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291 Editorial Kseniya Garaschuk

292 The Contest Corner: No. 17 Shawn Godin

292 Problems: CC81–CC85

295 Solutions: CC31–CC35

300 The Olympiad Corner: No. 315 Nicolae Strungaru

300 Problems: OC141–OC145

302 Solutions: OC81–OC85

306 Book Reviews John McLoughlin

307 Focus On . . . : No. 8 Michel Bataille

311 Problem of the Month: No. 7 Diane and Roy Dowling

315 Problems: 3861–3870

319 Solutions: 3326b, 3748, 3761–3770

339 Solvers and proposers index

Crux Mathematicorum
Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
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EDITORIAL
Dear Crux reader,

I am very happy to greet you as the new Editor-in-Chief.

Before I say anything, first and foremost, I would like to thank everyone responsible
for Crux for welcoming me and helping me through the transition process.

Shawn Godin has been the driving force behind Crux for the past several years;
without Shawn’s guidance, we simply wouldn’t have Crux today. And he has been
essential in my transition into this role: his close relationship with you, the reader,
provides an invaluable insight into the publication and I cannot thank him enough
for his willingness to share that insight and to answer all of my many questions.

I am truly privileged to be working with the Crux editorial board. Its commitment
to the journal is truly inspiring, while its collective wisdom and many fascinating
personalities make for a dynamic and energizing environment to work in. I would
like to thank each and every one of them for warmly welcoming me into this role
and for incessantly supporting Crux.

Last but not least, I would like to thank the Canadian Mathematical Society’s
office and executive for their faith in me and their support in this venture.

As I have been involved in Canadian Mathematical Society throughout my aca-
demic career, I have been closely watching the development of many of their initia-
tives, including Crux. I will be building on all the good work Shawn has done and
initiated by drawing inspiration directly from Crux solvers and proposers. And
it is easy to get inspired – in this issue alone, we have solutions and proposals
from people from 16 different countries and 4 different continents! What a diverse
group of people from all over the world; I hope to live up to your expectation of
what Crux is and should be.

Looking ahead, I expect Crux to continue evolving in the direction set by Shawn
as I am also looking to explore other ways to improve and enrich Crux. I am
always looking forward to hearing from you, so please send any comments and
suggestions (or even just a hello) to me at crux-editors@cms.math.ca, like us
on Facebook, submit solutions and problem proposals – get involved in any way
you can as the journal can only grow with your participation.

For our long-term readers, please note one change in electronic submission: starting
from this issue, any new submissions of numbered problem proposals and solutions
should go to crux-psol@cms.math.ca.

Kseniya Garaschuk

Copyright c© Canadian Mathematical Society, 2014
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THE CONTEST CORNER
No. 17

Shawn Godin

The problems featured in this section have appeared in, or have been inspired by, a math-
ematics contest question at either the high school or the undergraduate level. Readers are
invited to submit solutions, comments and generalizations to any problem. Please email
your submissions to crux-contest@cms.math.ca or mail them to the address inside the
back cover. Electronic submissions are preferable.

Submissions of solutions. Each solution should be contained in a separate
file named using the convention LastName FirstName CCProblemNumber (example
Doe Jane OC1234.tex). It is preferred that readers submit a LATEX file and a pdf file
for each solution, although other formats are also accepted. Submissions by regular mail
are also accepted. Each solution should start on a separate page and name(s) of solver(s)
with affiliation, city and country should appear at the start of each solution.

To facilitate their consideration, solutions should be received by the editor by 1 December
2014, although late solutions will also be considered until a solution is published.

Each problem is given in English and French, the official languages of Canada. In issues
1, 3, 5, 7, and 9, English will precede French, and in issues 2, 4, 6, 8, and 10, French
will precede English. In the solutions’ section, the problem will be stated in the language
of the primary featured solution.

The editor thanks André Ladouceur, Ottawa, ON, for translations of the problems.

CC81. Quadrilateral ABCD has the following properties:

1. the mid-point O of side AB is the centre of a semicircle;

2. sides AD, DC and CB are tangent to this semicircle.

Prove that AB2 = 4AD ×BC.

CC82. For each positive integer N , an Eden sequence from {1, 2, 3, . . . , N} is
defined to be a sequence that satisfies the following conditions:

1. each of its terms is an element of the set of consecutive integers {1, 2, 3, . . . , N},

2. the sequence is increasing, and

3. the terms in odd numbered positions are odd and the terms in even numbered
positions are even.

For example, the four Eden sequences from {1, 2, 3} are

1 3 1, 2 1, 2, 3

For each positive integer N , define e(N) to be the number of Eden sequences from
{1, 2, 3, . . . , N}. If e(17) = 4180 and e(20) = 17710, determine e(18) and e(19).

Crux Mathematicorum, Vol. 39(7), September 2013
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CC83. A map shows all Beryls Llamaburgers restaurant locations in North
America. On this map, a line segment is drawn from each restaurant to the
restaurant that is closest to it. Every restaurant has a unique closest neighbour.
(Note that if A and B are two of the restaurants, then A may be the closest to
B without B being closest to A.) Prove that no restaurant can be connected to
more than five other restaurants.

CC84. Let m and n be odd positive integers. Each square of an m by n board
is coloured red or blue. A row is said to be red-dominated if there are more red
squares than blue squares in the row. A column is said to be blue-dominated
if there are more blue squares than red squares in the column. Determine the
maximum possible value of the number of red-dominated rows plus the number of
blue-dominated columns. Express your answer in terms of m and n.

CC85. While Lino was simplifying the fraction
A3 + B3

A3 + C3
he cancelled the threes

A6 3 + B 6 3

A 6 3 + C 6 3 to obtain the fraction
A + B

A + C
. If B 6= C, determine a necessary and

sufficient condition on A, B and C for Lino’s method to actually yield the correct
answer, ie. for

A3 +B3

A3 + C3
=
A+B

A+ C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CC81. On considère un quadrilatère ABCD dont :

1. le milieu O du côté AB est le centre d’un demi-cercle ;

2. les côtés AD, DC et CB sont tangents à ce demi-cercle.

Démontrer que AB2 = 4AD ×BC.

CC82. Étant donné un entier strictement positif N , une suite Eden sur l’en-
semble {1, 2, 3, . . . , N} des entiers consécutifs de 1 à N est une suite qui satisfait
aux conditions suivantes :

1. chacun de ses termes est un élément de l’ensemble {1, 2, 3, . . . , N},

2. la suite est croissante et

3. les termes dans les positions impaires sont impairs et les termes dans les
positions paires sont pairs.

Par exemple, les quatre suites Eden sur l’ensemble {1, 2, 3} sont :

1 3 1, 2 1, 2, 3

Copyright c© Canadian Mathematical Society, 2014



294/ THE CONTEST CORNER

Étant donné un entier strictement positif N , soit e(N) le nombre de suites Eden
sur l’ensemble {1, 2, 3, . . . , N}. Sachant que e(17) = 4180 et e(20) = 17 710,
déterminer e(18) et e(19).

CC83. Une carte indique où sont situés tous les restaurants La poutine dorée en
Amérique du nord. Sur cette carte, on a tracé un segment entre chaque restaurant
et le restaurant qui est plus près de lui. Chaque restaurant a un seul voisin le plus
près. (On remarquera qu’il est possible qu’un restaurant A soit le plus près de B
sans que B soit le restaurant le plus près de A.) Démontrer qu’il est impossible
pour un restaurant d’être relié par des segments à plus de cinq autres restaurants.

CC84. Soit m et n deux entiers impairs positifs. Chaque case d’un quadrillage
m sur n est colorié en rouge ou en bleu. On dit qu’une rangée du quadrillage est
à dominance rouge si la rangée contient plus de cases rouges que de cases bleues.
On dit qu’une colonne est à dominance bleue si la colonne contient plus de cases
bleues que de cases rouges. Déterminer la valeur maximale possible de la somme de
rangées à dominance rouge et de colonnes à dominance bleue. Exprimer sa réponse
en fonction de m et de n.

CC85. Pour simplifier l’expression
A3 + B3

A3 + C3
, Lino a annulé les exposants 3,

en faisant
A6 3 + B 6 3

A6 3 + C 6 3 , pour obtenir l’expression
A + B

A + C
. Si B 6= C, déterminer une

condition nécessaire et suffisante sur les variables A, B et C pour que la méthode
de Lino soit valable, c’est-à-dire pour que

A3 +B3

A3 + C3
=
A+B

A+ C
.

Crux Mathematicorum, Vol. 39(7), September 2013
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CONTEST CORNER
SOLUTIONS

CC31. Triangle ABC is right angled with its right angle at A. The points P and
Q are on the hypotenuse BC such that BP = PQ = QC, AP = 3 and AQ = 4.
Determine the length of each side of ABC.
(Originally Question B3 from 1999 Canadian Open Mathematics Challenge.)

Solved by Š. Arslanagić ; M. Bataille ; M. Coiculescu ; C. Curtis ; J. G. Heuver ;
R. Hess ; M. Stoënescu ; D. Văcaru ; and T. Zvonaru. We give the solution of Chip
Curtis modified by the editor.

Let a = BC, b = CA, c = AB, d = BP = PQ = QC, so a = 3d. Applying the
Law of Cosines on angle C in triangle ACQ and angle B on triangle ABP we have

16 = b2 + d2 − 2bd · b
a
, (1)

and
9 = c2 + d2 − 2cd · c

a
. (2)

Substituting a = 3d in both equations above we get

48 = b2 + 3d2 (3)

and
27 = c2 + 3d2. (4)

Furthermore, Pythagorean Theorem on ABC gives us

b2 = c2 + 9d2. (5)

Equations (3), (4), (5) are linear in b2, c2, d2. Solving we get b =
√

33, c = 2
√

3, d =√
5 and hence a = 3

√
5.

