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THE OLYMPIAD CORNER: 62

M.S. KLAMKIN

I give one new problem set this month. It consists of 25 problems proposed
(but unused) by various participating countries in past International Mathematics
Olympiads. I will extend this list in forthcoming columns. As usual, T solicit
from all readers elegant solutions to these problems with, if possible, extensions

or generalizations.

1, Proposed by Australia.

A total of 1983 cities are served by ten airlines. There is direct ser-
vice (without stopovers) between any two cities and all airline schedules run both
ways. Prove that at least one of the airlines can offer a round trip with an odd
number of landings.

? . Proposed by Australia and the U.S.A. (independently).
The altitude from a vertex of a given tetrahedron intersects the opposite
face in its orthocenter. Prove that all four altitudes of the tetrahedron are con-
current,

3, Proposed by Brazil.
Which of the numbers 1, 2, .,., 1983 have the Targest number of positive

divisors?

i,  Proposed by Canada.
Find all possible finite sequences {ng, ny, ..., nk} of integers such that,
for each © = 0,1,..,,k, 7 appears in the sequence 7 times.

5, Proposed by Canada.
Let ag = 0 and
a, .4 = k(an+1) + (k+1)an + 2/k(k+1)an(an+1), 7= 0,1,2,.0.,

where k is a positive integer, Prove that a, is a positive integer for » = 1,2,3,...

6, Proposed by Cuba,
Show that there exist infinitely many sets of 1983 consecutive positive
integers each of which is divisible by some number of the form ql983, where q # 1 is
a positive integen.

/. Proposed by Finland.
Let » and ¢ be integers, with & > 0, Show that there exists an interval I
of length 1/s and a polynomial P(x) with integral coefficients such that, for all

x e T,



- 37 -

1
[P(z) - §1 < =

&, Proposed by Finland.
Let F: [0,11 » F be a continuous function satisfying

=

2

;F(?x) = bF(x), 0 <x <

Nl

Flx)

1

b + (1-b)F(2x-1),

< x <

[N

where b = (1+e¢)/(2+c) and ¢ > 0. Prove that 0 < F(x)-x < ¢ for all = ¢ (0,1).

9, Proposed by the German Democratic Republic,
Let Py, Py, ..., P be n distinct points in a plane, Prove that

max ETE.:>——(n—1) min P.P..
1<i<j<n © Y 1<i<i<n
10, Proposed by Great Britain.
If the sides a,b,ec of a triangle satisfy

20be? + ca? + ab?) = b2e + c2a + a?b + 3abe,

prove that the triangle is equilateral. Prove also that the equation can be satis-
fied by positive real numbers that are not the sides of a triangle.

11, Proposed by Great Britain.
Prove that there is a unique infinite sequence {ug,uj,us,...} of positive
integers such that, for all n > 0,

n
ui B on(n;r)un—r'
12, Proposed by Israel.
For a given set X of 1983 members there exists a family of subsets
{Sl,Sz,...,Sk} such that
(i) the union of any three of these subsets is the entire set X, and
(i) the union of any two of these subsets contains at most 1979 members,

Determine the largest possible value of k.

13, Proposed by Israel.

There are 1983 points on a given circle, and each is given one of the
affixes *1, Prove that, if the number of points with the affix +1 is greater than
1789, then at Teast 1207 of the points have the property that the partial sums that
can be formed by summing their own affix and those of their consecutive neighbors
on the circle up to any other point, in either direction on the circle, are all
strictly positive,
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14, Proposed by Mongolia.

Show that there exist distinct natural numbers M1sN2 5. e ety such that
N N T X
"y no nk

15, Proposed by Mongolia.
The set {1,2,...,49} is partitioned into three subsets. Show that at
least one of the subsets contains three different numbers a,b,ec such that a+b = c.

16, Proposed by The Netherlands.
Prove that in any parallelepiped the sum of the lengths of the edges does
not exceed twice the sum of the lengths of the four principal diagonals.

17, Proposed by Poland.

Given nonnegative real numbers LT 00 5Ty and positive integers k,m,n
such that km < »n, prove that
k m k n
n{ Mz, -1} <m ) (o, - 1).
. 7 o 7
1=1 1=1

18, Proposed by Romania.
A polynomial P(x) of degree 990 satisfies

P(k) = Fy s k = 992,993,...,1982,
where {Fk} is the Fibonacci sequence, defined by

Fp =F2 =1, Pt = Fy Fn—l’

Prove that P(1983) = Fi9g3 - 1.

19, Proposed by Sweden.
Let a and b be integers. Is it possible to find integers p and g such
that the integers p+na and g+nb are relatively prime for any integer »n?

20, Proposed by Sweden.
AB is the diameter of a circle y with center 0. A segment BD is bisected
by the point C on vy, and AC and DO intersect at P. Prove that there is a point E
on AB such that P 1ies on the circle with diameter AE.

21, Proposed by the U.S.A.
The sum of all the face angles at all but one of the vertices of a given
simple polyhedron is 5160 . Find the sum of all the face angles of the polyhedron.

72?7, Proposed by the U.S.A.
Determine all pairs (a,b) of positive real numbers with a # 1 such that
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1ogab < 1oga+1(b+1).

2%, Proposed by the U.S.S.R.
A tetrahedron is inscribed in a unit sphere. The tetrahedron is such
that the center of the sphere lies in its interior. Show that the sum of the edge
lengths of the tetrahedron exceeds 6.

24, Proposed by the U.5.5.R.
The proper divisors of the natural number » are arranged in incrcasing
order, x; < x, < ... < &g, Find all numbers »n such that

2 2 -
rg + g 1 =n.

25, Proposed by the U.S.S.R.
A triangle T, is constructed with the medians of a right triangle 7. If
Ry and R are the circumradii of 7; and T, respectively, prove that Ry > SR/6.

0
@

I now give comments and solutions to various problems from earlier columns.

17, T1981: 175 1984: 1457 From a 1973 Moscow Olympiad.

Twelve painters 1ive in 12 houses which are built along a circular street
and are painted some white, some blue. Each month one of the painters, taking with
him enough white and blue paint, Teaves his house and walks along the road in the
clockwise sense. On the way, he repaints every house (starting with his own) the
opposite colour. He stops work as soon as he repaints some white house blue. In a
year, each painter undertakes such a journey exactly once. Show that at the end of
a year each house will be painted its original colour, provided that at the begin-
ning of the year at least one house was painted blue.

11. Comment by Leroy F. Meyers, The Ohio State University.

This problem is equivalent to Problem 705 [1982: 3251. In particular, my solu-
tion to No. 705 showed that there are always exactly two complete circuits, a fact
that was not brought out explicitly in the original solution to the present problem.

ofs
o

H-2, r1981: 11u; 1984: 1u87 From Kozépiskolal Matematikai Lapok 60 (1979) 140,
Let n be a positive integer. As a first step, we have given the sequence
{a1s ass ouus ak}, where x = 2" and each a; is 1 or -1. As a second step, we form
the new sequence {ajay, asas, ..., aya } and continue to repeat this process to
generate new sequences, Show that, by at most the 2"th iterated step, we arrive at

a constant sequence with every term equal to 1.
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11. Comment by Leroy F. Meyers, The Ohio State University.

This problem is really Ducci's problem in disqguise. See my note "Ducci's Four-
Number Problem: A Short Bibliography" [1982: 262-2661. For a proof that the coef-
ficients of (x+y)m are all odd when m = 2”-1, see my solution to Problem 90 [1982:
2797 or the earlier solution in [1976: 3u7,

2,
«

AL, [1983: 1381 From the 1983 Netherlands Invitational Mathematics Fxamination.
What is the smallest amount, in cents, that cannot be made up with at most
ten of the coins of denominations 1¢, 5¢, 10¢, 25¢, 50¢, and 100¢?

Comment by E. Frederick Lang, M.D., Grosse Pointe, Michigan.

