n« 

where 

a n f 1 + Vl + V1 + •.. + /l (rc+l radicals). 

It is well known and easy to show (or see Problem 8 F1975: 19]) that the sequence 

{a } is strictly increasing and converges to the golden ratio g = (l+/5)/2. The 
inequality Bin) < n therefore holds whenever g/n < n9 or n ̂  g & 2.618, that is, 
for all n > 3. Furthermore, i?(2) = /3 < 2. Therefore 7?(n) < n holds for all n > 1. 

F8 C>^?7. T1984: 76] Fr<OT iCoz^piskolai Matematikai Lapok 67 (1983) 80. 

Every point in space is coloured either red or blue. Prove that 

there is a unit square with four blue vertices, or else there is one with at least 

three red vertices. 

Solution by John Morvay3 Dallas3 Texas. 

If there are no red points, then all unit squares have four blue vertices. If 

there is a red point Rx such that no red point is at unit distance from Rls then Rx 
is the center of a sphere of unit radius all of whose points are blue, and there are 

then infinitely many unit squares with four blue vertices. Finally, suppose there 

is a red point Rx and a red point R2 at unit distance from Rlf and let RXR2 be a 

lateral edge of a triangular prism with equilateral bases and square faces. The 

face opposite RXR2 either is a unit square with four blue vertices, or else it has 

a red vertex P3, and then Ri,R2,R3 are three red vertices of a unit square. 

Fs ?*]?8, T1984: 761 From Kozepiskolai Matematikai Lapok 67 (1983) 80. 

Drawing the diagonals of a convex quadrilateral, we find that, among 

the four triangles thus formed, three are similar to one another but not sinilar to 

the fourth. Ts it true that then one of the acute angles of the fourth triangle is 

twice as large as an angle of the other triangles? 



Solution by M.fl.K. 

No. Just consider the adjoining figure, 

where three of the triangles have acute angles 

30° and 60°9 while the fourth has acute 

angles approximately 79°06' and io°54'. 

Editor*s note. All communications about 
this column should be sent to Professor M.S. 
Klamkin, Department of Mathematics, Univer­
sity of Alberta, Edmonton, Alberta, Canada 
T6G 2G19 

P R O B L E M S - - P R O B L E M E S 

Problem proposals and solutions should he sent to the editor, whose address 
appears on the front page of this issue. Proposals should, whenever possible, be 
accompanied bq a solution, references, and other insights which are likely to be of 
help to the editor* An asterisk (*) after a number indicates a problem submitted 
without a solution. 

Original problems are particularly sought. But other interesting problems may 
also be acceptable provided they are not too well known and references are given as 
to their provenance, Ordinarily, if the originator of a problem can be located, it 
should not be submitted by somebody else without his permission* 

To facilitate their consideration, your solutions, typewritten or neatly hand­
written on signed, separate sheets, should preferably be mailed to the editor before 
September 1, 1985, although solutions received after that date will also be considered 
until the time when a solution is published9 

1011 P Proposed by Charles V, Trigg^ San Diego9 California, 

In base sfx, find a ntnet-digit square of the form AAAAAAXYZ, given that 

it is the square of a number whose central triad is XYZ„ 

1 0 1 2 s "Proposed by G0P, Henderson^ Campbellcroft3 Ontario, 

An amateur winemaker is siphoning wine from a carboy. To speed up the 

process, he tilts the carboy to raise the level of the wine. Naturally, he wants to 

maximize the height, #, of the surface of the liquid above the table on which the 

carboy rests. The carboy is actually a circular cylinder, but we will only assume 

that its base is the interior of a smooth closed convex curve, c3 and that the 

generators are perpendicular to the base, P is a point on c\ T is the line tangent 

to c at °, and the cylinder is rotated about T. 

(a) Prove that n is a maximum when the centroid of the surface of the liquid 

is vertically above T. 

(b) Let the volume of the wine be y and let the area inside c be A , Assume 

that v > AW/29 where w is the maximum width of C (i.e., the maximum distance between 

parallel tangents). Obtain an explicit formula for F , the maximum value of Be How 

should P be chosen to maximize nM? 
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JO] 3, Proposed by Hidetosi Fukagawa3 Yokosuka High School, Tokai City, Aichi3 

Japan. 

This problem is about "Malfattl" squares, named 

by analogy with Malfattl circles. The concept is 

illustrated in the adjoining figure. 

(a) Riven a triangle ABC, show how to construct 

its three Malfatti squares. 

(b) The Malfatti squares problem. Piven the 

sides a3b9c of a triangle, calculate the sides x>y9z 

of its Malfatti squares. 

(c) The reverse Malfatti squares problem. Piven 

the sides x9y9z of the Malfatti squares of a triangle, calculate the sides a,b,c of 

the triangle. 

J 014 B Proposed by Shmuel Avital3 Technion-Israel Institute of Technology, 

Haifa3 Israel, 

The points Al9A2,A3,... are chosen, by the familiar 

construction illustrated in the figure, in such a way that 

OA = i/n9 n = 192939... . 
n 

(a) What is the nature of the smooth spiral that 

passes through Ai,A2,A3,...? 
(b) Find, in terms of n, an explicit formula for the 

measure of the rotation that ray 0AX must undergo to bring 

it into coincidence with ray OA . 
J n 

J0J58 Proposed by Yang Lu3 China University of Science and Technology3 Hefei3 

Anhui3 People's Republic of China. 

Let A1A2A3Aif be a convex quadrilateral, let a., denote the length of segment 

A,A. (i,j = 1,2,3,4), and let Bi9R2'
R3>Rh be the circumradii of triangles A ^ A ^ , 

^ o 
A3A4Al5 ALfA1A2s and A1A2A3, respectively. Prove that 

f# l#2 + #3#i f )a 12^34 + (#l-fr++#2^3)^14^2 3 = ( i? l#3+i?2^)^13 a 2tf - ( D 

(This is an extension of Dtolemy's Theorem, for if A1A2A3A4 is cyclic, then 

p1 = p>2 - p3 ~ p^9 and (1) is equivalent to a\2a^h + ama23 ~ ai3a24«) 

1016, Proposed by Andrew P. Guinand3 Trent University3 Peterborough3 Ontario. 