CC32. Four boys and four girls each bring one gift to a Christmas gift exchange.
On a sheet of paper, each boy randomly writes down the name of one girl, and each
girl randomly writes down the name of one boy. At the same time, each person
passes their gift to the person whose name is written on their sheet. Determine
the probability that both of these events occur :

(i) Each person receives exactly one gift ;

(ii) No two people exchanged presents with each other (i.e., if A gave his gift to
B, then B did not give her gift to A).

(Originally Question 4 from 2013 Sun Life Financial Repêchage Competition.)

Solved by C. Curtis ; G. Geupel ; and T. Zvonaru. We present Gesine Geupel’s
solution below.

Copyright c© Canadian Mathematical Society, 2014
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Let A,B,C,D be the girls and a, b, c, d be the boys. The different possibilities of
exchanging presents are presented in the figures below. The number of choices is
written beside each of the arrows.

Let us consider the girl, A. A gives a present to a boy, a. There are 4 possibilities
for the choice of boy a. a gives a present to a girl, B, that cannot be A. There are
3 possibile choices for B. B gives a present to a boy, b, who is different from a (3
possibilities). Now there are two cases.

In the first case, b gives a gift to a girl, C, distinct from A and B. This is shown in
the left figure. Then C gives a present to c. Now c must give to D and D to d. d
gives to A. In the second case, b gives a present to A. Now in the group, C, c,D, d
they do the same 4-cycle pattern ; but C has 2 possibilities for choosing c and then
the cycle is fixed.

A a

B b

C c

D d

4

3

3

1

2

1

1

2

A a

B b

C c

D d

4

1

3

3

2

1

1

1

These are the only possibilities where each person gets a present, but no two
people exchange with each other. For the first picture, there are 4 · 3 · 3 · 2 · 2 = 144
possibilities ; for the second, there are 4 ·3 ·3 ·2 = 72 possibilities ; so there are 216
possibilities. The total possible cases are 48 because each of the eight persons have
4 possible people of opposite gender to choose. So the probability is 216

48 = 27
8192 .

CC33. The abundancy index I(n) of a positive integer n is I(n) = σ(n)
n , where

σ(n) is the sum of all positive integer divisors of n, including 1 and n itself. For
example, I(12) = 1+2+3+4+6+12

12 = 7
3 . Determine, with justification, the smallest

odd positive integer n such that I(n) > 2.
(Originally Question 4 from 2006 Hypatia Contest.)

Solution adapted from the solution of Chip Curtis.

Let n be a positive integer whose prime factorization is pe11 p
e2
2 · · · pemm where pi’s

are primes and ei’s are positive integers. Then the factors of n are all of the form
pj11 p

j2
2 · · · pjmm where 0 ≤ ji ≤ ei for every i. Thus, an explicit expression for I(n)

in terms of its prime divisors is

1

n

e1∑
j1=0

· · ·
em∑
jm=0

pj11 p
j2
2 · · · pjmm =

1

n

m∏
i=1

(
ei∑
ji=0

pjii

)
=

m∏
i=1

Ä∑ei
ji=0 p

ji
i

ä
peii

=
m∏
i=1

I(peii ).

Crux Mathematicorum, Vol. 39(7), September 2013
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We make some statements that we appeal to later :

• If p, q are primes with p < q, then I(pk) > I(qk) for any positive integer k.
To see this, observe that for any prime r,

I(rk) =

∑k
j=0 r

j

rk
=

k∑
j=0

1

rj

and if p < q then 1
pj >

1
qj for any positive j.

• By the multiplicativity of I and the previous comment, if n is a positive
integer, we can find a positive integer m with I(m) > I(n) by replacing a
prime in the prime decomposition of n with one that is smaller.

• For any prime p,

I(pk) = 1 +
1

p
+

1

p2
+ · · ·+ 1

pk
=

1− (1/p)k+1

1− 1
p

<
1

1− 1
p

=
p

p− 1
.

• From the above, if n is odd and has two distinct prime factors, then maxi-
mizing I(n), we require n = 3a5b for some positive integers a, b. From this
we have

I(n) = I(3a5b) = I(3a)I(5b) <
3

2

5

4
=

15

8
< 2.

• Thus, if n is an odd integer with I(n) > 2, n has at least three distinct prime
factors.

• A quick check shows

I(3 · 5 · 7) =
64

35
< 2, I(32 · 5 · 7) =

208

105
< 2, I(33 · 5 · 7) =

128

63
> 2,

so n = 945 satisfies I(n) > 2. To show 945 is the smallest, observe :

– Any positive odd integer with at least 4 prime factors is at lesat 3 · 5 ·
7 · 11 = 1155 > 945.

– From what we mentioned earlier then, the smallest n must have 3 dis-
tinct prime divisors and hence, to minimize n, must have 3, 5, 7 as its
distinct prime divisors.

– We only need to consider integers 3a5b7c with a ≥ b ≥ c since otherwise
we could reassign the exponents and obtain a smaller integer.

– We have checked all integers less than 945 of the form 3a5b7c with
a ≥ b ≥ c, so we are done.

CC34. At the Mathville Dim Sum restaurant, all the dishes come in three
sizes : small, medium, and large. Small dishes cost x, medium dishes cost y, and
large dishes cost z, where x, y, z are positive integers, with x < y < z. At this

Copyright c© Canadian Mathematical Society, 2014
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restaurant, there is no tax on any dish, and the prices haven’t changed for a long
time. Margaret, Art, and Edgar had dinner there last night, and together, they
ordered 9 small dishes, 6 medium dishes, and 8 large dishes. When the bill came,
the following conversation ensued :

Margaret :“This bill is exactly twice as much as when I last came here.”

Art : “This bill is exactly three times as much as when I last came here.”

Edgar : “Oh, that was a delicious meal, and very reasonably priced too. Even if
we give the waiter a 10% tip, the total is still less than $100.”

Determine the values of x, y, and z.
(Originally Question 7 from 2002 APICS Math Competition.)

Solved by C. Curtis ; G. Geupel ; and R. Hess. We present Chip Curtis’s solution.

We claim that the unique solution is (x, y, z) = (2, 3, 6).

Letting m be the amount of Margaret’s previous bill, and a the amount of Art’s
previous bill, we have

9x+ 6y + 8z = 2m (1)

9x+ 6y + 8z = 3a (2)

and

9x+ 6y + 8z <
100

1.1
< 91 (3)

By (1), x is even, implying that x ≥ 2, y ≥ 3, and z ≥ 4. By (3), therefore,

91 > 9x+ 6y + 8z ≥ 9(2) + 6(3) + 8z = 36 + 8z (4)

so that,

z ≤ 55

8
= 6.875 (5)

By (2), however, z is a multiple of 3. Thus, z must equal 6. This gives the following
possibilities :

(2, 3, 6), (2, 4, 6), (2, 5, 6), (4, 5, 6),

We now exclude the last three possibilities as follows.

• If (x, y, z) = (2, 4, 6), then by (1), m = 45, which cannot be written as a
linear integral combination of 2, 4, and 6.

• If (x, y, z) = (2, 5, 6), then 9x+ 6y + 8z = 96 > 91, violating (3).

Crux Mathematicorum, Vol. 39(7), September 2013
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• If (x, y, z) = (4, 5, 6), then 9x+ 6y + 8z = 114 > 91, violating (3).

Thus, (x, y, z) must be equal to (2, 3, 6) as claimed. This implies thatm = 42, which
can be written in 35 different ways as a nonnegative linear integral combination of
2, 3 and 6 including 42 = 0 · 2 + 0 ·+7 · 6, and a = 28, which can be written in 15
different ways as a nonnegative linear integral combination of 2, 3, and 6 including
28 = 14 · 2 + 0 · 3 + 0 · 6.

CC35. Evaluate

lim
n→∞

1

n

n

 
(2n)!

n!

(Originally Question 4 from 2001 APICS Math Competition.)

Solved by M. Bataille ; C. Curtis ; J. G. Heuver ; D. E. Manes ; P. Perfetti ; H. Ri-
cardo ; and D. Văcaru. We give the solution of Michel Bataille expanded by the
editor.

We re-write each term as

n
√
an , where an =

(2n)!

n!nn
.

We want to determine limn→∞ n
√
an. Since each term in the sequence {an} is

nonnegative, by the Root Test, if limn→∞
an+1

an
= ` then limn→∞ n

√
an = ` so we

determine limn→∞
an+1

an
= ` instead. Observe

an+1

an
=

(2n+ 2)!

(n+ 1)!(n+ 1)n+1
· n!nn

(2n)!
=

(2n+ 2)(2n+ 1)

(n+ 1)2
· 1(

1 + 1
n

)n ,
hence

an+1

an
= 2 · 2n+ 1

n+ 1
· 1(

1 + 1
n

)n .
Since limn→∞

2n+1
n+1 = 2 and limn→∞

(
1 + 1

n

)n
= e, it follows that

lim
n→∞

an+1

an
=

4

e

and hence this is our desired limit.

Copyright c© Canadian Mathematical Society, 2014
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THE OLYMPIAD CORNER
No. 315

Nicolae Strungaru

The problems featured in this section have appeared in a regional or national mathematical
Olympiad. Readers are invited to submit solutions, comments and generalizations to any
problem. Please email your submissions to crux-olympiad@cms.math.ca or mail them to
the address inside the back cover. Electronic submissions are preferable.

Submissions of solutions. Each solution should be contained in a separate
file named using the convention LastName FirstName OCProblemNumber (example
Doe Jane OC1234.tex). It is preferred that readers submit a LATEX file and a pdf file
for each solution, although other formats are also accepted. Submissions by regular mail
are also accepted. Each solution should start on a separate page and name(s) of solver(s)
with affiliation, city and country should appear at the start of each solution.

To facilitate their consideration, solutions should be received by the editor by 1 December
2014, although late solutions will also be considered until a solution is published.