No solution was provided for this problem, but the answer given [1983: 1421 was
4ut, I gave the problem to my grandson Christopher D. Lang, who is 15 years old a .
attends Athens High School in Troy, Michigan. He found that the correct answer is
394,

Yo
w

F,?2415, [1983: 237; 198u4: 1501 From Kozépiskolai Matematikai Lapok (March
1983),
Choose 400 different points inside a unit cube. Show that 4 of these points
1ie inside some sphere of radius u4/23.

I1. Solution by Fred Galvin, University of Kansas.

The elegant solution given earlier showed that 376 points suffice. We show,
less elegantly but more efficiently, that 321 points suffice.

Let n and k be positive integers, let r be a positive real number, and suppose
there are »n points Xl,Xz,...,Xn in the unit cube such that no k+1 of them belong to
a ball of radius ». Let B, be the ball of radius » centered at Xi and

B =By UByuU ... U Bn.

No point belongs to k+1 of the B,'s. For if, say, P belonged to B1MB2N...NBy 4>
then X1,X2,...,Xk+1 would all belong to the ball of radius » centered at P, contra-
dicting the hypothesis. Hence, with the bars denoting volume, we have

kKIBl = |By] + IBo]l + ... + !Bni’
that is,

430
IB| = Fr T (1)

On the other hand, since B is contained in the "rounded cube" consisting of all
points at distance at most r from the unit cube, we have
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Bl <1 + 67 + 3mr2 + %wr3. (2)
Thus, combining (1) and (2) gives

3 : _9 N 9
LYyp3 272 Ly

n < k(

For ¥ = 3 and » = 0.1739, we get »n < 320.,0988..., so for 321 points inside a unit
cube, 4 of them will 1ie inside some sphere of radius 0,1739 < L4/23,

3

w®

1, T1984: u0l From the 1983 Brazilian Mathematical Olympiad.
Show that the equation

has a finite number of solutions, where x,y,z are natural numbers.

Solution by K.S. Murray, Brooklyn, N.Y.

We may assume that x <y < z in any solution (x,y,z). Thus 3/x = 1/1983, so
x < 31983 and the number of possibilities for x is finite. Then, for each possible
value of =, it is seen from

2

1
Y = (171983)-(1/z)°

1983

=

1
- 5, or

i

that the number of possibilities for y is also finite. Finally, for each possible
(x,y), the equation gives only one possible value of z. [

The above solution clearly indicates how an inductive proof would go for the
following more general theorem:

For every rational w and every positive integer s the equation

1 1 1
— +t ==+ .. t = =W
X1 Xo .’L‘S

has a finite number = 0 of solutions in positive integers Lol 5nee 5T o
In fact, this theorem appears, with a complete proof by induction on s, on

pages 85-86 of W. Sierpifiski's 250 Problems in Elementary Number Theory (American

Elsevier, New York, 1970).

3.

®

2., 11984: 401 From the 1983 Brazilian Mathematical Olympiad.
Triangle ABC is equilateral and has side a. Squares BCPQ, CAMN, and ABRS
are constructed, and they are the bases of three square pyramids with vertices Vi,
Vo, V3, all the edges being of length a. The pyramids are rotated about BC, CA,
and AB until V;,V,,V3 all coincide. Show that, after the rotations, MNPQRS is a

regular hexagon,
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Solution by K.S. Murray, Brooklyn, N.Y.

It is clear that after the rotation, when V;,V,,V3 occupy the common position V,
the points M,N,P,Q,R,S are all coplanar. We show that then the hexagon MNPQRS is
parallel to ABC and contains V. For convenience, let a = 2. It follows easily that
the altitudes of V-ABC and V,-BCPQ are 2/2/3 and v2, respectively. Now let D,E,F,G
be the centroids of ABC, BC, BCPQ, and PQ, respectively, and et 6 be the angle of
rotation of BCPQ about BC that brings V; into coincidence with V. We have the
following configurations:

A
P
B “F C
oF
Q S P After the rotation

In order for V; to coincide with V, the following equations must be satisfied:

1

7§-+cose = V/2sineo, (1)
sin® + /2cos 0 = 2/2/3, (2)

And if G is to be at the same height as V, we must have
2sin® = 2/2/3, (3)

It follows easily that (3) satisfies both (1) and (2).
The rest follows by the symmetry of the confiquration MNPQRS with center V.

3, [1984: 401 From the 1983 Brazilian Mathematical Olympiad.

Show that 1 + % + o+ % is not an integer for any natural number n > 2,

Comment by M.S.K,

This 1s a known problem. For example, see Problem 85, pages 21 and 155, in the
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highly recommended book Selected Problems and Theorems in Elementary Mathematics,
by D.0. Shklyarsky, N.N. Chentsov, and I.M. Yaglom, Mir Publishers, Moscow, 1979.
(The book can be obtained (in English) through Imported Publications, Inc., 320
West Ohio Street, Chicago, I1linois 60610,)

For n > 2, there is always a positive integer m such that 2" < n < 2m+1.
bining the fractions using the least common denominator, which must be of the form
"k with k odd, we obtain

Com-

eve .
sum = ltevenno.

"k
which cannot be an integer.

It is also known more generally that if @ and 4 are positive integers, then

+ L b1
awd T o0 a+(n-1)d

Qi

is never an integer except in the trivial case a =n =1,

L, T1984: 401 From the 1983 Brazilian Mathematical Olympiad.
Show that all the points of a circle can be coloured, each with one of two

colours, in such a way that no inscribed right triangle has its three vertices all

of the same colour.

Solution by Paul Wagner, Chicago, Illinois,
Just colour any point and its diametrically opposite point with different

colours,

Rider by M,S.K.
Determine whether or not it is possible to two-colour a circle in such a way
that the three vertices of any inscribed angle of measure 360 /k are all of the same

colour, where k¥ > 2 is an integer,

K, [1984: 401 From the 1983 Brazilianm Mathematical Olympiad,
(a) Prove that 1 <™/ < 2 for every natural number »n > 1,
(b)Y Find the smallest real number k such that 1 < "/ <k for every natural

number n > 1.

Solution by Gali Salvatore, Perkins, Québec.

(b) Let f(x) = */xr. The following facts about this function are known and
easy to prove by calculus (see [17, or see the graph of the function in [21): f(x)
is strictly increasing for 0 < a2 < e, has an absolute maximum at x = e, is strictly

decreasing for x > e, and approaches 1 as x -~ «, Since 2 < e < 3, we therefore have
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1< ™n <k for n = 3,4,5,... when ¥ = ¥3, and no smaller k will do. Since also
f(2) = f(u) and f(1) = 1, it follows that 1 < "/n < k holds for every natural number
n when k = V@, and no smaller % will do.

(a) This follows from 7 < n+1 < (1+1)°, or from part (b) since ¥3 < 2.

REFERENCES

1. Problem 55 (proposed by Louis Rotando, solution by Robert Plummer), The
Two-Year College Mathematics Journal, 8 (1977) 97.

2. R. Arthur Knoebel, "Exponentials Reiterated", American Mathematical Monthly,
88 (1981) 235-252, esp., p. 236.

6, [1984: 40T From the 1983 Brazilian Mathematical Olympiad.

A sphere being given, show that the largest number of spheres congruent to
and tangent to the given sphere, no two of which have any interior point in common,
1s at Teast 12 and at most 14.

Try to refine this estimate.

Solution by Angelo N. Barone, University of Sao Paulo.

Let A;,A5,...,Ag be the consecutive vertices of a regular hexagon with side 2r
and center 0. We Took at the regular tetrahedra OA;A,A;, OA3A,Ag, and OAgAgAg,
where A;,Ag,Aq 1ie on the same side of the plane of the hexagon. We also look at
the reqgular tetrahedra 0A;AsA;q, OA3ALA;;, and OAsAgA;,, where A q,A;;,A;, Tie on
the other side of the plane of the hexagon. A1l the edges of the polyhedron
AA5...A;, have length 2r and the distance from O to each of its vertices is 2r,
Therefore the 12 spheres with centers Ai and radius r are tangent to the sphere with
center 0 and radius r. This shows that the number we are Tooking for is at least 12.

We now consider two externally tangent congruent spheres of radius r and the
cone tangent to one of them whose vertex is the centre of the other. The angle at
the vertex of an axial section of the cone measures 7m/3. The cone determines on
the central sphere (i.e., the one with the vertex of the cone at its center) a spher-
ical cap whose

height = »(1 - %?) and area = 2mr2(1 - %?).