(a) Show that, for the triangle with angles 120°, 30°, 30°9 the nine-

point centre lies on the circumcircle. 

(b) Characterize all the triangles for which the nine-point centre lies on 

the circumcircle. 
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J 0171 Proposed by Allan Wm. Johnson Jr»3 Washington 3 D»Ca 

Tf the f iqure on the l e f t is a pandlaqonal magic square, then so is the 

f iqure on the r i q h t . 
I P -

A 

E 

I 

M 

B 

F 

J 

N 

C 

G 

K 

0 

D I 

H 

L 

P 

A 

F 

P 

V 

B 

F 

G 

C 

N 

J 

K 

0 

M 

T 

L 

P 

Both figures are arrangements of the same 16 arb i t ra ry numbers A3B,C3e«.3P5 

and both have A in the upper l e f t corner c e l l . Enumerate all the ways the arb i t ra ry 

A9F9C9... 9P can be arranged to form pandiagonal magic squares in which A is fixed 

as shown. 

1018 i Proposed by Kurt Schiffler 3 Schorndorf3 Federal Republic of Germany. 

Let ABC be a t r iangle with incentre I . Prove that the Euler l ines of 

t r ianqles 1BC5 ICA, IAB, and ABC are all concurrent. 

J 019 i Proposed by Weixuan Li and Fdward T9H. Wang3 Wilfrid Laurier University3 

Waterloo3 Ontario. 

Determine the largest constant k such that the inequality 

x < as inrc + ( l - a ) t a n ^ 

holds for all a < k and for all x e [09 TT/2)„ 

(The inequality obtained when a is replaced by 2/3 is the Snell-Huygens ine­

qual i ty , which is fully discussed in Problem 115 [1976: 98-999 111-113, 137-138],) 

1020. Proposed by J.Tn Groenman3 Arnhem3 The Netherlands. 

Solve, for x e [09 2Tr)9 the equation 

176 cos x + 6*+sin^ = 75 cos 2x + 80 sin 2x + 101. 

s n L u T 1 0 

No problem is ever permanently closed. The editor will always be pleased to 
consider for publication new solutions or new insights on past problems» 

8?fi» [1983: 791 Proposed by Kent D. Foklan3 student3 Massachusetts Institute 

of Technology* 

Tt is a well-known consequence of the pigeonhole principle that, if six circles 

in the plane have a point in common, then one of the circles must entirely contain 

a radius of another. 
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Suppose n spherical balls have a point in common. What is the smallest value 

of n for which it can be said that one ball must entirely contain a radius of 

another? 

I . Comment by M.S. Klamkin and Aa Meir% University of Alberta. 

Let P denote the common point and let C (r = 1,2,... ,n) be the respective 

centers of the balls. In order that one ball entirely contain a radius of another 

ball, at least one of the angles C .PC. (j * k) must not exceed 60° f In the planar 

case, since the sum of the six angles between consecutive rays PC is 360 5 the 

desired result follows immediately by the pigeonhole principle (see Problem 2 

["1984: 85-86]), 

The spherical case considered here has a long history. It is a special c^se 

of the following more general space problem treated by L, Pejes Tdth in 1943 [lis 

Given n points on a unit sphere^ determine the maximum of the least distance d 

between any two of the points. He proved that 

d < 4^ - ̂ rr1^ E D • ^ ) 
n 1 6(n-2) n 

There is equality for the cases n = 394?6,12. The last three cases correspond to 

the regular tetrahedron, octahedron, and icosahedron, respectively (in which the 

faces are equilateral triangles), Prom (1), 

di2 = D12 » 1,0515, D13 « 1,0139, D l k « 0.9800, 

Therefore the least n is either 13 or 14. According to Leech F3l, it was conjec­

tured by David Gregory in an unpublished notebook at Christ Church, Oxford, that 

a sphere can touch 13 nonoverlapping spheres congruent to it. Fven if this con­

jecture were true, we could still have n = 13 or n = 14. However, Schutte and van 

der Waerden [21 and Leech T3l proved that there are no more than 12 such spheres. 
Consequently, the least n is 13, (The proofs in [21 and [3] are not easy.) 

For an essentially equivalent problem giving the bounds 12 < n < 14 by simple 
means, see Problem 6 in this issue (page 44), 

II, Comment by Edith Orr3 Ottawas Ontario. 

Another application of the pigeonhole principle: Four Saints in Three Acts} § 
1934 surrealist opera with libretto by Rertrude Stein and music by Virgil Thomson. 

One incorrect solution was received, 

REFERENCES 

1, L,L, Whyte, "Unique Arrangements of Points on a Sphere", American Mathema­
tical Monthly, 59 (1952) 606-611, 



?. Ka Schiitte and B.L. van der Waerden, "Pas Problem der dreizehn Kugeln", 

Math. Ann.3 125 (1953) 125-334. 

3S John Leech, "The Problem of the Thir teen Spheres" , The Mathematical Gazette, 

(1956) 22-23, 
A £ j a 

8 8 Q . r 1983: 277] Proposed by G.Cm Giri3 Midnapore College^ West Bengal3 India. 

A]_A2*o,A i s a r egu la r n-gon (n > 3) inscr ibed in a c i r c l e of rad ius r; 

H i s the midpoint of the arc AiA ; and, for i - i ? 2 9 , . . 9n9 P . i s the orthogonal 

p ro jec t ion of A. upon a fixed diameter D of the c i r c l e . Prove the fo l lowing: 

n 
(a) J C?, - 0; 

n n 
(b) ^ A ^ = 2 r c o t ^ a n d n AXA^ n-1 

(c) i f n = 2m, then II MA, = /2rm and E AjA. = i/mr ; 

(d) i f n = 2w+l, then n MA. = r m . 