Each problem is given in English and French, the official languages of Canada. In issues
1, 3, 5, 7, and 9, English will precede French, and in issues 2, 4, 6, 8, and 10, French
will precede English. In the solutions’ section, the problem will be stated in the language
of the primary featured solution.

The editor thanks Rolland Gaudet, of l’Université Saint-Boniface in Winnipeg, for trans-
lations of the problems.

OC141. Find all non-zero polynomials P (x), Q(x) of minimal degree with real
coefficients such that for all x ∈ R we have:

P (x2) +Q(x) = P (x) + x5Q(x).

OC142. Find all functions f : R 7→ R such that

f(f(x+ y)f(x− y)) = x2 − yf(y)

for all x, y ∈ R.

OC143. Determine all the pairs (p, n) of a prime number p and a positive

integer n for which
np + 1

pn + 1
is an integer.

OC144. Let ABCD be a convex circumscribed quadrilateral such that

∠ABC + ∠ADC < 180◦ and ∠ABD + ∠ACB = ∠ACD + ∠ADB

Prove that one of the diagonals of quadrilateral ABCD passes through the mid-
point of the other diagonal.

Crux Mathematicorum, Vol. 39(7), September 2013
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OC145. Let n ≥ 2 be a positive integer. Consider the matrix An×n with all
entries 1. Define the n2 operations on an n× n matrix by Pij(A) = [a′ij ], where

a′kl =

ß
−akl, if (k, l) ∈ {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)},
akl, otherwise.

Find all n such for which it is possible to find a finite sequence of operations,
Pi1j1 , Pi2j2 , . . . , Pikjk , such that all entries of

A′ = Pikjk(· · · (Pi2j2(Pi1j1(A))) · · · )
are −1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC141. Déterminer tous les polynômes P (x) et Q(x), non nuls, de degré mi-
nimal, à coefficients réels et tels que pour tout x ∈ R, on ait :

P (x2) +Q(x) = P (x) + x5Q(x).

OC142. Déterminer toutes les fonctions f : R 7→ R telles que

f(f(x+ y)f(x− y)) = x2 − yf(y)

pour tout x, y ∈ R.

OC143. Déterminer toutes les couples (p, n), où p est un nombre premier et

n est un entier positif, tels que
np + 1

pn + 1
est un entier.

OC144. Soit ABCD un quadrilatère convexe circonscrit, tel que

∠ABC + ∠ADC < 180◦ et ∠ABD + ∠ACB = ∠ACD + ∠ADB.

Démontrer qu’une des diagonales du quadrilatère ABCD passe par le mi-point de
l’autre diagonale.

OC145. Soit n ≥ 2, un entier positif. Considérer la matrice An×n ayant toutes
les entrées égales à 1. Définissons les n2 opérations sur une matrice n × n par
Pij(A) = [a′ij ],

a′kl =

ß
−akl, si (k, l) ∈ {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)},
akl, autrement.

Déterminer n pour lequel il est possible de construire une suite finie d’opérations
Pi1j1 , Pi2j2 , . . . , Pikjk , telles que les entrées de

A′ = Pikjk(· · · (Pi2j2(Pi1j1(A))) · · · )
sont toutes −1.

Copyright c© Canadian Mathematical Society, 2014
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OLYMPIAD SOLUTIONS

OC81. Find all triplets (x, y, z) of integers that satisfy

x4 + x2 = 7zy2 .

(Originally question 1 from the 2011 Austria Mathematical Olympiad, Part 1.)

Solved by C. Curtis; O. Geupel; and K. Zelator. We give the solution of Chip
Curtis.

The set of solutions is {(0, 0, z), z ∈ Z}.

We show by contradiction that there are no other solutions. Suppose that (x, y, z) ∈
Z3 is a solution with (x, y) 6= (0, 0). If x = 0 then y = 0, so assume that x 6= 0.
We observe that x4 + x2 = x2(x2 + 1) and that x2 + 1 6≡ 0 (mod 7). Thus, the
exponent of the prime 7 in the prime factorization of 7zy2 = x2(x2 + 1) is even,
and so 7zy2 is the square of a positive integer u. It follows that

x2 = u2 − x4 = (u− x2)(u+ x2).

Therefore, u+ x2 divides x2, which implies x = 0 and u = 0, a contradiction.

OC82. The area and the perimeter of the triangle with sides 6, 8, 10 are equal.
Find all triangles with integral sides whose area and perimeter are equal.
(Originally question 2 from the 2011 Albania Balkan Olympiad team selection test.)

Solved by G. Apostolopoulos; Š. Arslanagić; C. Curtis; O. Geupel; D. E. Manes;
and T. Zvonaru. We give the solution of Šefket Arslanagić.

Let a, b, c be the lengths of the sides and let p = a+b+c
2 be the semiperimeter.

Using Heron’s formula we get»
p(p− a)(p− b)(p− c) = 2p ,

or

(p− a)(p− b)(p− c) = 4p .

Let P = a+ b+ c, then P is an integer, and

(P − 2a)(P − 2b)(P − 2c) = 16P .

Taking this equality modulo 2 we get P 3 ≡ 0 (mod 2) therefore P must be an
even integer. This implies that p is an integer.

Let x = p− a, y = p− b, z = p− c. Then x, y, z are integers and

xyz = 4(x+ y + z) . (1)
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As the equation is symmetric in x, y, z, and the order of the sides is irrelevant,
without loss of generality we can assume x ≥ y ≥ z. Then

x =
4y + 4z

yz − 4
, (2)

which implies
4y + 4z

yz − 4
≥ y , and yz > 4.

Therefore
4y + 4z > y2z − 4y ,

or
y2z − 8y − 4z < 0 .

The solutions to the quadratic equation y2z − 8y − 4z = 0 are

y1,2 =
8±
√

64 + 16z2

2z
.

Therefore
4−
√

16 + 4z2

z
< y <

4 +
√

16 + 4z2

z
. (3)

This implies

yz < 4 +
√

16 + 4z2 .

Since z ≤ y we get

z2 − 4 <
√

16 + 4z2 ,

which reduces to
z4 < 12z2 .

As z is a positive integer, we get z ≤ 3. Therefore z ∈ {1, 2, 3}.

Case z = 1. From (3) we get

y ≤ 4 +
√

20

1

therefore
y ≤ 8 .

Moreover, (2) yields

x =
4y + 4

y − 4
= 4 +

20

y − 4
,

which implies 0 < y − 4 and y − 4|20. Therefore y ∈ {5, 6, 8} which leads to

(x, y, z) ∈ {(25, 5, 1), (14, 6, 1), (9, 8, 1)}

Case z = 2. From (3) we get

y ≤ 4 +
√

32

2

Copyright c© Canadian Mathematical Society, 2014



304/ THE OLYMPIAD CORNER

therefore

y ≤ 4 .

Moreover, (2) yields

x =
4y + 8

2y − 4
= 2 +

8

y − 2
,

which implies 0 < y − 2 and (y − 2)|8. Therefore y ∈ {3, 4} which leads to

(x, y, z) ∈ {(10, 3, 2), (6, 4, 2)}

Case z = 3. From (3) we get

y ≤ 4 +
√

52

3

therefore

y ≤ 3 .

As 3 = z ≤ y ≤ 3 we have y = z = 3 and

x =
12 + 12

9− 4

which is not an integer. Therefore there is no solution in this case.

We got five solutions in x, y, z, and using a = y + z; b = x+ z; c = x+ y we get

(a, b, c) ∈ {(6, 25, 29), (7, 15, 20), (9, 10, 17), (5, 12, 13), (6, 8, 10)}.

OC83. On a semicircle with diameter |AB| = d we are given points C and
D such that |BC| = |CD| = a and |DA| = b, where a, b, d are different positive
integers. Find the minimum possible value of d.
(Originally question 2 from the 2011 Bosnia and Herzegovina Olympiad team se-
lection test.)

Solved by Š. Arslanagić; C. Curtis; O. Geupel; T. Zvonaru; and K. Zelator. We
give the solution of Oliver Geupel.

A B

C

D

O

ϕ
ϕ

ϕ

a

a

b

d
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We show that the minimum value of d is 8.

Let O be the midpoint of AB and let ϕ = ∠BOC. Then, ∠COD = ϕ and

∠BAD =
1

2
∠BOD = ϕ. We have cosϕ =

|AD|
|AB| =

b

d
. By the Law of Cosines, we

obtain for triangle OBC that

a2 = 2

Å
d

2

ã2
− 2

Å
d

2

ã2
cosϕ =

d2

2

Å
1− b

d

ã
.

Equivalently,
2a2 = d(d− b). (1)

Reversing our reasoning, we see that, on the other hand, every integer solution
(a, b, d) with

1 ≤ a < d, 1 ≤ b < d, a 6= b (2)

of equation (1) satisfies the original geometric puzzle.

The triplet (a, b, d) = (2, 7, 8) is a solution of (1) and (2). It is now straightforward
to explore (1) and (2) for every specific value 2 ≤ d ≤ 7 and to argue that there is
no solution among them.

OC84. Let m,n be positive integers. Prove that there exist infinitely many
pairs of relatively prime positive integers (a, b) such that

a+ b | ama + bnb.

(Originally question 3 from the 2011 China Math Olympiad, Day 2.)

No solutions were received for this problem.

OC85. For any positive integer d, prove there are infinitely many positive
integers n such that d(n!)− 1 is a composite number.
(Originally question 3 from the 2011 China team selection test, day 1.)