It is easy to verify that 15 times this area is strictly larger than the area of the
sphere. Therefore the number we are looking for is at most 1u.

Comment by M.S.K.
For a refinement of the estimate "at least 12 and at most 14" and for further
comments, see Problem 826 in this 1issue.

P
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Gy, 2147, r1984: 751 From Kozépiskolai Matematikai Lapok 67 (1983) 80,

A 12x12 chessboard has alternating black and white squares. In
one operation, every square in a single row (or column) is repainted the opposite
colour (white squares repainted black and black ones white). The operation is then
repeated on another row (or column). Is it possible that, after a certain number
of operations, all the squares on the chesshoard are black?

Unsigned solution.

e assume that the rows and columns are numbered consecutively from top to
bottom and left to right, respectively, and that the chessboard is oriented so that
the top Teft square is white., Then all the squares will end up black if we first
perform the operation on rows 1,3,5,7,9,11 and then on columns 2,4,6,8,10,12,

Rider by M.S.K.
What are all the possible numbers of black squares that one can obtain?

o
o«

Gy, 7?1473, [1984: 751 From Kozépiskolai Matematikai Lapok 67 (1983) 80.

A word is any sequence of letters, Starting with the word 4B, new
words are formed by the repeated use of the following rules in any order of suc-
cession:

(i) If a word ends in B, add C at the end,
(ii) 7Tf a word begins with 4, double the word that follows the initial 4 (e.g.,
ARC -~ ARCRC).
(i1i) If a word contains three consecutive letters B, replace them by a single C.
(iv) Omit two consecutive Tetters ¢ if they occur anywhere in a word,
Consider all the words formed in this way. Does the word AC figure among them?

Comment by John Morvay, Dallas, Texas.

This problem is {dentical (except for notation) with the MyU-puzzle presented
in Chapter I of Douglas R. Hofstadter's Godel, Escher, Bach (Basic Books, New York,
1979), Later, in Chapter IX, Hofstadter shows that the B-count of a word (the num-
ber of times B occurs in 1t) can never be a multiple of 3. In particular, the
R-count of a word cannot be zepo, so AC is not a word in the system, Hofstadter's
argument goes as follows:

1, The B-count begins at 1 (not a multiple of 3).

2, Rules (i) and (iv) leave the B-count of any word unchanged,

3., Rules (ii) and (iif) affect the B-count of a word in such a way as never to

create a multiple of 3 unless given one initially.

ol
o
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Gy, 2144, [1984: 751 From Kopépiskolai Matematikai Lapok 67 (1983) 80.
Determine all natural numbers » such that 27 - 1 equals the square
or higher inteqgral power of a natural number.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh.
The property clearly holds for » = 1. We show that it holds for no other
natural number n. Suppose, on the contrary, that

Moo= g, (1)

where »n,x,%k are natural numbers and » > 2, k¥ > 2. Clearly x is odd. If k is even,
then the right side of (1) is congruent to 1 modulo 4 while the left side is con-
gruent to -1 modulo 4: contradiction. For odd k%, rewrite (1) in the equivalent
form

2”=xk+1 =(x+1)(xk—1 -xk'2+ vee - + 1),

The second factor on the right divides 2" and it 1s odd since it has an odd number
of odd addends. Hence this factor equals 1, so =% +1and k = 1: contradiction.

k3

Gy, 2145, [1984: 751 From Koaépiskolai Matematikai Lapok 67 (1983) 80,
Solve the following system of equations:

3 +y3 + 2% =8,

2 + y2 + 32 = 22,

i
-+
l
-+
0|
1
i

Solution by Glen E. Mills, Pensacola Junior College, Florida.
The last equation is equivalent to

(z + 2)X=z +y) =0, xyz # 0,

We find all the complex solutions for which z = -y, The solutions for which z = -
can then be obtained from these by permuting the values of x and y.
If z = -y, the first equation gives =3 = 8, so

x = 2 or 2w or 2w?,
where «w is a primitive cube root of unity. Then the second equation gives corre-
spondingly

y2 = 9 or 11-202 or 11-2w,
so

y = £3 or +/11-202 oy +/11-20.
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Thus the possible solutions are

(x, ¥, 8) = (2, 3, ¥3) or (20, +/11-202, F/11-202) or (202, +/11-20, 7/11-20),

with similarly placed signs corresponding. Conversely, it is easily verified that
all of these are in fact solutions of the system.

F, 2434, T[1984: 751 From Kdzépiskolai Matematikai Lapok 67 (1983) 80.
Prove that the equation

23 + bx? + 6 +e =0
cannot have three distinct real roots for any real number c.

Solution by Glen E., Mills, Pensacola Junior College, Florida.

For any real ¢, P(x) = 3 + ux? + 6z + ¢ is a real polynomial function of de-
gree 3, and P'(x) = 3x2 + 8¢ + 6 > 0 for all real xz. Hence P(x) is strictly in-
creasing for all x and therefore has exactly one real zero for any real number c.

F, 2U35, T[1984: 761 From Kzépiskolai Matematikai Lapok 67 (1983) 80.

Let v be a circle with centre 0. Show that, of all the triangles ABC
with incircle vy, it is the equilateral triangle for which the sum 0A2 + OBZ + 0C2 is

minimal.

Solution by M.S.K.
If » is the fixed inradius, then

0AZ + 0BZ + 0C2 = »2(csc?) +csc2s + cscly).

Tt is a known inequality that Tcsc2(A/2) > 12 with equality just when ABC is equi-
lateral. For a proof, first note that cscax is convex for x ¢ (0,m). Thus

A+B+C _
= =

A B
CSC = + €CSC % + €CSC = = 3CSC 6,

¢
2 2 2

with equality just when A =B = C. Then, by the power mean inequality,

C | B
csc25 + csczg + csc?= csc A + CSC = + CSC =
2 2 2.5 2 2 2)2 -

>

3 3

1292, and this is attained just when ABC is equilateral,

ofa
o

Whence min (NAZ2+0B2+0C2)

1

F, ?U3R, Tr1984: 767 From Kozépiskolai Matematikai Lapok €7 (1983) 80.

Prove that, for natural numbers »n > 1,
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Solution by Gali Salvatore, Perkins, Québec.
Let R(n) denote the expression on the left side of the proposed inequality.

For n > 1, we have

— 1 n n2 n3
( = o - —_ — —
R(n) = vn =t ‘V{L +"/iq + o + ...

a, = ‘Ji + \/ﬁ + \/1 +oo.+ /1 (n+1 radicals).

< Ynea ,
n

where

It is well known and easy to show (or see Problem 8 [1975: 197) that the sequence
{an} is strictly increasing and converges to the golden ratio g = (1+/5)/2. The
inequality R(n) < n therefore holds whenever gvn < n, or n > g2~ 2.618, that is,
for all n > 3. Furthermore, R(2) = V3 < 2., Therefore R(n) < n holds for all n > 1.

ofa
o

F, 2477, T198u: 761 From Kozépiskolai Matematikai Lapok 67 (1983) 80.
Fvery point in space is coloured either red or blue. Prove that
there is a unit square with four blue vertices, or else there is one with at least
three red vertices.

Solution by John Morvay, Dallas, Texas.