Solution by Kesiraju Satyanarayanas Gagan Mahal Colony3 Hyderabad ^ India. 

We assume t h a t the v e r t i c e s a re numbered consecu t ive ly In the counterc lockwise 

sense and imbed the n-gon in the complex plane so t h a t the c e n t r e i s a t the o r i g i n 

and the fixed diameter D Is a subset of the rea l a x i s . If then Ax = r e x p i a , then 

A7 = rexpi(a+^hll)l)9 p - r COs (a-t^k^), fc = l , 2 , . . . , n , 
K. n K. n 

and 

M = p e x p i ( a - ~ ) B 

(a) Here we have 

n n 

I \X = -1 
7<=i * ^ k=l* * k=l 

) A7 P7 = - ) P7A7 = -zr } s i n ( a + - i — — ^ 
L k k *L ^ k k -L n 

(n-1 )TT IT 

-ir s in (a+- J—) s in ir esc - = o, 
n n 

where we have used formula (2) in r i , p . 9d1 

(b) F i r s t we obta in 

l AXA7 = 2v I s i n ^ i i H = 2r s i n l * z L & s j n E c s c X 
*=2 * *=2 2n 2 2n 
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= 2r c o s — c s c ~ = 2 r c o t ^ 2n 2n 2n 

from the same formula (2); and then 

Yl Yi Yl 

n A A = (2rf~1 n s i n l ^ l = (2r)»-i n s1n*i 
k=2 k=2 n k=l n 

,n ,«-l n n-1 = (2r) ^ = nr 

follows from formula (28) in [1, p. 119] and the fact that lira (sinn6/sin6) = na 
(c) If n = 2m, we first obtain, from the second result in part (b), 

m frT L~2m-± 

Next5 since 

HA. = 2Psin _{a+~1~™™-(a~-)} = 2rsin — - — — 9 k = l929.e.9n; Ac 2 n n 2n 

we obtain, when n = 2m9 

n MA. = ( 2 r f J T s l n S i ^ I = l*L = / 2 ^ 
fc=l * l f * = l 2n /F1 

from formula (29^ in [1, p. 119]. 

(d) From the same formula (29), we have, for any n, 

I I M A , - ( 2 r ) • 
k--l k ' 2 n _ 1 ' 

hence. If n = 2^+1, 

£v», t l • ffi-h • &-1 
JT MÂ  - 4kl n MA../MA . . = ^ | ^ 4 - ^ = / r " A = rm 

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; RICHARD I. HESS, Rancho 
Palos Verdes, California (part (a) only); WALTHER JANOUS, Ursulinengymnasium, Inns­
bruck, Austria; and the proposer, 

REFERENCE 

1. F„W. Hobson, A Treatise on Plane and Advanced Trigonometry, Dover, New York, 

1957. 
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890. T1983: 277] Proposed by Leroy F« Meyers, The Ohio State University* 

Construct triangle ABC, with straightedge and compass, given the lengths 

b and o of two sides, the midpoint M of the third side, and the foot H of the 
a a 

altitude to that third side. 
Solution by the proposer. 

If a nondegenerate triangle ABC determined by the given information is rotated 

180° about the midpoint of the segment AM , the result is a triangle M QR in which 

QR 1| BC and A is the midpoint of side QR. Reflecting triangle M QR in the line AH 

produces a triangle PRQ in which Q and R have been merely interchanged, A remains 

the midpoint of RQ, and H is the midpoint of PM . Then 
^ a r a 

Furthermore, 

b = AC = M R = PQ and c = AR = M Q = PR. 
a i aH 

£ + e > P H = 2 M H 9 fe + 2 M H > e 9 c + 2H H > 6 , ( 1 ) 
a a a a a a a 

unless b - e (and F = H ) , in which case b = a > AH . 
a a a 

For the construction., if b & a and ¥ * H , and (1) holds9 let P be the point 
a a r 

on M H produced so that M P = 2M H , and (the notation X(fc) denoting the circle 
a a l a a a 

with center X and radius k) construct 
Q € M (c) n P(Z>) and R e M (b) n P(c) 

so that Q and R are on the same side of the line H H , Let Lx be the line through % a a l 3 

M and H , and let L2 be the line perpendicular to L\ and passing through H . Let 
A = L2 n QR, and let B and C be the intersections of L\ with the lines through A 
which are parallel to M Q and M R, respectively. There are two solution triangles 

in this case, symmetric with respect to the line M H . 

If b = Q and H = M , let Q and R be any two distinct points on H (b) which are 
a a a 

not diametrically opposite, let A be the foot of the perpendicular from H to (the 
midpoint of) QR9 and let B and C be the feet of the perpendiculars from R and Q onto 

the diameter parallel to RQ» (This construction imitates that of the earlier case, 

with P = M , but all four circles coincide.) There are infinitely many solutions, 

all of them isosceles (or equilateral). 

If b * c and K * H , but (1) does not hold9 then the constructed circles will a a 
not intersect, or will be tangent9 thus producing no triangle or a degenerate one. 

If b * c and M = H , the constructed circles (with P = M ) will be concentrics a a a 

and so will not intersect, thus producing no triangle. If b = e and M * H , the 
constructed circles will intersect (if at all) on L2 and produce a degenerate 

triangle. 
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Also solved by W.J. BLUNDON, Memorial University of Newfoundland; CECILE M. 
COHEN, Horace Mann School, Bronx, N.Y.; JORDI DOU, Barcelona, Spain; JACK GARFUNKEL, 
Flushing, N.Y.; J.T. GROENMAN, Arnhem, The Netherlands; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; M.S. KLAMKIN, University of Alberta; KESIRAJU SATY-
ANARAYANA, Gagan Mahal Colony, Hyderabad, India; D.J. SMEENK, Zaltbommel, The Nether­
lands; DAN SOKOLOWSKY, Brooklyn, N.Y.; JORDAN B. TABOV, Sofia, Bulgaria; and 
DIMITRIS VATHIS, Chalcis, Greece. 