No solutions were received for this problem.
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BOOK REVIEWS
John McLoughlin

The Logician and the Engineer: How George Boole and Claude Shannon Created
the Information Age by Paul J. Nahin
ISBN: 978-0-691-15100-7 (Hardcover), 9781400844654 (e-book)
Princeton University Press, 2012, 248 pages, $24.95 (US)

Reviewed by S. Swaminathan, Dalhousie University, Halifax, NS

How did a branch of mathematics established
in the Victorian era become the basis for some
incredible technological achievements a century
later? Boolean algebra, also called Boolean
logic, is at the heart of the electronic circuitry
in everything we use from our computers and
cars, to our kitchen gadgets and home appli-
ances. The best-selling popular author Paul
Nahin combines in this book engaging prob-
lems and a colourful historical narrative to tell
the remarkable story of how two mathemati-
cians in different eras became founding fathers
of the electronic communications age. They
are George Boole (1815-1864) and electrical en-
gineer and information theorist Claude Shan-
non (1916-2001). Presenting their biographies,
Nahin examines the history of Boole’s innovative ideas, and points out how they
led to Shannon’s groundbreaking work on electrical circuits and information the-
ory. In the course of the exposition, problems in logic are given for the readers
to solve. Also the author writes about the contributions of such key players as
Georg Cantor, Tibor Radó, Marvin Minsky and Alan Turing, in the development
of mathematical logic and data transmission. The author succeeds in developing
the story from fundamental concepts to a deeper and more sophisticated under-
standing of how modern digital machines, such as the computer, are constructed.
Some ideas in quantum mechanics and thermodynamics are introduced to explore
the possible limitations of computing in the present century.

The chapter headings are provided for the interest of potential readers: What
You Need to Know to Read this Book; Introduction to George Boole and Claude
Shannon: Two Mini-Biographies; Boolean Algebra; Logical Switching Circuits;
Boole, Shannon, and Probability; Some Combinatorial Logic Examples; Sequential
State Digital Circuits; Turing Machines; Beyond Boole and Shannon; Epilogue;
and Appendix (Fundamental Electric Circuit Concepts). Each chapter concludes
with Notes and References.

Reading this book would help one understand how gigahertz chips work in elec-
tronic gadgets. The book is well written.
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FOCUS ON . . .
No. 8

Michel Bataille

Generalized Inversion in the Plane

Introduction

Inversion is a nice transformation and a wonderful tool for both the solver and
the poser. Examples of its use are numerous so a choice had to be made. We will
focus on a few situations where a generalized inversion (in a sense specified below)
allows an advantageous solution, that is, is sufficiently general to cover the various
cases of the figure.

Generalizing inversion

Here is the definition I was taught as a student (long ago!) and that will be used
in what follows. Let p 6= 0 and O a point. The inversion with centre O and power
p associates with each point M 6= O the point M ′ such that M ′ is on the line OM
and satisfies (OM ′)(OM) = p, where the bar indicates signed distance (see [1] p.

2) [or alternatively, with the help of a dot product:
−−−→
OM ′ ·

−−→
OM = p ]. Such an

inversion coincides with the inversion in the circle with centre O and radius
√
p

when p > 0 and, for negative p, is the commutative product of the inversion in
the circle centre O, radius

√
−p and the half turn about O (see Li Zhou’s solution

to problem 3510 [2011 : 61] as a first example). Interestingly, given two distinct
points O,A and a point B distinct of O on the line OA, there exists a unique
inversion I with centre O exchanging A and B (no matter the relative position of

O,A,B): the power of I is just p =
−→
OA ·

−−→
OB. Note that p is also the power of O

with respect to any circle through A and B [ or tangent to OA at A in the case
B = A ] so that such a circle is invariant under I. The classical results on inversion
are not affected by this new point of view, except the formula about lengths which

now reads X ′Y ′ =
|p|XY

(OX)(OY )
if X ′ = I(X), Y ′ = I(Y ) (note the absolute value of

p). Geometric constructions form a favorite playground for inversions, so we will
start with a simple example.

A construction

Let Γ be a circle and A,B two points both either exterior or interior to Γ. We
consider the following problem: construct a circle tangent to Γ and passing through
A and B.

Let I be the inversion with centre A whose power is the power of A with respect
to Γ. Note that this power is negative if A,B are interior to Γ and that I(Γ) = Γ.
If γ is a suitable circle, then I(γ) is a line t passing through B′ = I(B) (but not
through A) and tangent to Γ. It follows that γ = I(t). Thus, if B′T , tangent at
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T to Γ, does not pass through A and TA meets Γ again at T ′, the circumcircle of
∆ABT ′ is a solution.

See the figure where an auxiliary circle (BMM ′) has been drawn in order to locate
B′. The reader will easily show that B′ is always exterior to Γ. It follows that the
problem has one solution if AB is tangent to Γ and two solutions otherwise.

A

BB′

T1

T ′
1

T2

T ′
2

M

M ′

Two configurations

First, we consider question 1 of Crux problem 2666 [2001 : 403]. It reads as
follows:

Two circles, Γ with diameter AB, and ∆ with centre A, intersect at
points C and D. The point M (distinct from C and D) lies on ∆. The
lines BM,CM and DM intersect Γ again at N,P and Q, respectively.
Prove that MPBQ is a parallelogram.

The featured solution (by Toshio Seimiya [2002 : 462]) is elementary but does
not cover all the cases of the figure. In contrast, the following solution, based on
generalized inversion, is valid whatever the position of M on ∆.

Let AM intersect Γ again at R and let I be the inversion with centre M exchanging
A and R. This inversion also exchanges B and N , C and P , D and Q, hence ∆
inverts into the line PQ. Thus, AM is perpendicular to PQ at say, K, and R is

the reflection of M in PQ [if A1 = I(K), then MR =
(MA1)(MK)

MA
= 2MK].

Let A2 be the reflection of A in PQ. Then (KM)(KA2) = −(KM)(KA) =
(KR)(KA) = (KP )(KQ), so that A2 is on the circumcircle of ∆MPQ. As a
result, A is the orthocentre of this triangle and AP is perpendicular to MQ. Since
AP is obviously perpendicular to BP , the lines BP,MQ are parallel. Similarly,
MP,BQ are parallel and the conclusion follows.
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A B

C

D

KMN

P

Q

R

A1

A2
Γ

∆

Our second example is a part of [2]: Let the altitude AD of triangle ABC be
produced to meet the circumcircle again at E. Let K, L, M , and N be the
projections of D onto the lines BA, AC, CE, and EB, and let P , Q, R, and S
be the intersections of the diagonals of DKAL, DLCM , DMEN , and DNBK,
respectively. Show that PQRS is a rhombus.

Under the inversion I with centre D such that I(A) = E, the circles with diameters
DA, DC, DE, and DB (which circumscribe the quadrilaterals DKAL, DLCM ,
DMEN , and DNBK) are transformed into lines through E, B, A and C parallel
to the lines AD and BC, thus forming a rectangle whose vertices are the inverses
K ′, L′, M ′, N ′ of K, L, M , N . It follows that M ′N ′ = K ′L′ = BC and M ′L′ =
K ′N ′ = AE. Clearly, the circles Γ = (DM ′N ′) and (ABC) are symmetrical in
the line through the centres of the rectangles ADCN ′ and ADBM ′.

A

B

C

D E

K

L
M

N

K′

L′M ′

N ′

P

Q

R

S

R′

Since Γ = I(MN), the point R′ = I(R) is the point of intersection other than
D of Γ with the line AD and so DR′ = AE. In a similar way, we see that
DP ′ = AE, DQ′ = BC, DS′ = BC, where P ′ = I(P ), Q′ = I(Q), S′ = I(S).
Now, if p denotes the power of I, we have

PQ =
|p|P ′Q′

(DP ′)(DQ′)
=
|p| ·
√
AE2 +BC2

(AE)(BC)
,

and the same result holds for QR, RS, and SP . Hence PQRS is a rhombus.
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Note that this example neatly reveals how inversion works: the initial configuration
is transformed into one easier to handle (here the rectangle K ′L′M ′N ′ and its
subrectangles), providing some results (about the lengths DP ′, DQ′, DR′, DS′)
which, once sent back to the initial figure, yield the desired property.

Exercises

Here are two easy questions for the reader to put generalized inversions into prac-
tice:

1. Solve question 2 of 2666: show that MN is the geometric mean of NC and
ND.

2. (adapted from problem 10874, Am. Math. Monthly, vol. 108, No 5, May
2001) Let A,B,C, and D be points on a circle with centre O and let P
be the point of intersection of AC and BD. If AB is not parallel to CD
and U, V are the circumcentres of ∆APB,∆CPD, prove that OUPV is a
parallelogram.

References

[1] R.A. Johnson, Advanced Euclidean Geometry, Dover reprint, 2007.

[2] F. Javier Garcia Capitan, J. Bosco Romero Marquez, Problem 11547, Am.
Math. Monthly, vol. 119, No 7, Aug. Sept. 2012, p. 611.
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PROBLEM OF THE MONTH
No. 7

Diane and Roy Dowling

This column is dedicated to the memory of former CRUX with MAYHEM Editor-in-
Chief Jim Totten. Jim shared his love of mathematics with his students, with readers
of CRUX with MAYHEM, and, through his work on mathematics contests and outreach
programs, with many others. The “Problem of the Month” features a problem and solution
that we know Jim would have liked.

The Lasting Legacy of Ludoph Lehmus

This article appeared in Manitoba Math Links, Volume II, Issue #3, Spring
2002. The editor thanks the Mathematics Department at the University of
Manitoba for allowing us to reproduce it.

Diane Mary Dowling (1933-2005) and Roy Dowling served as members of the
Department of Mathematics at the University of Manitoba for over 40 years con-
tributing to both research in mathematics and mathematics education as a whole.
In 2006, Roy Dowling established the Diane Dowling Memorial Scholarship to
honour his wife’s academic legacy in mathematics.

In the early nineteenth century an interesting problem came to the attention of
those who enjoyed geometry. It has been said of this problem that its beauty
lies in the simplicity of its statement and in the difficulty of its solution. Before
looking at it, let us consider a problem you may be familiar with:

If in the following diagram AB = AC, BD bisects ∠ABC and CE bisects ∠ACB,
prove that BD = CE.