If there are no red points, then all unit squares have four blue vertices. If
there is a red point Ry such that no red point is at unit distance from R;, then R;
is the center of a sphere of unit radius all of whose points are blue, and there are
then infinitely many unit squares with four blue vertices. Finally, suppose there
is a red point R; and a red point R, at unit distance from R;, and let R;R, be a
lateral edge of a triangular prism with equilateral bases and square faces. The
face opposite RjR, either is a unit square with four blue vertices, or else it has
a red vertex Pz, and then Ry,R,,R3 are three red vertices of a unit square,

Yo
o

-, PUZ28, T1984: 767 From Kozépiskolai Matematikai Lapok €7 (1983) 80.
Prawing the diagonals of a convex quadrilateral, we find that, among
the four triangles thus formed, three are similar to one another but not similar to
the fourth. Ts it true that then one of the acute anqgles of the fourth triangle is

twice as large as an angle of the other triangles?
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Solution by M.S.X,

No. Just consider the adjoining figure,
where three of the triangles have acute angles
30° and 60°, while the fourth has acute

. V3
angles approximately 79°06' and 10 54", 28

3 3V3 ™
Editor's note. All communications about

this column should be sent to Professor M.S.
Klemkin, Department of Mathematics, Univer-

sity of Alberta, Edmonton, Alberta, Canada =
T6G 2Gl.
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PROBLEMS--PRORLEMES

Problem proposals and solutions should be sent to the editor, whose address
appears on the front page of this issue. Proposals should, whenever possihle, he
accomranied by a solution, references, and other insichts which are likely to be of
help to the editor. An asterisk (*) after a number indicates a problem submitted
without a solution.

Original problems are particularly sought. But other interesting problems may
also be acceptable provided they are not too well known and references are given as
to their provenance. Ordinarily, if the originator of a problem can be located, it
should not be submitted by somebody else without his permission.

To facilitate their consideration, your solutions, typewritten or neatly hand-
written on signed, separate sheets, should preferably be mailed to the editor before
September 1, 1985, althouch solutions received after that date will also be considered
until the time when a solution 1s published.

1011, Proposed by Charles W. Trigg, San Diego, Califormia.

In base six, find a nine~digit square of the form AAAAAAXYZ, given that

it is the square of a number whose central triad is XYZ.

1012, Proposed by G.P. Henderson, Campbelleroft, Ontarto,

An amateur winemaker is siphoning wine from a carboy. To speed up the
process, he tilts the carboy to raise the level of the wine. Naturally, he wants to
maximize the height, #, of the surface of the Tiquid above the table on which the
carboy rests., The carboy is actually a circular cylinder, but we will only assume
that its base is the interjor of a smooth closed convex curve, ¢, and that the
generators are perpendicular to the base, P is a point on ¢, 7 is the line tangent
to ¢ at P, and the cylinder is rotated about 7.

(a) Prove that m is a maximum when the centroid of the surface of the Tiquid
is vertically above 7.

(b)Y Let the volume of the wine be y and let the area inside ¢ be 4. Assume
that v > Aw/2, where ¥ is the maximum width of ¢ (i.e., the maximum distance between
parallel tangents), Obtain an explicit formula for ¥, ,, the maximum value of Z. How

M!
should P be chosen to maximize NM?
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1013, Proposed by Hidetosi Fukagawa, Yokosuka High School, Tokai City, Aichi,
Japarn.

This problem is about "Malfatti" squares, named A

by analogy with Malfatti circles. The concept is

illustrated in the adjoining figure.
(a) Given a triangle ABC, show how to construct -

its three Malfatti squares. b
(b) The Malfatti squares problem. CGiven the /

sides a,b,c of a triangle, calculate the sides x,y,z

of its Malfatti squares. R - c

(c) The reverse Malfatti squares problem. Given

the sides x,y,z of the Malfatti squares of a triangle, calculate the sides a,b,c of
the triangle.

]O]}Jf Proposed by Shmuel Avital, Technion-Israel Institute of Technology.
Haifa, Israel.

The points Ay,A,,A3,... are chosen, by the familiar
construction illustrated in the figure, in such a way that
0A = M, n o= 1,2,3,...

(a) What is the nature of the smooth spiral that
passes through A;,A>,A3,...7

(b) Find, in terms of n, an explicit formula for the
measure of the rotation that ray 0A; must undergo to bring

it into coincidence with ray OAn.

1015, Proposed by Yang Lu, China University of Seience and Technology, Hefet,
Anhui, People's Republie of China.
Let A;A,A3A, be a convex quadrilateral, let a;s denote the length of segment
AiA' (7, = 1,2,3,4), and let Ry,R,,R3,R, be the circumradii of triangles A,A3A,,

A3A‘+A1’ AHAIAZ’ and A1A2A3, Pespective'ly. Prove that
(R1Rp+R3Ry )aysasy + (RiRytRoR3)aiyass = (R1F3+RoRy)aysasy. (1)

(This is anextension of Ptolemy's Theorem, for if A1A2A3Ay is cyclic, then
Ry = Rp = F3 = Ry, and (1) 1is equiva1ent to aijosazy + ajyassy = algazq.)

101K, Froposed by Andrew P. Guinand, Trent University, Peterborough, Ontario.
(a) Show that, for the triangle with angles 120°, 30°, 30°, the nine-
point centre Ties on the circumcircle,
(b) Characterize all the triangles for which the nine-point centre lies on
the circumcircle.
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1017, Proposed by Allan Wn. Johnson Jr., Washingtom, D.C.
If the fiqure on the left is a pandiaqonal maqgic square, then so is the
fiqure on the right.

A R c| D A B} N | M
E|F | G| H FlF | J T
I|J| K| L F| G| K| L
My N| O} P D| C| O}|P

BRoth fiqures are arrangements of the same 16 arbitrary numbers 4,B,C,...,P,
and both have 4 in the upper left corner cell. Enumerate all the ways the arbitrary
A,R,Cy...,P can be arranged to form pandiagonal magic squares in which 4 is fixed

as shown.

1018, Proposed by Kurt Schiffler, Schorndorf, Federal Republic of Germany.
Let ABC be a triangle with incentre I. Prove that the Euler lines of
triangles IRC, ICA, IAB, and ABC are all concurrent.

1019, Proposed by Weixuan Li and Fdward T.H. Wang, Wilfrid Laurier University,
Waterloo, Ontario.
Determine the largest constant k such that the inequality

x < asinx + (1-a) tanx

holds for all a < k and for all = ¢ [0, w/2).
(The inequality obtained when o is replaced by 2/3 is the Snell-Huygens ine-
quality, which is fully discussed in Problem 115 [1976: 98-99, 111-113, 137-1387.)

1020, Proposed by J.T. Groenman, Arnhem, The Netherlonds.
Solve, for x ¢ [0, 2m), the equation

176 cos & + B4 Sinx = 75¢0S 2x + 80sin2x + 101.

ofa
ES w

SOLNTIONS

No problem is ever permanently closed. The editor will always be pleased to
consider for publication new solutions or new insights on past problems.

9?6, 11983: 791 Proposed by Kent D. Roklan, student, Massachusetts Institute
of Technology.
Tt is a well-~known consequence of the pigecnhole principle that, if six circles
in the plane have a point in common, then one of the circles must entirely contain

a radius of another.
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Suppose n spherical balls have a point in common, What is the smallest value
of n for which it can be said that one ball must entirely contain a radius of

another?

I. Comment by M.S. Klamkin and A. Meir, University of Alberta.

Let P denote the common point and let Cr (r = 1,2,...,n) be the respective
centers of the balls, In order that one ball entirely contain a radius of another
ball, at Teast one of the angles C.PC, (j # k) must not exceed 60°, In the planar
case, since the sum of the six angles between consecutive rays PCP s 3600, the
desired result follows immediately by the pigeonhole principle (see Problem 2
r1984: 85-861).

The spherical case considered here has a long history. It is a special case
of the following more general space problem treated by L. Fejes Toth in 1943 [17:
Given n points on a unit sphere, determine the maximum of the least distance dn

between any two of the points. He proved that

a 2 nm
dn < \,u csc 5n=2) D . (1)

There is equality for the cases n = 3,4,6,12. The last three cases correspond to
the regular tetrahedron, octahedron, and icosahedron, respectively (in which the
faces are equilateral triangles), From (1),

dlz = Dlz ~ 1'05159 D13 ~ 1.0139, Dl'# ~ 0.9800.

Therefore the least »n is either 13 or 14, According to Leech 37, it was conjec-
tured by David Gregory in an unpublished notebook at Christ Church, Oxford, that
a sphere can touch 13 nonoverlapping spheres congruent to it. Fven if this con-
jecture were true, we could still have n = 13 or n = 14, However, Schiitte and van
der Waerden [27 and Leech [37 proved that there are no more than 12 such spheres,
Consequently, the least n is 13, (The proofs in [271 and [3] are not easy.)