* & * 

8 9 1 , [1983: 3121 Proposed by Charles W. Trigg3 San Diego3 California. 

After the dog R A C E 

A P A W 

needed C A R E 

us ing unguent from the E W E R . 

Each letter in the square array uniquely represents a decimal digit. Identify 

the diqits so that, when they replace the letters, each column and row will be a 

square integer. 

Solution by Edwin M9 Klein, University of Wisconsin-Whitewater, 

Inspection of a table of squares reveals that there are only 4 four-digit 

squares with Identical first and third digits, so 

{APAW, EWER} c {2025, 3136, 6561, 8281} . 

Since ER and RE ay?e both endings of squares, we must have EWER = 6561 = 8i2. Hence 

APAW = ARA5 = 2025 = 452, 

RACE = 12C6 = 1296 = 362, 

CARE = 9216 = 962. 

The unique reconstruction is therefore 

1296 
2025 
9216 
6561, 

Also solved by HAYO AHLBURG, Benidorm, Alicante, Spain; FRANK P. BATTLES, Massa­
chusetts Maritime Academy, Buzzards Bay; the COPS of Ottawa; CLAYTON W, DODGE, Uni­
versity of Maine at Orono; J,Te GROENMAN, Arnhem, The Netherlands; RICHARD I. HESS, 
Rancho Palos Verdesf California; ALLAN WM. JOHNSON JR., Washington, D.C.; FRIEND H. 
KIERSTEADP JR., Cuyahoga Falls„ Ohio; JACK LESAGE, Eastview Secondary School, Barrie, 
Ontario^ J,A, McCALLUW, Medicine Hat, Alberta; TOM McDONOUGH and MIKE ROBERTS, stu­
dents f Eastview Secondary Schoolf Barrie, Ontario? GLEN E. MILLS, Pensacola Junior 
Collegef Florida; BOB PRIELXPP, University of Wisconsin-Oshkosh; RAM REKHA TIWARI, 
Radhaur, Biharr India; W.R, UTZ, University of Missouri-Columbia; KENNETH M, WILKE, 
Topeka, Kansas; ANNELIESE ZIMMERMANN, Bonn, West Germany; and the proposer. 

Editor's comment. 

Compare wtth Crux 581 [1981: 254], 

ft * * 
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892, [1983: 312] Proposed by Stan Wagon, Smith 

College3 Northamptons Massachusetts* 

A8CD is a square and ECD an isosceles triangle 

with base angles 15°, as shown in the figure. Prove 

that /AFP = 60° (and therefore triangle AFB is 

equilateral). 

This problem is very well known, but all the 

published solutions use trigonometry and/or auxiliary 

lines. What is required here is a simple proof with­

out trigonometry or any auxiliary lines (or circles). 

Solution by Kenneth S« Williams3 Carleton University^ Ottawa. 

Triangles ABH and RFC are congruent, 

so AF = BF. Let the degree measure of 

angle AEB be 2x; then (see figure) 

> 60 <nr=> 

<=> 

<=> 

x > 30 

y < 75 

BC < BF 

<=> AR < BE 

<—> 2x < 90°-x 

<=> 2x < 60° . 

Therefore /AFB = 2x = 60 °e 

Also solved bv ELWYN ADAMS, 
Gainesville, Florida; HAYO AHLBURG, Beni-
dorm, Alicante, Spain; LEON BANKOFF, Los 
Angeles, California; PAUL R. BEESACK, Carleton University, Ottawa; J*L0 BRENNER, 
Palo Alto, California and HENRY E. FETTIS, Mountian View, California (jointly); the 
COPS of Ottawa; JORDI DOU, Barcelona, Spain; HENRY E. FETTIS, Mountain View, Cali­
fornia (second solution); J.Te GROENMAN, Arnhem, The Netherlands; F„D. HAMMER, Palo 
Alto, California; RICHARD 1. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, 
Ursulinenqvmnasiuin, Innsbruck, Austria; LEROY F. MEYERS, The Ohio State University; 
DONALD L. MUENCH, St. John Fisher College, Rochester, N„Ya; DAN PEDOE, University 
of Minnesota? STANLEY RABINOWITZ, Digital Ecruipment Corp„, Nashua; New Hampshire; 
N. NARAS1MHA RAO, Madras Institute of Technology, India; MALCOLM A. SMITH, Georgia 
Southern ColLeae, Sratesboro; DAN SOKOLOWSKY, Brooklyn, N.Y.; GEORGE TSINTSIFAS, 
Thessaloniki, Greece; KENNETH M. WILKE, Topeka, Kansas; and the proposer. A comment 
was received from D1MITRIS VATHIS, Chalcis, Greece,, 

Editor fs comment. 

Vathis and Wflke noted that there is a published proof without trigonometry or 

auxiliary lines m . It is very nice9 but we prefer our featured solution. 
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Most solvers adhered strictly to the rules of the game, but a few used state­

ments of the type "It is clear that..." whose proofs would require auxiliary lines, 

which they virtuously did not draw. 

REFERENCE 

1. H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited^ New Mathematical 

Library No. 19, Mathematical Association of America, 1967, pp. 25, 158. 

* * * 

8Q3, T1983: 3121 Proposed by G.P. Henderson^ Campbellcroft3 Ontario. 