B C

A

E D

When you have solved this problem, you have proved the statement:

If a triangle is isosceles then two of its internal bisectors are equal.

In about 1840, a question occurred to a Berlin professor, Ludolph Lehmus: is the
converse of this statement true? The converse is:

If two internal bisectors of a triangle are equal then the triangle is isosceles.
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People have thought about the properties of triangles for thousands of years so
it is amazing that there is no record of anyone considering this converse before
Professor Lehmus did. He approached Jacob Steiner with his question. This
famous geometer was soon able to establish the truth of the converse above and
it came to be known as the Steiner-Lehmus Theorem. Before very long Professor
Lehmus himself found a nicer proof. Since that time geometry hobbyists have
been fascinated by the search for simple and neat proofs of the theorem. You can
see some of these proofs on the website:
http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/steiner-lehmus

In the 1960s Martin Gardner, magician and puzzle enthusiast, who regularly con-
tributed to the Scientific American, discussed the Steiner-Lehmus Theorem in one
of his columns. This column stimulated a lot of interest and hundreds of readers
sent in their own proofs. Martin Gardner examined all these proofs and selected
his favourite. This very nice proof was presented by two British engineers, G.
Gilbert and D. MacDonnell. A few years later someone searched for the proof
that Ludolph Lehmus had found over a hundred years previously and discovered
that it was essentially the same as that of Gilbert and MacDonnell! If you would
like to see their proof go to the website:
http://poncelet.math.nthu.edu.tw/disk5/js/geometry/geometry.html

The publication of the Steiner-Lehmus Theorem not only got people trying to find
neat proofs of the theorem itself but also got them thinking about variations on its
theme. For example, is there a corresponding theorem about internal trisectors?
That is, if in the following diagram ∠CBD = 1

3∠CBA, ∠BCE = 1
3∠BCA and

BD = CE, can it be shown that AB = AC?

B C

A

E D

The answer is yes. In fact, the 1
3 may be replaced by any fraction between 0 and

1. The proof is not easy.

Another variation involves exterior angles of a triangle. Consider the following
diagram:

For a triangle ABC, if the bisector of an exterior angle at B meets the side AC
extended at the point F then the line segment BF is called the external bisector
at B. For the triangle ABC in the next diagram the bisector of the exterior angle
∠ABU meets the side AC extended at F so BF is the external bisector at B. The
bisector of the exterior angle ∠ACV meets the side AB extended at G, so CG is
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B C

A

G F

U V

the external bisector at C.

It is not hard to prove that if AB = AC, then BF = CG. In other words, if a
triangle is isosceles then two of its external bisectors are equal. The converse of
this statement is:

If two external bisectors of a triangle are equal then the triangle is isosceles.

At first sight this statement looks very plausible. However, it is not true. A.
Emmerich pointed out the surprising fact that a triangle whose interior angles are
132◦, 36◦ and 12◦ has two of its external bisectors equal. A triangle having these
angles is referred to as an Emmerich triangle. To see why an Emmerich triangle
has two equal external bisectors consider the following diagram.

B C

A

F

G

U V

Triangle ABC is an Emmerich triangle with ∠CAB = 36◦, ∠ABC = 132◦ and
∠BCA = 12◦. The bisector of the exterior angle ∠ABU meets the side AC
extended at F so BF is the external bisector at B. The bisector of the exterior
angle ∠ACV meets the side AB extended at G so CG is the external bisector at
C. We will show that the external bisector BF equals the external bisector CG.

∠FBA =
1

2
(180◦ − 132◦) = 24◦;

∠FBC = ∠FBA+ ∠CBA = 24◦ + 132◦ = 156◦.
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Now consider triangle BCF :

∠BCF = 12◦ and

∠BFC = 180◦ − ∠FBC − ∠BCF = 180◦ − 156◦ − 12◦ = 12◦.

Since ∠BFC = ∠BCF , triangle FBC is isosceles with BF = BC. Now consider
triangle BCG:

∠BCG =
1

2
(180◦ − 12◦) = 84◦,∠GBC = 180◦ − 132◦ = 48◦.

∠BGC = 180◦ − ∠BCG− ∠GBC = 180◦ − 84◦ − 48◦ = 48◦.

Since∠GBC = ∠BGC, triangle BCG is isosceles with CG = BC. Since BF and
CG both equal BC these two external bisectors are equal to each other.

Over 160 years have passed since Ludolph Lehmus posed his question and popular
mathematics magazines are still publishing articles with new proofs of the Steiner-
Lehmus Theorem or its generalizations. For example, the October 2001 issue of
The American Mathematical Monthly carried an article called Other Versions of
the Steiner-Lehmus Theorem. We can certainly say that for amateur geometers
the legacy of Ludolph Lehmus lives on!

Diane and Roy Dowling
Department of Mathematics
University of Manitoba
Winnipeg, MB

A Taste Of Mathematics
Aime-T-On les Mathématiques

ATOM

ATOM Volume II: Algebra Intermediate Methods
by Bruce L.R. Shawyer.

This volume contains a selection of some of the basic algebra that is useful in solving

problems at the senior high school level. Many of the problems in the booklet admit

several approaches. Some worked examples are shown, but most are left to the ingenuity

of the reader.

There are currently 13 booklets in the series. For information on tiles in this series
and how to order, visit the ATOM page on the CMS website:

http://cms.math.ca/Publications/Books/atom.

Crux Mathematicorum, Vol. 39(7), September 2013



PROBLEMS / 315

PROBLEMS
Readers are invited to submit solutions, comments and generalizations to any problem in
this section. Moreover, readers are encouraged to submit problem proposals. Please email
your submissions to crux-psol@cms.math.ca or mail them to the address inside the back
cover. Electronic submissions are preferable.

Submissions of solutions. Each solution should be contained in a sepa-
rate file named using the convention LastName FirstName ProblemNumber (example
Doe Jane 1234.tex). It is preferred that readers submit a LATEX file and a pdf file for
each solution, although other formats are also accepted. Submissions by regular mail are
also accepted. Each solution should start on a separate page and name(s) of solver(s)
with affiliation, city and country should appear at the start of each solution.

Submissions of proposals. Original problems are particularly sought, but other
interesting problems are also accepted provided they are not too well known and
references are given as to their provenance. Ordinarily, if the originator of
a problem can be located, it should not be submitted by someone else without
permission. Solutions, if known, should be sent with proposals. If a solu-
tion is not known, some reason for the existence of a solution should be in-
cluded by the proposer. Proposal files should be named using the convention
LastName FirstName Proposal Year number (example Doe Jane Proposal 2014 4.tex, if
this was Jane’s fourth proposal submitted in 2014).

To facilitate their consideration, solutions should be received by the editor by 1 December
2014, although late solutions will also be considered until a solution is published.

Each problem is given in English and French, the official languages of Canada. In issues
1, 3, 5, 7, and 9, English will precede French, and in issues 2, 4, 6, 8, and 10, French
will precede English. In the solutions’ section, the problem will be stated in the language
of the primary featured solution.

The editor thanks Jean-Marc Terrier of the University of Montreal for translations of the
problems.

An asterisk (?) after a number indicates that a problem was proposed without a solution.

3861. Proposed by B. Sands.

Prove that, for any positive real number x, there is a
√

2×x rectangle on the plane
with each corner having at least one integer coordinate.

3862. Proposed by M. Şahin.

Let triangle ABC be right angled, with ∠BAC = 90◦ and altitude AD. Let K
and L be on AB and CA so that DK and DL are bisectors of angles ∠BDA and
∠CDA respectively. Let M and N be the feet of the perpendiculars from K and
L, respectively, to BC. Prove that KM +NL = AD.

Copyright c© Canadian Mathematical Society, 2014



316/ PROBLEMS

3863. Proposed by M. Bataille.

Let a, b, c be real numbers such that a2 + b2 + c2 ≤ 1. Prove that

a2b(b− c) + b2c(c− a) + c2a(a− b) ≥ (b− c)2(c− a)2(a− b)2

2
.

3864. Proposed by C. Mortici.

For every positive integer m, denote by m!! the product of all positive integers
with same parity as m, which are less than or equal to m. Let n ≥ 1 be an integer.
Prove that

(−1)n(2n)!!− (2n− 1)!! + (2n+ 1)!!
n∑
k=1

1

2k − 1

is divisible by (2n+ 1)2.

3865. Proposed by G. Apostolopoulos.

Prove that in any triangle ABC∑
cyclic

1

1 + cot3
(
A
2

) ≤ 3R

2(r + s)

where s, r, and R are the semiperimeter, the inradius and the circumradius of
ABC, respectively.

3866. Proposed by M. Bataille.

Distinct points B, C, D, E on a line ` are such that ∠BAC = ∠DAE = 90◦ for
some point A. Let X, Y on the circumcircle of ∆CAD be such that ∠AXB =
∠AY E = 90◦. If BX intersects line AC at V and EY intersects line AD at U ,
prove that UV is parallel to `.

3867. Proposed by D. M. Bătineţu-Giurgiu and N. Stanciu.

Let (an)n≥1 be a positive real sequence and a > 0 such that

lim
n→∞

(an − a · n!) = b > 0.

Find
lim
n→∞

(
n+1
√
an+1 − n

√
an
)
.

3868. Proposed by I. Bluskov.

Determine the maximum value of f(x, y, z) = xy + yz + zx − xyz subject to the
constraint x2 +y2 +z2 +xyz = 4, where x, y and z are real numbers in the interval
(0, 2).
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3869. Proposed by D. T. Oai.

It is known that any nondegenerate conic that passes through the vertices of a
triangle ABC and its orthocentre H must be a rectangular hyperbola whose centre
lies on the triangle’s nine-point circle. Prove that the centre of the hyperbola is
the midpoint of the segment that joins H to the fourth point (different from A,B,
and C) where the hyperbola intersects the circumcircle.