For an essentially equivalent problem giving the bounds 12 < n < 14 by simple
means, see Problem 6 in this issue (page uu).

11, Comment by Edith Orr, Ottawa, Ontario.
Another application of the pigeonhole principle: Four Saints in Three Acts, a
1934 surrealist opera with Tibretto by Rertrude Stein and music by Virgil Thomson,

One incorrect solution was received,
REFERENCES

1. L.L. Whyte, "Unique Arrangements of Points on a Sphere", American Mathema-
tieal Monthly, 59 (1952) 606-611,
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2. K. Schiitte and B.L. van der Waerden, "DPas Problem der dreizehn Kugeln",
Math, Avm,, 125 (1953) 325-334,

3. John Leech, "The Problem of the Thirteen Spheres", The Mathematical Gazette,
(1956) 22-23.
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280, T11983: 277] Proposed by G.C. Giri, Midnapore College, West Bengal, India.
A1A2...An is a regular n-gon (n > 3) inscribed in a circle of vadius r;
M is the midpoint of the arc AlAn; and, for 7 =1,2,,...n, Di is the orthogonal
projection of Ai upon a fixed diameter D of the circle. Prove the followings

n
> +
4 T n n-1
(b) ) AJA. = 2rcot-—and T AJA. =nr
L& T 2n . 1
=2 1=2
m m
(c) ifn=om then T MA. = /2" and T AjA, = /"1,
7=1 v =2 v
m
(d) if n = 2n+1, then T MA, = 7",
=1

Solution by Kesiraju Satyanarayana, Gagan Mahal Colony, Hyderabad, India.

We assume that the vertices are numbered consecutively in the counterclockwise
sense and imbed the n-gon in the complex plane so that the centre is at the origin
and the fixed diameter D is a subset of the real axis. If then A, = rexpZo, then

A, = zfexp'i(u+2igillﬂ), Pk = rcos {o+ . k=1,2,....m,

2(k~1)ﬂ5
k n

and
. il
M= rexpz(a-ﬁ).

(a) Here we have

I’

n n
Y A]jak = - P;Ak = ~ir ) sin(oz+gi-k-%-2£)
k=1 k=1 k=1
= —irsin(a+iﬁlll£)sin17cscﬂ-= 0,
n n

where we have used formula (2) in [1, p, 917.
(b) First we obtain

n n
TAA = o} osin KL oo g (TG Tege T
- k %=1 n 2n 2 2n
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kil T _ .
= 2r COS Eﬁcsc > = 2rcot o
from the same formula (2); and then
n n n
I AA, = Cor)* " sin DT (or)* "l sin%%
k=2 k=2 " k=1
- <2P)n—1° n - nrn—i
2n~1

follows from formula (28) in [1, p. 1197 and the fact that él'B (sinnB/sin6) = n.
(¢) I1f n = 2m, we first obtain, from the second result in part (b),

m n 2mr2m—1 - m-1
T MAA, = ‘} T AA /AA = §———— = Vmp .
k=0 k k=9 k m+1 2r
Next, since -
_ oo Lp 2(k-10m o Ty . (2k-1)m _
MAk = 2r51n§{ot+———n (o, n)} —Qrsm————zn , kK =1,2,....1n,

we obtain, when »n = 2m,

m n m
I MAk - (QP)m‘J T sin(Zk—iWﬂ - (QP)‘ = /3"
k

k=1 =1 n 1

from formula (29) in [1, p. 1197.
(d) From the same formula (29), we have, for any n,

=]
=

=
]

hence, if n = 2m+1,

m n n —
TMA, = ‘/ TMA, /MR = ig?%reék S At
=1 k=1 m o r

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; RICHARD I. HESS, Rancho
Palos Verdes, California (part (a) only); WALTHER JANOUS, Ursulinengymnasium, Inns-
bruck, Austria; and the proposer.

REFERENCE

1. FE.W. Hobson, A Treatise on Plane and Advanced Trigonometry, Dover, New York,
1957.

£
o
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990, r1983: 2771 Proposed by Leroy F. Meyers, The Ohio State University.
Construct triangle ABC, with straightedge and compass, given the lengths
b and ¢ of two sides, the midpoint Ma of the third side, and the foot Ha of the
altitude to that third side.

Solution by the proposer,

If a nondegenerate triangle ABC determined by the given information is rotated
180" about the midpoint of the segment AM_, the result is a triangle M OR in which
QR 1| BC and A is the midpoint of side (QR. Reflecting triangle WEQR in the line AHa
produces a triangle PRQ in which Q and R have been merely interchanged, A remains
the midpoint of RQ, and Ha is the midpoint of PMa. Then

b = AC

MaR = P and e = AR = MaQ = PR,

Furthermore,
b +ec> PM
a

i

oM H b+ 2MH > e, e+ 2MH > b, (1)
aa a a a a

unless b = ¢ (and Ma = Ha), in which case b = ¢ > Nﬂf

For the construction, if b # ¢ and Ma z Ha, and (1) holds, let P be the point
on MaHa produced so that MaP = QMQHa, and (the notation X(k) denoting the circle
with center X and radius k) construct

N e Ma(C) n P®) and P e Ma(b) n P(e)

so that Q and R are on the same side of the Tine MaHa' Let Ly be the Tine through
Ma and Ha, and let L, be the Tine perpendicular to L; and passing through Ha, Let
A =TI, nQR, and Tet B and C be the intersections of I, with the Tines through A
which are parallel to MaQ and MaR, respectively, There are two solution triangles
in this case, symmetric with respect to the line MaHa.

If b = ¢ and Ha = Ma, Tet ) and R be any two distinct points on Ha(b) which are
not diametrically opposite, let A be the foot of the perpendicular from Ha to (the
midpoint of) QR, and let B and C be the feet of the perpendiculars from R and Q onto
the diameter parallel to RQ. (This construction imitates that of the earlier case,
with P = Ma’ but all four circles coincide.) There are infinitely many solutions,
all of them isosceles (or equilateral).

If b= e and Ma 3 Ha, but (1) does not hold, then the constructed circles will
not intersect, or will be tangent, thus producing no triangle or a degenerate one.

If ) # ¢ and Ma = Ha’ the constructed circles (with P = Ma) will be concentric,
and so will not intersect, thus producing no triangle. If b = ¢ and Ma # Hag the
constructed circles will intersect (if at all) on I, and produce a degenerate

triangle.
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Also solved by W.J. BLUNDON, Memorial University of Newfoundland; CECILE M.
COHEN, Horace Mann School, Bronx, N.Y.; JORDI DOU, Barcelona, Spain; JACK GARFUNKEL,
Flushing, N.Y.; J.T. GROENMAN, Arnhem, The Netherlands; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; M.S. KLAMKIN, University of Alberta; KESIRAJU SATY-
ANARAYANA, Gagan Mahal Colony, Hyderakad, India; D.J. SMEENK, Zaltbommel, The Nether-
lands; DAN SOKOLOWSKY, Brooklyn, N.Y.; JORDAN B, TABOV, Sofia, Bulgaria; and
DIMITRIS VATHIS, Chalcis, Greece.

] % E
891, [1983: 3121 Proposed by Charles W. Trigg, San Diego, Califormia.

After the dog R A CE
APAW
needed C A R E

using unguent from the E W E R.

Each Tetter in the square array uniquely represents a decimal digit. Identify
the digits so that, when they replace the letters, each column and row will be a
square integer.

Solution by Edwin M, Klein, University of Wisconsin-Whitewater,
Inspection of a table of squares reveals that there are only 4 four-digit
squares with identical first and third digits, so

{APAW, EWER} < {2025, 3136, 6561, 8281}.