Let C be the centre of the ellipse 

2 2 
a\\X\ + 2a 12^1^2 + a 2 2 ^ 2 + 2 a 1 3 ^ 1 + ^ a 2 3^2 + a 3 3 = °> 

and l e t P.(#„ . , # „ . ) , i = 1*2, be two points on the e l l i p s e . Find the area of the 
^ l^ 2^ 

smaller of the regions bounded by CPl5 CP2, and the ellipse. 

Solution by the proposer. 

Suppose the coordinate axes have been translated and rotated so that the equa­

tion of the ellipse is 

?L + Vl = ! 
a2 b2 

and l e t (u.9 v.) be the new coordinates of P . . Set w = av/b. In the w^-plane the 

image of the region CP1P2 is a sector of the c i rc le u2 + w2 = a2 bounded by the 

radi i CfPi and C'P? , where the coordinates of Pf. are (u.9 av./b). The area of the 

sector is l a 2 0 , where 9 is the smaller of the anqles between C'P{ and C'P^. The 

scalar product of C^[ and C'"^ yields 

a2cos 0 = U1U2 + a2V\V>2.lb2. 

Therefore 

0 = Arccos (uiu2/a
2 + viv2/b

2). 

The area of the sector is then la2Arccos (uiu2 /a2 + v\v2/b
2) and the area of the 

region CP1P2 is 

•%zb Arccos (uiu2/a
2 + y1y2/i>2). (1) 

Me now return to the original var iables . Set 

x] = (xu, x2i, 1\ XZ =1 X22], 

2 
A = d e t ^ 9 S = an(Z22 ~ <*\2 (> °)« 
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When we change to the uv axes, the equation has the form 

where 

a l l ^ 2 + a 2 2 ^ 2 + a 3 3 = °> ( 2 ) 

^ = A. „» - a 3 3 i _ a 3 3 
a 33 6 9 a l l " a 2 ' a 22 " ~~JyT> 

The Invariant 5 can now be calculated from (2): 

2 

6 = a,1 ,a* -
'11 22 a2 &2

9 

Hence 

a* = 1 ^ 1 = |A|5-3/2. 

We use (2) again to calculate the invariant X\AX2I 

x[AX2 = ailWlw2 + a ^ ^ + a*3 = a»3(l - ̂ T - - ± ^ ) . 

Hence 

wl«2 ^1^2 , ^1^2 A SVTAV 

a2 b2 a * 3 A 1 2 

Making these changes in (l), we get the expression 

||A|S"~3/2Arccos (1 - ^XT
lAX2) 

for the required area* 

Also solved by J,T9 GROENMAN, Arnhem, The Netherlands? WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; and KES1RAJU SATYANARAYANA, Gagan Mahal Colony, Hy­
derabad , India. 

Editorfs comment. 

The other solvers showed in various ways how the required area could be calcu­

lated, but they did not in the end arrive at an explicit formula in terms of the 

given a . . and Pa. 
•A, A »»» 

89'-! 8 ri983: 3131 Proposed by Stanley Babinowitz3 Digital Equipment Corp>3 

Nashuay New Hampshire* 

(a) Find necessary and sufficient conditions on the complex numbers a5fc9o) so 

that the roots of 

z2 + 2az + b = 0 and 3 - <o = 0 

shall be colli near in the complex plane* 
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(b) Find necessary and sufficient conditions on the complex numbers a,b9c9d 

so that the roots of 

+ 2az + b = 0 and z2 + 2az + d = 0 

shall all be collinear in the complex plane. 

Solution by Walther Janousy Vrsulinengymnasium3 Innsbruck^ Austria, 

(a) The roots of the two equations are 

where Ai is (a fixed) one of the determinations of Ja^lb, They are col linear If 

and only if 

0) 03 1 

Zj Zi 1 

32 ^2 ! 

= 0, 

In terms of (i) s this last equation is found to be equivalent to 

(oo + a)Ai = (a) + a)Ai, 

or to the requirement that (co+a)Ai be real. 

(b) The roots of the second equation are 

o)i = -c + A2 and o)2 = -<? - A25 

where A2 is (a fixed) one of the determinations of Jc2-d. I t now follows from part 

(a) that zi>Z2>ti>is&2 a r e al l col l inear if and only i f 

" and (0)1 + a)Ai 

are both real, that is, if and only if 

(0)2 + a)Ai 

(a-c+A2)Ai and (a-c-A2)Ai 

are both real. 

Also solved by G.P. HENDERSON, Campbellcroft, Ontario? LEROY F. MEYERS, The 
Ohio State University; BASIL C, RENNIEf James Cook University of North Queensland, 
Australia? KESXRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India? and JORDAN 
B. TABOV, Sofia, Bulgaria, 

& * & 

8951 [1983: 3131 Proposed by J.T. Groenman, Arrihem3 The Netherlands. 

Let ABC be a triangle with sides a,b,e in the usual order and circum-

circle r. A line I through C meets the segment AB in D, r again in E9 and the 

perpendicular bisector of AB in F, Assume that a = 3b. 

(a) Construct the line I for which the length of DF is maximal. 
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(b) If DE has maximal length9 prove that DF = FE. 

(c) If DE has maximal length and also CD = DF9 find a in terms of b and the 

measure of angle A* 

I. Solution to part (a) by the proposer. 

Let AD = Xc.} where o < A < l; then DB = (l-X)c and Stewart's Theorem gives 

CD2-c = a2Xc + b2(l-X)c - X(±-X)c3, 

from which 

CD2 = a2X + b2(±-X) - c2X(l-X). 

Moreover, CD2»DE2 = AD2®DB2 = ekX2(l-X)2
3 so 

DE •2 _ ckx2a-x)2 

a2X + b2(±-X) - e2X(±-X) 

and i t suf f ices to maximize 

f m X2(l-X)2 

TK J " a2X + b2(±-X) - c2X(±-X)° 

It will be found that fl(X) = o is equivalent to X(X-l)g(X) = 0, where 

g(X) = a2A(3A~l) - b2(X-l )(3A-2 ) + ^2A(A-1) (2A-1). (1) 

Since /(A) n o and /(o) = /(l) = o3 the function attains its maximum value for some 

A c (0,1) for which g(X) = 0. 