3870. Proposed by O. Furdui.

Calculate ∫ 1

0

ln2(
√
x+
√

1− x) dx .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3861. Proposé par B. Sands.

Montrer que pour tout nombre réel positif x, il existe un rectangle
√

2× x dans le
plan dont chacun des coins possède une coordonnée entière.

3862. Proposé par M. Şahin.

Soit ABC un triangle rectangle avec ∠BAC = 90◦ et de hauteur AD. Soit K et L
sur AB et CA de sorte que DK et DL soient les bissectrices respectives des angles
∠BDA et ∠CDA. Soit M et N les pieds des perpendiculaires respectivement issues
de K et L sur BC. Montrer que KM +NL = AD.

3863. Proposé par M. Bataille.

Soit a, b et c trois nombres réels tels que a2 + b2 + c2 ≤ 1. Montrer que

a2b(b− c) + b2c(c− a) + c2a(a− b) ≥ (b− c)2(c− a)2(a− b)2

2
.

3864. Proposé par C. Mortici.

Pour tout entier positif m, notons par m!! le produit de tous les entiers de même
parité que m qui sont plus petits ou égaux à m. Soit n ≥ 1 un entier. Montrer que

(−1)n(2n)!!− (2n− 1)!! + (2n+ 1)!!
n∑
k=1

1

2k − 1

est divisible par (2n+ 1)2.
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3865. Proposé par G. Apostolopoulos.

Montrer que pour tout triangle ABC∑
cyclique

1

1 + cot3
(
A
2

) ≤ 3R

2(r + s)

où s, r et R sont respectivement le demi-périmètre, le rayon du cercle inscrit et
celui du cercle circonscrit de ABC.

3866. Proposé par M. Bataille.

Quatre points distincts B, C, D, E sur une droite ` sont tels que ∠BAC =
∠DAE = 90◦ pour un certain point A. Soit X, Y sur le cercle circonscrit de
∆CAD de sorte que ∠AXB = ∠AY E = 90◦. Si BX coupe la droite AC en V et
EY coupe la droite AD en U , montrer que UV est parallèle à `.

3867. Proposé par D. M. Bătineţu-Giurgiu and N. Stanciu.

Soit (an)n≥1 une suite de nombres réels positifs et a > 0 tel que

lim
n→∞

(an − a · n!) = b > 0.

Calculer
lim
n→∞

(
n+1
√
an+1 − n

√
an
)
.

3868. Proposé par I. Bluskov.

Déterminer la valeur maximale de f(x, y, z) = xy + yz + zx − xyz à la condition
que x2 + y2 + z2 + xyz = 4, où x, y et z sont des nombres réels dans l’intervalle
(0, 2).

3869. Proposé par D. T. Oai.

On sait que toute conique non dégénérée qui passe par les sommets d’un triangle
ABC et son orthocentre H doit être une hyperbole rectangulaire dont le centre se
trouve sur le cercle des neuf points du triangle. Montrer que le centre de l’hyperbole
est le point milieu du segment qui relie H au quatrième point (différent de A,B,
et C) où l’hyperbole coupe le cercle circonscrit.

3870. Proposé par O. Furdui.

Calculer ∫ 1

0

ln2(
√
x+
√

1− x) dx .
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider
for publication new solutions or new insights on past problems.

3326b?. Determine the largest value of k for which

(a2 + 2)(b2 + 2)(c2 + 2) + 4(a2 + 1)(b2 + 1)(c2 + 1) ≥ k(a+ b+ c)2.

This problem was solved by C. R. Pranesachar with significant help from Maple.
His solution was checked by S. Wagon using Mathematica. The desired maximum
value λ of k is equal to 6.2434713875998 . . . . We present editor’s write-up based
on C. R. Pranesachar’s solution.

Let

Qk(a, b, c) = (a2 + 2)(b2 + 2)(c2 + 2) + 4(a2 + 1)(b2 + 1)(c2 + 1)− k(a+ b+ c)2.

We are seeking the largest value of k for which Q(a, b, c) ≥ 0 for all real triples
(a, b, c). In particular, this should hold when a = b = c. We find that

Qk(a, a, a) = f(d)− 9kd,

where

d = a2 and f(d) = 5d3 + 18d2 + 24d+ 112.

Since

f ′(d) = 3(5d2 + 12d+ 8) = 3[(2d+ 3)2 + (d2 − 1)] > 0,

for d ≥ 0, we see that f(d) is an increasing convex function. The tangent to its
graph at (u, v) has slope 15u2+36u+24 and the condition that it pass through the
origin is f(u) = uf ′(u) or 5u3 + 9u2 = 6. This equation is satisfied by u slightly
less than 0.69369555. The value (about 56.19124197) of the derivative f ′(u) for
this value of u is the largest value of 9k for which the line y = 9kx lies below
the graph. Thus, we obtain the maximum value λ recorded above of k for which
Qk(a, a, a) ≥ 0 for all real a.

Pranesachar obtained the same result by determining the discriminant of Qk =
f(d)−9kd as a cubic in d to be 108(135k3−837k2−36k−4). The sole real root of
this is λ, and when k exceeds λ, the cubic can assume negative values for positive
d. For example, when k = 6.24334713876, Qk(a, a, a) < 0 when a = 0.8328838.

We now need to verify that Qλ(a, b, c) ≥ 0 for all real triples (a, b, c). Write it as
a quadratic polynomial in a:

Qλ(a, b, c) = (5b2c2+6b2+6c2+8−λ)a2−2λ(b+c)a+(6b2c2+8b2+8c2+12−λ(b+c)2).
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Since the leading coefficient is positive, it suffices to show that its discriminant
is nonpositive. Now the computations get quite formidable, so we sketch the
treatment.

The negative of the discriminant is a quartic polynomial in b that has the form

Ab4 + 4Bb3 + 6Cb2 + 4Db+ E.

Define H = AC−B2, I = AE−4BD+3C2, J = ACE+2BCD−AD2−C3−EB2,
∆ = I3−27J2. To establish that the quadratic is always nonnegative, it suffices to
show that H > 0 and ∆ ≥ 0. The Wikipedia entry provides necessary background:
http://en.wikipedia.org/wiki/Quartic_function

H can be written as the product of a factor that is clearly positive and a polynomial
in c with coefficients that involve λ. Using estimates for λ, we can bound these
coefficients and thus find that H > 0. This is checked by taking λ to nine decimal
places.

Similarly, we can compute ∆ for the parameter k in place of λ and show that it is
the product of three factors, two of which are positive and the third of which can
be shown by Sturm’s Theorem to have no real roots when k 6= λ (see, for example,
the site http://en.wikipedia.org/wiki/Sturm’s_theorem). Thus, using the
continuity with respect to k, we deduce that ∆ ≥ 0 when k = λ. This completes
the determination of the maximum value of k.

3748?. [2012 : 195, 197; 2013 : 240 - 242] Proposed by N. T. Binh.

Given three mutually external circles in general position, there will exist six dis-
tinct lines that are common internal tangents to pairs of the circles. Prove that
if three of those common tangents, one to each pair of the circles, are concurrent,
then the other three common tangents are also concurrent.

Solution 2 by Eberhard Schröder.

Editor’s Comment. Schröder published his solution [3] in German as a research
article. His main result, which he calls “Binh’s Theorem”, is a generalized ver-
sion of our problem. His proof is based on the theory developed by Bachmann
in [1], so that Binh’s theorem holds more generally in classical absolute geometry
(which includes the classical hyperbolic plane). Instead of a strict translation, here
we modify Schröder’s arguments to make use of the tools found in more elemen-
tary texts, such as [2], that deal with transformation geometry; see especially the
summary in [2, Section 3.4].

We shall use lowercase letters to denote lines, and a tilde over the letter to indicate
the reflection in the line. Thus, for any line x we have x̃ = x̃−1. We require three
basic facts about reflections in the lines x, y, and z:

(1) If x, y, z are concurrent then the product x̃ỹz̃ is a reflection.

(2) Conversely, if x̃ỹz̃ is a reflection and x intersects y, then x, y, z are concurrent.
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(3) If y and z are interchanged by reflection in x, then x̃ỹx̃ = z̃.

As an immediate consequence, we have

If x̃ỹz̃ is a reflection then x̃ỹz̃ = z̃ỹx̃ and ỹz̃x̃ = x̃ x̃ỹz̃ x̃ is a reflection as well.

We assume that we are given three mutually external circles (K), (L), and (M)
with respective centres K,L, and M , situated so that each pair of the circles has
two common internal tangents: a and d for circles (K) and (L); b, e for circles
(L), (M); and c, f for circles (M), (K). Our goal is to prove that,

if a, b, and c are distinct and concurrent, then d, e, and f are concurrent.

Notation. The given tangents are denoted by

a = AA′, b = BB′, c = CC ′, d = DD′, e = EE′, and f = FF ′,

with contact points A,C ′, D, F ′ on (K), B,A′, E,D′ on (L), and C,B′, F, E′ on
(M). For distinct points X and Y , denote by [X,Y ] the line segment that joins
X to Y , and by [X,Y 〉 the halfline that starts at X and contains Y .

Consider circle (K) with its tangents a and c through P . By assumption b passes
through P and is different from a and c, so there can be only two possibilities:
either b intersects (K) in exactly two points or it misses (K).

A

A′

B

B′

C

C′

D

D′

E

E′

F

F ′

K

L

M

P Q

m
k

`

a

b

c

d

e

f

x

y

z
u

v

w

Figure 1: P ∈ [A,A′] ∩ [C,C ′] and P 6∈ [B,B′].