Since ER and RE ape both endings of squares, we must have EWER = 6561 = 812, Hence

APAW = APA5 = 2025 = 452,
RACE = 1206 = 1296 = 362,
CARE = 9216 = 962,

The unique reconstruction is therefore

1296
2025
9216
6561,

Also solved by HAYO AHLBURG, Benidorm, Alicante, Spain; FRANK P. BATTLES, Massa-
chusetts Maritime Academy, Buzzards Bay; the COPS of Ottawa; CLAYTON W. DODGE, Uni-
versity of Maine at Orono; J.T. GROENMAN, Arnhem, The Netherlands; RICHARD I, HESS,
Rancho Palos Verdes, California; ALLAN WM. JOHNSON JR., Washington, D.C.; FRIEND H.
KIERSTEAD, JR., Cuvahoga Falls, Ohio; JACK LESAGE, Eastview Secondary School, Barrie,
Ontario; J,A. McCALLUM, Medicine Hat, Alberta; TOM McDONOUGH and MIKE ROBERTS, stu-
dents, Eastview Secondary School, Barrie, Ontario; GLEN E, MILLS, Pensacola Junior
College, Florida; BOB PRIELIPP, University of Wisconsin-Oshkosh; RAM REKHA TIWARI,
Radhaur, Bihar, India; W.R. UTZ, University of Missouri-Columbia; KENNETH M. WILKE,
Topeka, Kansas; ANNELIESE ZIMMERMANN, Bonn, West Germany; and the proposer,

Fditor's comment.

Compare with Cprux 581 [1981: 2547,

ES RA
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QQ92, [1983: 3127 Proposed by Stan Wagon, Smith A B

College, Northampton, Massachusetts.

ABCD is a square and ECD an isosceles triangle
with base angles 15°, as shown in the figure. Prove
that /AFR = 60° (and therefore triangle AFB is
equilateral).

This problem is very well known, but all the
published solutions use trigonometry and/or auxiliary

Tines. What is required here is a simple proof with- 75 ° G

out trigonometry or any auxiliary lines (or circles). D C

Solution by Kenmneth S. Williams, Carleton University, Ottawa.
Triangles AEDN and BEC are congruent,

A M B
so AF = BF. Let the degree measure of 90°-g " 90° -
angle AER be 2x; then (see figure) x

20 > 600 <=> x> 30°
<==> < 75o
<=> RC hS RF
<=> AR < BE ¥+ T
<=> 20 < 90°~x o
<=> 2r < 60 .
F
Therefore /AFB = 2x = 60 .
o
75 % 5
Also solved bv ELWYN ADAMS, N 15 15 c

Gainesville, Florida; HAYO AHLBURG, Beni-
dorm, Alicante, Spain; LEON BANKOFF, Los
Angeles, California; PAUL R. BEESACK, Carleton University, Ottawa; J.L. BRENNER,
Palo Alto, California and HENRY E. FETTIS, Mountian View, California (jointly); the
COPS of Ottawa; JORDI DOU, Barcelona, Spain; HENRY E. FETTIS, Mountain View, Cali-
fornia (second solution); J.T. GROENMAN, Arnhem, The Netherlands; F.D. HAMMER, Palo
Alto, California; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS,
Ursulinengvmnasium, Innsbruck, Austria; LEROY F. MEYERS, The Ohio State University;
NONALD T,. MUINCH, St. John Fisher College, Rochester, N.Y.; DAN PEDOE, University
of Minnegsota:; STANLEY RABINOWITZ, Digital Equipment Corp., Nashua; New Hampshire;
N. NARASIMHA RAO, Madras Institute of Technology, India; MALCOLM A. SMITH, Georgia
Southern College, Statesboro; DAN SOKOLOWSKY, Brooklyn, N.Y.; GEORGE TSINTSIFAS,
Thessaloniki, Greece; KENNETH M. WILKE, Topeka, Kansas; and the proposer. A comment
was received from DIMITRIS VATHIS, Chalcis, Greece.

Editor's comment.
Vathis and Wilke noted that there <s a published proof without trigonometry or
auxiliary lines 117, It is very nice, but we prefer our featured solution.
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Most solvers adhered strictly to the rules of the game, but a few used state-
ments of the type "It is clear that..." whose proofs would require auxiliary lines,
which they virtuously did not draw.

REFERENCE

1. H.S.M. Coxeter and S.L. freitzer, Geometry Revisited, New Mathematical
Library No. 19, Mathematical Association of America, 1967, pp. 25, 158.

fo A3 o
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807, 11983: 3127 Proposed by G.P. Henderson, Campbellecroft, Ontario.
Let C be the centre of the ellipse

ay1®y + 2a10a1@0y + aoxy + 2ay3wy + 2ap3wp + agzy = 0,

and let Pi(xli,x ), © = 1,2, be two points on the ellipse. Find the area of the

27
smaller of the regions bounded by CP;, CP,, and the ellipse.

Solution by the proposer.

Suppose the coordinate axes have been translated and rotated so that the equa-
tion of the ellipse is

u? 92
==+ > =1

a? b2

and Tet (u,, v.) be the new coordinates of P.. Set w = av/b. In the ww-plane the
image of the region CP;P, is a sector of the circle u? + w2 = a2 bounded by the
radii C'P{ and C'P3 , where the coordinates of Pé are (ui’ avi/b). The area of the
sector is %a?0, where 0 is the smaller of the angles between C'Py and C'Pj. The

scalar product of Cf?i and Cfﬁé yields

a?cos 6 = uyuy, + a’vvy/b2.
Therefore

6 = Arccos (uyus/a? + vivy/b?).

The area of the sector is then %a2Arccos (ujus/a? + vivy/b?) and the area of the
reqion CP,P, is

%abﬁrccos(uluz/az + vyv,/b?). (1)
We now return to the original variables. Set

L12

e

1

(11, ®21, 1), X2 ={ %22,
1

4 = (a;) = (az),

det 4, § = ajiazs - a:‘i_z (> 0).

>
1
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When we change to the wv axes, the equation has the form

1 2 1 2 1 -
ajus +ay, v +al, = 0, (2)
where
A ' aszs ' a33
1] — —_—
a = —, a = == a = - .
33 S 11 a2 22 52

12
§ =a!.al -?33
11722 7 4232
Hence
| 233 3/2
ab = = = S
75 [A]

le use (2) again to calculate the invariant XIAXZ:

T _ i 1 _ ' UjU2 V1V2
X(AX, = aqquqy + Qpo0 Uy + gy = agqa(l - —5= - —55—),

a
Hence
T
UU V0 X14X
L2 %2y %2 oy STy,
a? b2 al, A

Making these changes in (1), we get the expression

3/2Arccos (1 - §XIAX2)

1 -
51818 A

for the required area.

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; and KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hy-

derabad, India.

Editor's comment.
The other solvers showed in various ways how the required area could be calcu-

lated, but they did not in the end arrive at an explicit formula in terms of the

given a.. and P..
7

7

e,
"

QL , [1983: 3131 Proposed by Stanley Rabinowitz, Digital Equipment Corp.,

Nashua, New Hampshire.
(a) Find necessary and sufficient canditions on the complex numbers a,b,n so

that the roots of

22 + 2az +b =0 and Z2 -0 =0

shall be collinear in the complex plane.
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(b) Find necessary and sufficient conditions on the complex numbers a,b,c,d
so that the roots of

22 + 20z +b =0 and 2?2 + 2z +d =0
shall all be collinear in the complex plane,

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria,
(a) The noots of the two equations are

W, 21 Ira-!-Al, ZZZﬂ"Al, (1)
where Ay is (a fixed) one of the determinations of /a2-b, They are collinear if
and only if

0 w 1
Zlgli =0,
22521

In tepms of (1), this last equation is found to be equfva1ent to

(w + a)dy = (@ + @)y,

or to the requirement that (wta)A; be real.
(b) The roots of the second equation are

Wy = ¢ + A, and  w, = -¢ - Ap,

where A, is (a fixed) one of the determinations of ve2-d. It now follows from part
(a) that z7,2z5,w;,0, are all collinear if and only if

(@7 + a)dy  and  (wy + @)l
are both real, that is, if and only if

(a-c+hy )0 and (a-c-hy)Aq
are both real.

Also solved by G.P. HENDERSON, Campbellcroft, Ontario; LEROY F. MEYERS, The
Chio State University; BASIL C. RENNIE, James Cook University of North Queensland,
Australia; KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; and JORDAN
B. TABOV, Sofia, Bulgaria.