For c2 = 3i>, (1) becomes 

^(A) = (3A-l)/z(A), 

where 

M A ) - a2A + 2fe2(A-l)(3A-l). 

It is clear that MX) > 0 if 0 < A < 1/3 ; and consideration of the minimum value of 

(A-l)(3A-l), which occurs when A= 2/3s shows that when 1/3 < A < 1 we have 

7 ,-x N a2 - 2b2 2b2 

MX) > g > -y- > o, 

since <* h = 2b ^ a. Thus 7z(A) vanishes for no A e (0,1) and hence the maximum value 

of /(A) occurs when A = 1/3, the only value for which g(X) vanishes. 

The point D and the line I are now easily constructed. 

II. Comment on part (b) by Gali Salvatore5 Perkins3 Quebec. 

It is known that DE has maximal length if and only if DF = FE (whether or not 

c = 3b). See Problem n o [1976: 84-88]5 where an analytic proof by H.G. Dworschak 

and a synthetic proof by Leo Sauve are given. Sauve also showed that the line I is 



- 62 -

not in general constructible by Euclidean means, although it may be in special cases 

(for example, when o = 3b). 

III. Solution to part (o) by Jordi Dou3 Barcelona, Spain. 

Let C be the foot of the altitude from C and Cx the midpoint of AB. If 

CD = DF, then CD = DCX = lb = A C , and so AC = CD. Since also AC = AD = b, tri­

angle ACD is equilateral and angle A = 60°. Now 

a2 = b2 + (3b)2 - 2b(3b) COS 60° = lb2, 

so a - Jib. 

Also solved by JORDI DOU, Barcelona, Spain (also parts (a) and (b)) ; KESIRAJU 
SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India (partial solution); D.J. SMEENK, 
Zaltbommel, The Netherlands; MALCOLM A. SMITH, Georgia Southern College, Statesboro; 
GEORGE TSINTSIFAS, Thessaloniki, Greece; and the proposer (also parts (b) and (c)). 

* * * 

896, [1983: 313] Proposed by Jack Garfunkel, Flushing, N.Y. 

Consider the inequalities 

„ . ?A ^ A !„ B-C 3 
Z sin2- > 1 - -ncos—- > ̂ , 

where the sum and product are cyclic over the angles A5B5C of a triangle. The ine­

quality between the second and third members is obvious, and that between the first 

and third members is well known. Prove the sharper inequality between the first 

two members. 

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria and the 

proposer (independently). 

The following identity is easily established (or see Hall and Knight's Elemen­

tary Trigonometry, p. 344, Ex. 68): 

Z sin2^ = l - 211 sin ̂ . 

Hence the inequality to be proved is equivalent to 

B-C A 
n cos—- > 811 sin^, 

an inequality already established in Crux 585 [1981: 303]. 

Also solved by LEON BANKOFF, Los Angeles, California; W.J. BLUNDON, Memorial 
University of Newfoundland; J.T. GROENMAN, Arnhem, The Netherlands; VEDULA N. MURTY, 
Pennsylvania State University, Capitol Campus; BOB PRIELIPP, University of Wisconsin-
Oshkosh; KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; and GEORGE 
TSINTSIFAS, Thessaloniki, Greece. 
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8971 C1983: 313] Proposed by Vedula N. Marty3 Pennsylvania State University3 

Capitol Campus. 

If A > y and a > b > o > 05 prove that 

,2X 2y 2A 2y 2A,2y ^ ,- ,A+y f ,A+y . , ,A+y 
£ c M + a a + a £ H > (fee) + (ea) + (at) , 

with equality just when a ~ b - c. 

Solution by Walther Janous3 Ursulinengymnasium3 Innsbruck3 Austria. 
2 A+2u 

If we divide throughout by a and set a = a/c, 3 = b/c9 the proposed ine­
quality is equivalent to 

/(a) = 3 + a -h a 3 - 3 H - a K - (aB) K > 03 a > B > 1. 

Differentiating^ we obtain 

where 

/'(a) - a2y V(a), 

Then 

where 

<7(a) = 2y + 2Xa
2X-2^2y - U+p)a

X~y - <A+y)a
X~V+y. 

£7'(a) = (A-y)a /2(a), 

/2(a) = 4AaX"y32y - (X+y)(l + 3 X + y)* 

Since A-y > 0 and a > 3 > 1, M a ) increases with a and so 

/2(a) > M B ) = 4ABX+y ~ (A+y)(l+3X+y) > 4A3A+y - (A+y)*2BX+y 

= 2(A-y)3X+y > 0. 

Thus ̂ f(a) > 09 and hence 

g(a) > g(3) = 2y + (A-y)32A - (A+y)3A~y = M B ) , 3 £ 1. 

Now 

AMP) = (A-y)3X_y~1{2A3A+y-(A+y)} > (A-y )3X"y_1{2A-(A+y)} = (X-y)2BX'y"1 > 0. 

Therefore MB) ^ /<(!) = 09 so ̂ (a) > 0, then /'(a) > 09 and finally 

/(a) > /(B) = 32X - 2BX+y + 32y = (3X-3y)2 > 09 

as required. 

Equality occurs just when a = 3 = 1* that is9 just when a - b - c. 

Also solved by KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; 
and the proposer. 
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Editor's comment. 

The proposer noted t h a t many i n t e r e s t i n g i n e q u a l i t i e s , some well-known and some 

no t , a r e equ iva len t to spec ia l cases of our problem. For example, X = 1 and y = o 

give 

a2 + b2 + o2 > bo + ca + ab\ 

\ = 1/2 and y = -1 /2 give 

£> o a ^ . 
- + - + =- > 3 
c a £? 