Possibility (a). b intersects (K) in two points (Figure 3 (i) and (ii)). Since P
cannot be a contact point, it either lies strictly between A and A′ (Figure 3(i)), or
it lies outside [A,A′] (Figure 3(ii)). Because a, b, c are internal tangents, in both
cases (L) must lie in the sector between the halflines [P,A′〉 and [P,B〉; this forces
(M) to lie in the remaining sector, and we have either

(4) P lies between A and A′ and between C and C ′, but outside the segment
[B,B′] (cf. Figure 3(i)), or

(5) P lies outside all three segments [A,A′], [B,B′], [C,C ′] (cf. Figure 3(ii)).
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A
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Figure 2: P 6∈ [A,A′] ∪ [B,B′] ∪ [C,C ′].
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c
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(M)

(i)

A
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C′

P

c

b

a

(K)
(L)

(M)

(ii)

A

A′

B

B′

C C′P

b

c

a

(L) (K)

(M)

(iii)

AA′

B′

B

C

C′

P

b

a

c

(M)

(L)

(K)

(iv)

Figure 3: Possible positions of P with respect to the segments [A,A′], [B,B′], and [C,C′].

Possibility (b). b misses K (Figure 3 (iii) and (iv)). Again P either lies strictly
between A and A′ as in diagram (iii) of Figure 3, or it lies outside [A,A′] as in (iv).
As with Possibility (a), in both cases there is first exactly one sector where circle
(L) can lie, then one sector remaining for (M); consequently, either P lies between
A and A′ and between B and B′ but not between C and C ′, or P lies between B
and B′ and between C and C ′ but not between A and A′. Note that the diagrams
(i), (iii), and (iv) are identical except for the names assigned to the objects. As
a consequence, whatever the given arrangement of circles, we can always label
the given configuration so that statement (4) or (5) holds. In particular, we are

Crux Mathematicorum, Vol. 39(7), September 2013



SOLUTIONS / 323

assuming that P is always outside the segment [B,B′]; that is, [P,B〉 and [P,B′〉
represent the same halfline.

As in the first two figures, we define six new lines,

k = LM, ` = MK, m = KL,

u = PK, v = PL, w = PM.

Note that the reflection ũ fixes K,P , and the circle (K). Because the tangents
to (K) from P , namely a, c, are different from u and not perpendicular to it, ũ
interchanges a and c as well as their contact points A and C ′. From (4) and (5) we
see that ũ acts on the halflines emanating from P by switching [P,A〉 with [P,C ′〉
and [P,A′〉 with [P,C〉.

Similar remarks apply to ṽ and w̃. Specifically, we have

a
ũ←→ c

w̃←→ b
ṽ←→ a and A

ũ←→ C ′, C
w̃←→ B′, B

ṽ←→ A′.

Recalling from (4) and (5) that [P,B〉 and [P,B′〉 represent the same halfline, it
follows that the product

[P,A′〉 ũ−→ [P,C〉 w̃−→ [P,B′〉 = [P,B〉 ṽ−→ [P,A′〉

fixes the halfline [P,A′〉. Therefore, the rotations

ũw̃ṽã, ũw̃b̃ṽ, and ũc̃w̃ṽ,

which also fix [P,A′〉, must each be the identity rotation. We conclude that

ã = ũw̃ṽ, b̃ = ṽũw̃, and c̃ = w̃ṽũ. (6)

Because u, `,m meet at K, while v,m, k meet at L and w, k, ` meet at M , according
to (1) we can define the lines x, y, z by

x̃ = m̃ũ˜̀, ỹ = k̃ṽm̃, and z̃ = ˜̀w̃k̃. (7)

The lines a, b, c are related to d, e, f by the reflections m̃ (which takes a to d), k̃
(which takes b to e), and ˜̀ (which takes c to f). Thus, according to (3), we have

d̃ = m̃ãm̃, ẽ = k̃b̃k̃ and f̃ = ˜̀̃c˜̀. (8)

From equations (6), (7), and (8) we deduce that

x̃z̃ỹ = m̃ũ ˜̀̀̃ w̃k̃k̃ṽm̃ = m̃ũw̃ṽm̃ = m̃ãm̃ = d̃,

z̃ỹx̃ = ˜̀w̃k̃k̃ṽm̃m̃ũ˜̀ = ˜̀w̃ṽũ˜̀ = ˜̀̃c˜̀ = f̃ ,

ỹx̃z̃ = k̃ṽm̃m̃ũ ˜̀̀̃ w̃k̃ = k̃ṽũw̃k̃ = k̃b̃k̃ = ẽ,
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and, putting them together, therefore

ẽf̃ d̃ = ỹx̃z̃z̃ỹx̃x̃z̃ỹ = ỹx̃ỹz̃ỹ = ỹz̃ỹx̃ỹ = ỹf̃ ỹ.

Because ỹf̃ ỹ is a reflection, (2) tells us that the lines d, e, f are either concurrent
or parallel. However, should d, e, f be parallel and not concurrent, then the circles
(K), (L), (M) would lie on the same side of one of the common internal tangents
d, e or f , contradicting the definition of internal. We conclude, finally, that d, e, f
are concurrent.
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Note that x̃ = m̃ũ˜̀ is equivalent to m̃x̃ = ũ˜̀; this means that the rotation about K through
twice ∠mx equals the rotation about K through twice ∠u`. In other words, x and u are isogonal
with respect to triangle KLM . Of course, the same goes for the pairs y, v and z, w. Those who
are familiar with the notion of isogonal conjugates will recognize that the crux of Schröder’s
argument was to prove that because the lines u, v, w are concurrent at P , their isogonals x, y, z
must be concurrent at the isogonal conjugate of P , call it Q, a point that lies on the three lines
d, e, and f .

It is easy to arrange the three circles so that two of d, e, f coincide. Of course, these three lines
cannot all coincide because each is a common internal tangent to a pair of the given circles.
Under the assumption that d 6= e we can easily see that the lines d, e, f, x, y, z are concurrent by
(2):

ẽx̃d̃ = ỹx̃z̃x̃x̃z̃ỹ = ỹx̃ỹ, ẽỹd̃ = ỹ(x̃z̃ỹ)(x̃z̃ỹ) = ỹ, and ẽz̃d̃ = ỹx̃z̃z̃x̃z̃ỹ = ỹz̃ỹ,

with analogous equations when e 6= f and f 6= d. Note, finally, that the second of these equations
tells us that ẽỹ = ỹd̃; this confirms that y is the line through the centre L that bisects the angle
formed by the tangents to (L) at D′ and E as depicted in Figures 1 and 2. We can similarly
interpret f̃ z̃ = z̃ẽ and d̃x̃ = x̃f̃ . Of course, the equation ẽỹ = ỹd̃ continues to hold should d = e;
in this case d would necessarily be perpendicular to y at Q, which implies that the line tangent
to all three circles (namely d = e) would touch (L) at Q. Analogous statements hold should
e = f or f = d.

Crux Mathematicorum, Vol. 39(7), September 2013



SOLUTIONS / 325

3761. [2012 : 284, 286] Proposed by P. Saltzman and S. Wagon.

Let Bm,n be a graph of possible moves by a white bishop on an m×n chessboard,
where we assume m ≤ n and that the lower-left square is white.

(a) For which pairs of positive integers (m,n) does Bm,n have a Hamiltonian
cycle?

(b) Show that the edges of Bm,n can be coloured using ∆ colours so that inter-
secting edges are coloured differently, where ∆ is the maximum degree.

One late solution has been received and will be considered for future publication.
We present the proposers’ solution.

(a) It is clear that B1,n and B2,n have no cycles; B3,3 is isomorphic to two
triangles sharing a vertex, so is not Hamiltonian. The larger B3,n graphs are
easily seen to be Hamiltonian (see Figure 1). For m ≥ 4, the vertices fall into
disjoint upward (meaning slope is +1) diagonals whose sizes, from left to right,
have the form s, s, b, b, . . . , b, s, s where s denotes a small value (1, 2, or 3) and b
a large one (4 through m). Each diagonal, being a complete graph, has lots of
Hamiltonian cycles. Because m ≥ 4, we can find bridge-edges connecting each pair
of large diagonals and we can choose the bridges (downward edges (slope is −1)
in the figure) so that the four vertices within a diagonal that form bridge-ends are
distinct. These bridges allow one to splice together cycles from the diagonals, thus
getting a cycle for the all but the small diagonals. But it is easy to add side trips
that pick up the one or two small diagonals at each end (Figure 2). The cases B4,4,
B4,5, and B5,5 have only one large diagonal, but it is easy to arrange the needed
side trips (e.g., a cycle for B4,5 is 00-11-02-24-13-04-22-40-31-20-42-33-44-00).

Figure 1: Hamiltonian cycles for B3,n.

(b) We use the well-known fact that the complete graphs K2n and K2n−1 can be
edge-colored in 2n− 1 colors.

Case 1: m is even, m = n. Here ∆ is 2m−3. Use colors 1, 2, . . . ,m−1 in identical
fashion on the two largest downward diagonals, which are isomorphic to Km−1.
Use colors up to m− 3 on all smaller downward diagonals. There are two central
vertices of degree ∆. One of the colors used, say m − 1, is free at each of these
two vertices; moreover, color m − 1 does not appear on any of the smaller down
diagonals. So use colors m− 1,m, . . . , 2m− 3 on the even-order complete graphs
forming from the upward diagonals.
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Figure 2: A Hamiltonian cycle for B11,16, using bridges to connect the diagonals.

Case 2: m is even, m < n. From now on, we work with the infinite graph
G = Bm,∞. In this case ∆ = 2m− 2. Use an m− 1 edge coloring of Km to color
each upward diagonal with at most m − 1 colors and then do the same with a
different set of colors on the downward diagonals.

Case 3: m is odd, m = 2k+ 1. Here ∆ = 4k. For vertices, use (x, y) with x ∈ Zm,
y ∈ Z, and x + y even. For each 1 ≤ i ≤ k, define the subgraph Gi to consist of
edges of length i or m−i, where the basic unit is taken to be

√
2. It suffices to show

that Gi can be edge-colored using four colors. To that end, we will decompose Gi
into two sets of vertex-disjoint paths, each of which can be 2-edge colored.