2, o oo
« o o«

95, [1983: 3137 Proposed by J.T. Groenman, Arvhem, The Netherlands.

Let ABC be a triangle with sides a,b,ec in the usual order and circum-
circle T, A Tine 7 through C meets the segment AB in D, T again in E, and the
perpendicular bisector of AB in F. Assume that ¢ = 3b.

(a) Construct the Tine 7 for which the length of DF is maximal.
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(b) If DE has maximal length, prove that DF = FE.
(c) If DE has maximal Tength and also CD = DF, find a in terms of » and the

measure of angle A.

I. Solution to part (a) by the proposer.
Let AD = Ac, where 0 < A < 1; then DB = (1-A)c and Stewart's Theorem gives

CD2+c = a2Xe + b2(1-1)e - A(1-\)e3,

from which

D2 = a2X + b2(1-1) - e2)X(1-)\).

Moreover, CD2-DE2 = AD2.DB? = &*A2(1-)1)2, so

e*AZ(1-))%

DE? = 2 2
a?) + b2(1-1) - e?A(1-1)

and it suffices to maximize

A2 (1-21)2
a?\ + b2(1-1) - e2A(1-1)°

) =

It will be found that £'(A) = 0 is equivalent to A(A-1)g(A) = 0, where
g = a?x(38A-1) - bZ(A-1)(31-2) + A (A-1)(2A-1). (1)

Since S (A) > 0 and f(0) = f(1) = 0, the function attains its maximum value for some
A ¢ (0,1) for which g(A) = 0.

For ¢ = 3b, (1) becomes

g(A) = (BA-1)A(A),
where
B(A) = a?)h + 2b2(A-1)(3A-1).

It is clear that #(X) > 0 if 0 < A < 1/3; and consideration of the minimum value of

(A-1)(3A-1), which occurs when A= 2/3, shows that when 1/3 < A < 1 we have

2 _ 2 2
h()\) > Ci—a——gé— > —2—2%~ > O’

since » b = 2b < a. Thus h()\) vanishes for no A ¢ (0,1) and hence the maximum value
of S(A) occurs when A = 1/3, the only value for which g(X) vanishes.

The point D and the Tine 7 are now easily constructed.

II. Comment on part (b) by Gali Salvatore, Perkins, Québec.
It is known that DE has maximal length if and only if DF = FE (whether or not

¢ = 3b). See Problem 110 [1976: 84-88], where an analytic proof by H.G. Dworschak
and a synthetic proof by Léo Sauvé are given. Sauvé also showed that the line 7 is
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not in general constructible by Euclidean means, although it may be in special cases
(for example, when ¢ = 3b).

ITI. Solutiom to part (e) by Jordi Dou, Barcelona, Spain.

Let C' be the foot of the altitude from C and C; the midpoint of AB. If
CD = DF, then C'D = DC; = 2b = AC', and so AC = CD. Since also AC = AD = b, tri-
angle ACD is equilateral and angle A = 60 . Now

a? = b2 + (3b)2 - 2b(3b) cos60 = 7b2,
so a = V7b.

Also solved by JORDI DOU, Barcelona, Spain (also parts (a) and (b)); KESIRAJU
SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India (partial solution); D.J. SMEENK,
Zaltbommel, The Netherlands; MALCOLM A. SMITH, Georgia Southern College, Statesboro;
GEORGE TSINTSIFAS, Thessaloniki, Greece; and the proposer (also parts (b) and (c)).

A \ ofs
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896, [1983: 3131 Proposed by Jack Garfunkel, Flushing, N.Y.
Consider the inequalities

. oA 1L B-C_3
Isin?3 =1 - flicos == = 1,

where the sum and product are cyclic over the angles A,B,C of a triangle. The ine-
quality between the second and third members is obvious, and that between the first
and third members is well known. Prove the sharper inequality between the first
two members.

Solution by Walther Janous, Ursulinengymmasium, Innsbruck, Austria and the
proposer (independently).

The following identity is easily established (or see Hall and Knight's Elemen-
tary Trigonometry, p. 344, EX. 68):

- oA - _ . A
Zsm2 1 2Hmn2.

Hence the inequality to be proved is equivalent to

B

IIcos—%E > gll s1'nA

'2'1
an inequality already established in Crux 585 [1981: 303].

Also solved by LEON BANKOFF, Los Angeles, California; W.J. BLUNDON, Memorial
University of Newfoundland; J.T. GROENMAN, Arnhem, The Netherlands; VEDULA N. MURTY,
Pennsylvania State University, Capitel Campus; BOB PRIELIPP, University of Wisconsin-
Oshkosh; KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; and GEORGE
TSINTSIFAS, Thessaloniki, Greece.

oo ..
-« w w
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89/, [1983: 3131 Proposed by Vedula N. Murty, Pennsylvania State University,

Capitol Campus.
If x> panda 2b =2 ¢ > 0, prove that

ngczu + cQAaQU + anbzu > (bc)k+u + (ca)x+“ + (ab)x+u,

with equality just when a = b = c.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

2A+2U

If we divide throughout by c and set a = a/e, B = b/c, the proposed ine-

quality is equivalent to

2\ N aQU N aQK 2u Bk+p A+

fla) =8B B - a - (ocB))‘+U >0, o =R =1.

Differentiating, we obtain

fila) = azu'lg(u),

where
gla) = 2u + QXaQA—QUBQU = (>\+u)oc>‘_U - (A+u)ax_UBA+“.
Then
g'(a) = O W),
where

na) = wmat M - w1+ 8.

1, h(a) increases with a and so

1\
™
v

Since A-u > 0 and o

Ry = n8) = ™M - G (™) > mgM - ) -2 H

208N > o,

Thus g'(a) > 0, and hence

g(a) 2 g(8) = 21 + (w2 - G M = k), B > 1.
Now

A-u-1

) = Ot P oMM ot 2 Qe M - )Y = (-028 5 0.

Therefore k() » k(1) = 0, so g(a) = 0, then f'(a) = 0, and finally

Fla) = £(B) = B2 - 2gMW 4 g% - (ghpH)2 2 o,

as required.

Equality occurs just when o =8 = 1, that is, just whena =b =c.

Also solved by KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India;
and the proposer.
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Editor's comment.

The proposer noted that many interesting inequalities, some well-known and some
not, are equivalent to special cases of our problem. For example, A =1 and u =0
give

a? + b2 + ¢2 > be + ca + ab;

A =1/2and u = -1/2 give

t

QT
+
Q0
-+
(S W
Y
w

>
1

3/2 and u = 1/2 give

H

b2c(b-¢) + c2alc-a) + a?b(a-b) = 0,

an inequality given at the 1983 International Mathematical Olympiad [1983: 207 ;
1984: 73] ; and for good measure we give (why not?)

e mte

b2ﬂ02€ + chQQe + a2ﬂb28 e + (ab) s

> (bc)ﬂ)r + (ca)1T+

which readers are invited to challenge their friends to prove directly (if they are

not Crux subscribers).

.
w

898, [1983: 3131 Proposed by S.C. Chan, Singapore.
A fair coin is tossed n times. Let ]h be the number of times in the »n
tosses that a tail is followed by a head. Find (a) the expectation of T (b) the
variance of Zh.

Solution by G.P. Henderson, Campbellcroft, Ontario.
More generally, Tet the probability of a tail be p, where 0 < p < 1, and set
x, = 0 or 1 according as the rth toss is head or tail. We then have the expecta-
tions
- 2y -
E(“p) = E(xr) =p

and if »r #2 s, since x, and x are independent,

- p2
E(wrxs) = p“.