A = 3/2 and y = 1/2 give 

b2c(b-o) + c2a(c-a) + a2b(a-b) > 0, 

an inequality given at the 1983 International Mathematical Olympiad [1983: 207; 

1984: 73] ; and for good measure we give (why not?) 

-, 2TT 2e 2TT 2e 2*nv2e ,, N7r+£ / NTT+£ e , s7T+£ 
fee + <? a + a £> > (Z?c) + ( c a ) + ( a £ ) , 

which readers are invited to challenge their friends to prove directly (if they are 

not Crux subscribers). 

%t *{ ** 

898. [1983: 313] Proposed by S.C. Chan, Singapore. 

A fair coin is tossed n times. Let T be the number of times in the n 
n 

tosses that a tail is followed by a head. Find (a) the expectation of T , (b) the 
variance of T . 

n 
Solution by G.P. Henderson^ Campbellcroft3 Ontario. 

More generally, let the probability of a tail be p, where 0 < p < 1, and set 

x = o or l according as the rth toss is head or tail. We then have the expecta­

tions 

E(x ) = E(x2) = p 
r r 

and i f r * s9 s ince x and x a re independent , 
r s v 

E(x x ) = p2. 
r s r 

(a) Since 

n - l 
T = y x ( i - x )9 

n L
Ar r+1 

r~l 
we the re fo re have 

n - l 
E(T ) = y {tfOc ) - E(x x .)} = ( n - l ) ( p - p 2 ) , n = 1 , 2 , 3 , . . . . (1) 

n , r r r+± 
r~± 
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In particulars if the coin is fair then p = \ and 

n - 1 
E(T ) 

n 

(b) The required variance is 

Now 

Vartf ) = E(T2) - {E(T ) } 2 . (2 ) 
n n n 

T2 - (Zx - Zx x . )(Zx - Zx x ) 
n r r r+1 s s s+1 

— ZJ ZJ^O X Z. Li LiX X X T Li LiX X . X X , , 

r s r r+1 s r r+1 s s+1 

so to evaluate E(T2) we need 
n 

E(ZZx x ) = E( II x x ) + E(Zx2) = ( n - l ) ( n - 2 ) p 2 + ( n - l ) p , r s r^s r s r 

n-1 n-2 
EiZZx x Ax ) = E( I I Ax x ^x ) + E( Y ^2^c . ) + #( Y x x2 . ) r r+1 s r*s,s-l r r+1 s L

A r r+1 L
A r r+1 

r~l r-1 

= (n-2)2p3 + (2n-3)p 2
9 

and 

E(ZZX x xx ) = (n-2)(n-3)pL f + 2 (n -2 )p 3 + ( n - l ) p 2 . 
r r+1 s s+1 

E(T2) = (n2-5n+6)pLf - 2(n2-5n+6)p3 + (n2-6n+7)p2 + (n-l)p. (3) 

F i n a l l y s s u b s t i t u t i n g (3) and (1) in to (2) gives 

Var(T ) = ( n - l ) p ( l - p ) - (3n-5 ) p 2 ( l - p ) 2
9 n = 2 , 3 , 4 , . . . , 

and of course Var(^ i ) = o. In p a r t i c u l a r , i f p = \ then 9 for n = 2 , 3 , 4 , . . . , 

w /m \ n + 1 
Var(T ) = ———. 

n 16 

Also solved by CURTIS COOPER, Central Missouri State University at Warrensburg; 
RICHARD I. HESS, Rancho Palos Verdes, California; EDWIN M. KLEIN, University of 
Wisconsin-Whitewater; LEROY F. MEYERS, The Ohio State University; and BASIL C. 
RF.NNIE, James Cook University of North Queensland, Australia. 

Hence 

899 i L1983: 314] Proposed by Loren C, Larson3 St. Olaf College3 Northfield, 

Minnesota. 

Let {a.} and {b.}, i = i,2,...,rc, be two sequences of real numbers with the a. 

all positive. Prove that 

l a i , =0 => Y b .b . < 0. 
1s 1 1 1 
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Solution by Geng-zhe Chang3 University of Science and Technology 3 Hefei3 Anhui3 

People's Re-public of China. 

We weaken the condition a. > 0 to 

a. > 0 and Ea. > 0. (1) 

Fi rs t we note that 

Now 

la .b . 
X.a.b. = 0 => (la.)(lb.) = Ea 2>. => 22>. = -^LJL. 

(la.b .)2 (la2) (lb2.) 
.l.b.b . + Efĉ  = ( I K ) 2 - - T y M r o - * h—^9— ~ E& - ( 2 ) 

i*Q ^ Q J J (Ea. )2 (Ea. )2 j 

where the first inequality in (2) is due to that of Cauchy-Schwarz and the second 

follows from (l). Hence 

.Z3.fc. < 0, (3) 

as required. 

Equality holds throughout in (2), and hence in (3), if and only if either 

lb2. = 0 or 

a. = kb. and Ea? = (Ea.)2. (4) 
^ ^ ^ ^ 

But if all a. > o, as in the proposal, then the second condition (4) is never 

satisfied, and equality holds in (3) just when lb2 = 0, that is, just when each 
J 

b. = o. 
J 

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; G.P. HENDERSON, Camp-
bellcroft, Ontario; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS, 
Ursulinengymnasium, Innsbruck, Austria; EDWIN M. KLEIN, University of Wisconsin-
Whitewater; LEROY F. MEYERS, The Ohio State University; DONALD L. MUENCH, St. John 
Fisher College, Rochester, N.Y.; VEDULA N. MURTY, Pennsylvania State University, 
Capitol Campus; JORDAN B. TABOV, Sofia, Bulgaria; GEORGE TSINTSIFAS, Thessaloniki, 
Greece; KENNETH S. WILLIAMS, Carleton University, Ottawa; and the proposer. 