(a) Since
n-1
T, = lexr(l T Ty )
we therefore have
n-1
Br,) = } (B ) - Blex O} = (-1)(p-p?), n =1,2,3,... . (1)

r=1
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In particular, if the coin is fair then p = % and

- n -1

E(Tn) =
(b) The required variance is
_ 2y _ 2
Var(Tn) = E(Tn) {E(Tn)} . (2)
Now
2 _ _ -
]h (pr prxr+1)(2x8 Zx3x3+1)
= Xx x - 2Lk X x + Xrx x x x 5
r 8 r r+l1 8 r r+l 8 s+1

so to evaluate E(Ti) we need

— 2y = _ - 2 -
E(szrxs) = E(;&%xpxs) + E(Zxr) = n-1)n-2)p* + (n-1)p,
n-1 n-2
— 2 2
E(szpxr+1xs) N E(r¢3%%—1xrxr+1xs) B Zixrxr+1) i E(lexrxr+1)

(n—2)2p3 + (2n—3)p2,
and

E(lIx x ) = (n-2)(n-3)p"* + 2(n-2)p3 + (n-1)p2.

X X
» r+l 8 s+1

Hence

E(Ti) = (n2-5m+6)p"* - 2(n?-5n+6)p3 + (n2-6n+7)p? + (n-1)p. (3)
Finally, substituting (3) and (1) into (2) gives

Var(Z ) = (n-1)p(1-p) - (3n-5)p? (1-p)2, o= 2,34, ...,

and of course Var(7y) = 0. In particular, ifp = 3 then, for n = 2,3,4,...,

_nt1
Var(Ih) =

Also solved by CURTIS COOPER, Central Missouri State University at Warrensburg;
RICHARD I. HESS, Rancho Palos Verdes, California; EDWIN M. KLEIN, University of
Wisconsin-Whitewater; LEROY F. MEYERS, The Ohio State University; and BASIL C.
RENNIE, James Cook University of North Queensland, Australia.

ofe ol ofe
w w v

899, [1983: 314] Proposed by Loren C. Larson, St. Olaf College, Northfield,
Minnesota.
Let {ai} and {bi}’ t=1,2,...,n, be two sequences of real numbers with the a.
all positive. Prove that

Yab.=0 = ] b.b, <o,
izg © Y iz] v
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Solution by Geng-zhe Chang, University of Science and Technology, Hefet, Anhut,
People's Republic of China.

We weaken the condition a, > 0 to

a. =20 and Ta. > 0. (1)
2 7
First we note that
2
Z.a.b. = == . .) = b, = . = - .
7/¢Jc7c7/b'] 0 = (Zaﬂ)(ZbJ) ZanJ > Zbg Zai

Now

, , (Zajbj)z (Za%)(Zb?) ,

igjbibj + ij = (ij) = (Zai)z < (Zai)Z < ij, (2)
where the first inequality in (2) is due to that of Cauchy-Schwarz and the second
follows from (1). Hence

v.b.b. <0, (3)

125 1 g
as required.
Equality holds throughout in (2), and hence in (3), if and only if either

wh% = 0 or
J

a. = kb. and Ta? = (Za.)?. (4)
7 i 7 7

But if all a; > 0, as in the proposal, then the second condition (4) is never
satisfied, and equality holds in (3) just when Zb§ = 0, that is, just when each
b. = 0.
J

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; G.P. HENDERSON, Camp-
bellcroft, Ontario; RICHARD I. HESS, Rancho Palos Verdes, California; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; EDWIN M. KLEIN, University of Wisconsin-
Whitewater; LEROY F. MEYERS, The Ohio State University; DONALD L. MUENCH, St. John
Fisher College, Rochester, N.Y.; VEDULA N. MURTY, Pennsylvania State University,
Capitol Campus; JORDAN B. TABOV, Sofia, Bulgaria; GEORGE TSINTSIFAS, Thessaloniki,
Greece; KENNETH S. WILLIAMS, Carleton University, Ottawa; and the proposer.

ofa ofs wts
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900, [12983: 314l Proposed by W.R. Utz, University of Texas at Austin.
Show that there are an infinite number of sets of three integers in
arithmetic progression such that the sum of the square of the first, twice the
square of the second, and three times the square of the third is a square.

Solution by Hayo Ahlburg, Benidorm, Alicante, Spain.
More generally, for a given positive integer ¢ we find an infinite set of in-
teger solutions to the Diophantine equation

(a+d)? + 2(a+2d)? + 3(a+3d)? + ... + t(a+td)2 = (b + Eiégll-d)z. (1)
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Since 13+23+...+£3 = t2(t+1)2/4, it is seen from (1) that ¢ = 0 if and only if
b = 0, and one infinite set of integer solutions is given by

(a, b, d) = (0, 0, d), d an arbitrary integer. (2)

For t = 3, the infinite set {(d,2d,3d)|d any integer} therefore completely satisfies
the very modest requirements of the proposal.
We will go further. We set £ = 3 in (1) and completely solve the resulting
equation
(at+d)? + 2(a+2d)? + 3(a+3d)? = (b+6d)?. (3)

In view of (2), we have left to find only the solutions for which ab = 0.
Accordingly, Tet (a,b,d) be an integer solution of (3) with ab # 0. Expanding

the squares in (3) shows, first, that » is even, say » = 2b'; then that a is even,

say a = 2a'; and finally that »' is even, say b' = 2b". Equation (3) then turns out

to be equivalent to
3a'? - 2b"% = (8b" - 7a')d. (%)

Since 3a'2-2b"% = 0 (otherwise v3/2 would be rational), it follows from (4) that
there are uniquely determined relatively prime nonzero integers m and »n, with n > o0,

such that

bll
' _m
a n

IR

Now (u4) is equivalent to (3n2-2m2)a' = n(ém-7n)d, or, since a = 2a', to
(3n2 - 2m2)a = 2n(6m - n)d,
or, since b = up" = u(m/n)a' = 2(m/n)a, to

(3n2 - 2m2)b = um(em - 7Tn)d.
Thus

a - b - Zd 5 - Z’ Say, (5)
2n( 6m-7Tn) um(em-7n) 3n“-2m s
where s is the greatest common divisor of 2n(6m-77), um(6m-7n), and 3n?-2m?, and

the nonzero integer r is then uniquely determined by (5). Therefore
(a, b, d) = (2n(6m-Tn)"Z, 4m(6m-Tn)+, (3n2-2m2)+2), (6)

where m,n,r,s are all uniquely determined nonzero integers.

At the risk of obganiating [1], we repeat that in (6) the integers m,n,r,s
have the following properties: each is nonzero; m and n are relatively prime, n > 0,
and m/n 2 7/6; and s is the greatest common divisor of 2n(6m-Tn), 4m(ém-Tn), and

3n2-om2,
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Conversely, let m,n,r,s be any four integers satisfying the italicized con-

ditions. (Since & is uniquely determined by m and n, there are only three inde-
pendent parameters: m, n, and ».) If we substitute from (6) into (3), we obtain

2 2 2
{(—2m2+12mn—11n2)-§} + 2{(—4m2+12mn—8n2)°§} + 3{(—8ﬂ2+12mn—5n2)°§}
P 2
= {(12m2—28mn+18n2)'5} ,

and it is easily verified that this equation is true for all allowable valucs of m,
Nsr.

The complete solution of (3) therefore consists of the one-parameter family (2)
and the three-parameter family (6); and the one-parameter family can be subsumed
into the three-parameter family by allowing » = 0, and allowing m/n = 7/6 for all r.

We end with a few examples of one-parameter families of solutions.

m n S

1l 1] 1| )2+ 2(0)2 + 3(r)? = (2r)?

716 | 10 | (r)2 + 2(2r)2 + 3(3r)2 = (6r)?2 )
5 1 4 2 (7p)2 + 2(6p)2 + 3(5p)2 = (14r)2

6| 5| 1 (13r)2  + 2(16r)2  + 3(19r)2 = (u2r)?

81 71| 1 | (50)2 + 2(2ur)2  + 3(u3r)2 = (82r)?

98] 2 | (-r)? + 2(14r)2  + 3(29r)2 = (5u4r)?

-9 | 8| 10 | (-173r)2 + 2(-170p)2? + 3(-167r)2 = (41up)?

There were 23 other solvers including the proposer (names omitted for lack of
space) .

Editor's comment.

The proposer noted that this problem generalizes one of Gregory Wulczyn [2].
If ever a problem cried out for a complete solution this one did. Yet fifteen of the
other solvers, perhaps on the grounds that problems should be seen and not heard,
gave only one or both of the trivial solutions (7).
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