900. [1983: 314] Proposed by W.R. Utzy University of Texas at Austin. 

Show that there are an infinite number of sets of three integers in 

arithmetic progression such that the sum of the square of the first, twice the 

square of the second, and three times the square of the third is a square. 

Solution by Hayo Ahlburg3 Benidorm3 Alicante3 Spain. 

More generally, for a given positive integer t we find an infinite set of in­

teger solutions to the Diophantine equation 

(a+d)2 + 2(a+2d)2 + 3(a+3d)2 + ... + t(a^td)2 = (b + — ~^^d)2. (1) 
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Since 1 3 + 2 3 - K . . + £ 3 = £2(i+l)2A, it is seen from (l) that a = o if and only if 

b - 09 and one infinite set of integer solutions is given by 

(a9 b9 d) - (o, 09 d)9 d an arbitrary integer,. (2) 

For £ = 3, the infinite set {(d92d93d)\d any integer} therefore completely satisfies 

the very modest requirements of the proposal. 

We will go further. We set t = 3 in (l) and completely solve the resulting 
equation 

(a+d)1 + 2(a+2<f)2 + 3(a+3d)2 = (&+6d)2, (3) 

In view of (2), we have left to find only the solutions for which ab * o. 
Accordingly, let (a9b9d) be an integer solution of (3) with ab * o. Expanding 

the squares in (3) shows9 first, that b is even, say b = 2b!; then that a is even, 
say a = 2a1; and finally that 2/ is even, say bl - 2bn« Equation (3) then turns out 

to be equivalent to 

3a'2 - 22?"2 - (62>" - la1 )d. (4) 

Since 3at2-2bu2 * 0 (otherwise /372 would be rational), it follows from (Li) that 

there are uniquely determined relatively prime nonzero integers m and n9 with n > 09 

such that 

V%__ _m_ 7 
a n 6 

Now ( 4 ) i s e q u i v a l e n t t o (3n2-2m2)al = n(6m-7n)d9 o r , s i n c e a ~ 2a\ t o 

( 3 n 2 - 2m2)a = 2n(6777 - 7n )d 9 

or» s i n c e 2? =42?" = H(m/n)al = 2{m/n)a9 t o 

( 3 n 2 - 2w2)2? = 4-m(677? - 7 n ) d e 

Thus 

— = — = —•=• r- = - , s a y , ( 5 ) 
2n(6m~7n) Hm(6m-7n) 3nz-2mz s 

where & is the greatest common divisor of 2n(6m-7n)9 ^m(6m-7n)9 and 3n2-2m2
9 and 

the nonzero integer r is then uniquely determined by (5). Therefore 

(a, 2?, d) = {2n(6m-7n)*-9 ^m(6m-7n)^-9 (3n2-2m2 )•-), (6) 
5 S S 

where m9n9r9s are all uniquely determined nonzero integers. 

At the risk of obganiating [1], we repeat that in (6) the integers m9n9v9s 
have the following properties: each is nonzero; m and n are relatively prime3 n > Q3 

and m/n * 7/6; and s is the greatest common divisor of 2n(6m-7n)3 ^m(6m~7n), and 

3n2-2m2« 
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Conversely, let m9n9r9s be any four integers satisfying the italicized con­

ditions. (Since s is uniquely determined by m and n, there are only three inde­

pendent parameters: m, n9 and r.) If we substitute from (6) into (3), we obtain 

2 2 2 
{(-2m2+12mri-±ln2)*-} + 2{( -^m2+12rrm-8n2 ) • - } + 3{ (-&n2+12mn-5n2 ) • - } 

s s s 

r> 2 
= {( 12/772-28wn+18n2)»-} , 

s 

and i t is easi ly ve r i f i ed that th is equation is true for a l l allowable values of m9 

n , r . 

The complete solut ion of (3) therefore consists of the one-parameter family (2) 

and the three-parameter family ( 6 ) ; and the one-parameter family can be subsumed 

in to the three-parameter family by allowing r = 0, and allowing m/n - 7/6 for a l l r. 

We end with a few examples of one-parameter fami l ies of so lu t ions. 

77? 

1 

7 

5 

6 

8 

9 

-9 

n 

1 

6 

4 

5 

7 

8 

i 8 

s 

1 

10 

2 

1 

1 

2 

10 

(_ P )2 

ir)2 

( 7 r ) 2 

( 1 3 r ) 2 

( 5 P ) 2 

( - r ) 2 

( - 1 7 3 p ) 2 

+ 2 ( 0 ) 2 

+ 2 ( 2 p ) 2 

+ 2 ( 6 r ) 2 

-l- 2 ( 1 6 r ) 2 

+ 2 ( 2 4 r ) 2 

+ 2 ( 1 4 r ) 2 

+ 2( -170i>) 2 

+ 3 ( p ) 2 

+ 3 ( 3 r ) 2 

+ 3 ( 5 r ) 2 

+ 3 ( 1 9 r ) 2 

+ 3 ( 4 3 r ) 2 

+ 3 ( 2 9 r ) 2 

+ 3 ( - 1 6 7 p ) 2 

= (2r)2) 

= ( 6 p ) 2 f 

= ( 1 4 r ) 2 

= ( 4 2 r ) 2 

= ( 8 2 r ) 2 

= ( 5 4 r ) 2 

= ( W P ) 2 

There were 23 other solvers including the proposer (names omitted for lack of 
space). 

Editor's comment. 

The proposer noted that this problem generalizes one of Gregory Wulczyn [2]. 

If ever a problem cried out for a complete solution this one did. Yet fifteen of the 

other solvers, perhaps on the grounds that problems should be seen and not heard, 

gave only one or both of the trivial solutions (7). 
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