For a vertex u and i < (m − 1)/2, define fi(u) to be the vertex at the end of an
upward i-step from u if there is such a vertex; if not, let it be the vertex at the
end of a downward m − i step from u. Similarly define gi(u), reversing the roles
of up and down. For example, for B5,∞ the iterates of the origin under f1 involve
steps of length 1 and 4 and are

(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (8, 0), (9, 1), (10, 2), (11, 3), (12, 4), (16, 0), . . . .

Use fi to partition the vertices into equivalence classes (u ∼ v if for some s,

f
(s)
i (u) = v or f

(s)
i (v) = u), which we call fi-paths, with the same applying to gi

and gi-paths.

The following two claims complete the proof, since each of the fi and gj path sets
is 2-edge colorable.
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Figure 3: The two paths shown in the upper image, when translated, include every
edge in B5,∞ of length 1 or 4, and these edges can be colored with 4 colors. The
lower image does the same for edge-length 2 or 3.

• Any edge in Gi lies in some fi or gi path.
Proof. Suppose edge u = (x, y) ↔ (a, b) = v with x < a has length L. If
L < (m− 1)/2, then if the edge has slope 1 we have fL(u) = v, while if the
slope is −1 we have gL(u) = v. If L ≥ (m − 1)/2 then one of fm−L(u) or
gm−L(u) is v.

• No edge lies in an fi chain and a gj chain.
Proof. An edge u ↔ v in two such chains would have length equal to i and
m− j, with i and j under (m− 1)/2, which is impossible.

3762. [2012 : 284, 286] Proposed by B. Sands.

Three sides of a cyclic quadrilateral ABCD have lengths AB = 1, BC = 2 and
CD = 3, and one of the angles of the quadrilateral equals 60◦. Find all possible
lengths of AD.

Solved by Š. Arslanagic; C. Curtis; O. Geupel; J. Hawkins and D. R. Stone;
R. Hess; K. E. Lewis; D. Smith; E. Swylan; I. Uchiha; D. Văcaru; T. Zvonaru; and
the proposer. There was one incomplete submission. All the submitted solutions
were essentially the same. We present the solution by Kathleen E. Lewis.

Consider the different cases for the possible location of the 60◦ angle. For each
case we let y be the resulting length of AD.

(a) If the 60◦ angle is at ∠A, then the measure of ∠C is 120◦ (since the quadrilateral
is cyclic). Using the law of cosines on triangle BCD, we get

BD2 = 4 + 9− 2 · 2 · 3 cos 120◦ = 19,
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so BD =
√

19. Now using the law of cosines on triangle ABD, we get

19 = 1 + y2 − 2y cos 60◦ = y2 − y + 1.

Then y = (1 +
√

73)/2.

(b) If the 60◦ angle is at ∠B, then the measure of ∠D is 120◦. Applying the law
of cosines to triangle ABC, we get

AC2 = 1 + 4− 2 · 1 · 2 cos 60◦ = 3,

so AC =
√

3. Looking at triangle DAC, we see that this is impossible, since ∠D is
the largest angle, but is not opposite the longest side. [Alternatively, the algebra
comes down to 3 = 9 + y2 + 3y has no real solution.]

(c) If the 60◦ angle is at ∠C, then the measure of ∠A is 120◦. Applying the law
of cosines first to triangle BCD, we get

BD2 = 4 + 9− 2 · 2 · 3 cos 60◦ = 7,

so BD =
√

7. Now applying it to triangle ABD to find y = AD, we get

7 = 1 + y2 − 2y cos 120◦ = 1 + y2 + y.

Thus y2 + y − 6 = 0, so y = 2.

(d) If the 60◦ angle is at ∠D, then the measure of ∠B is 120◦. Applying the law
of cosines first to triangle ABC, we get

AC2 = 1 + 4− 2 · 1 · 2 cos 120◦ = 7,

so AC =
√

7. Now applying it to triangle BCD, we get

7 = 9 + y2 − 6y cos 60◦ = 9 + y2 − 3y,

so y2 − 3y + 2 = 0, and y = 2 or 1.

In conclusion, the length of AD could be 1, 2 or (1 +
√

73)/2. For each of these
values, the angle opposite the 60◦ angle was taken to be 120◦, which implies that
the cyclic quadrilateral indeed exists.

3763. [2012 : 284, 286] Proposed by G. Apostolopoulos.

Let a, b, c be positive real numbers. Prove that

a

2a+ b+ c
+

b

2b+ c+ a
+

c

2c+ a+ b
≤ a

2b+ 2c
+

b

2c+ 2a
+

c

2a+ 2b
.

Solved by A. Alt; AN-anduud Problem Solving Group; Š. Arslanagić; D. Bai-
ley, E. Campbell and C. R. Diminnie; M. Bataille; R. Boukharfane; C. Cur-
tis; M. Dincă (2 solutions); O. Faynshteyn; O. Geupel; D. Koukakis; K. Lau;
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S. Malikic; P. McCartney; P. Perfetti; A. Plaza; P. De; C. M. Quang; E. Suppa;
I. Uchiha; D. Vǎcaru; S. Wagon; P. Y. Woo; T. Zvonaru; and the proposer. We
present 4 different solutions.

Solution 1 by Itachi Uchiha.

Let x = b+ c, y = c+ a, z = a+ b. The claimed inequality is equivalent to

y + z − x
y + z

+
z + x− y
z + x

+
x+ y − z
x+ y

≤ y + z − x
2x

+
z + x− y

2y
+
x+ y − z

2z
,

3−
Å

x

y + z
+

y

z + x
+

z

x+ y

ã
≤ y + z

2x
+
z + x

2y
+
x+ y

2z
− 3

2
,

9 ≤ y + z

x
+
z + x

y
+
x+ y

z
+

2x

y + z
+

2y

z + x
+

2z

x+ y
. (1)

To prove (1), we apply the AM-GM inequality:

y + z

x
+
z + x

y
+
x+ y

z
+

2x

y + z
+

2y

z + x
+

2z

x+ y

=
y + z

2x
+
z + x

2y
+
x+ y

2z
+
y + z

2x
+
z + x

2y
+
x+ y

2z
+

2x

y + z
+

2y

z + x
+

2z

x+ y

≥ 9 · 9

 
y + z

2x
· z + x

2y
· x+ y

2z

≥ 9 · 9

 √
yz

x
·
√
zx

y
·
√
xy

z

= 9,

with equality if and only if x = y = z, i.e., a = b = c.

Solution 2 by Ercole Suppa.

The desired inequality follows directly from∑
cyclic

Å
a

2b+ 2c
− a

2a+ b+ c

ã
=
∑
cyclic

a (2a− b− c)
2 (b+ c) (2a+ b+ c)

≥
∑
cyclic

a (2a− b− c)
2 (a+ b+ c) (2a+ 2b+ 2c)

=
2a2 + 2b2 + 2c2 − 2bc− 2ca− 2ab

4 (a+ b+ c)
2

=
(b− c)2 + (c− a)

2
+ (a− b)2

4 (a+ b+ c)
2

≥ 0.
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Solution 3 by Radouan Boukharfane.

We have ∑
cyclic

2a

2a+ b+ c
≤
∑
cyclic

1

2

Å
a

a+ b
+

a

a+ c

ã
=

3

2
≤
∑
cyclic

a

b+ c
.

The first inequality is the AM-GM inequality; the second is Nesbitt’s inequality.

Solution 4 by Phil McCartney.

Without loss of generality, we may assume that a+b+c = 1, so that, for example,

a

2b+ 2c
− a

2a+ b+ c
=

a

2− 2a
− a

1 + a
=
a

2

Å
3a− 1

1− a2

ã
.

Thus the claimed inequality is equivalent to∑
cyclic

g (a) ≥ 0, where g (x) = x

Å
3x− 1

1− x2

ã
for 0 ≤ x < 1.

On that interval,

g′′ (x) =
2
(
−x3 + 9x2 − 3x+ 3

)
(1− x2)

3 > 0,

so that g is convex there. By Jensen’s inequality,∑
cyclic

g (a) ≥ 3 · g
Å
a+ b+ c

3

ã
= 3 · g

Å
1

3

ã
= 0.

Editor’s note: notice the following

−x3 + 9x2 − 3x+ 3 =
Ä
4
√

2− x+ 3
ä Ä

3− 2
√

2− x
ä2

+ 16
Ä
3− 2

√
2
ä
> 0.

3764. [2012 : 285, 286] Proposed by D. M. Bătineţu-Giurgiu and N. Stanciu.

Let (an)n≥1 be a positive real sequence such that lim
n→∞

an+1 − an
n

= a ∈ R+.

Compute

lim
n→∞

Ç
n+1
√
an+1!

n+ 1
−

n
√
an!

n

å
,

where a1! = a1 and an! = an · an−1! for n > 1.

Solved by A. Alt; D. Koukakis; P. Perfetti; D. Vǎcaru; and the proposer. One
other solution arrived at the correct answer via a step that the author did not
clarify and the editor was unable to justify. We present the solution by Paolo
Perfetti and the proposer (done independently).
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We exploit the Cesaro-Stolz Theorem, which states the following: let {an} and
{bn} be real sequences such that {bn} is strictly increasing and unbounded and
limn→∞(an+1 − an)/(bn+1 − bn) = L, then limn→∞ an/bn = L. Applying this
theorem, we find that

lim
n→∞

an
n2

= lim
n→∞

an+1 − an
(n+ 1)2 − n2

= lim
n→∞

(an+1 − an
n

)
·
Å

n

2n+ 1

ã
=
a

2
.

Observe that

n+1
√
an+1!

n+ 1
−

n
√
an!

n
= n ·

n
√
an!

n2
· (qn − 1) =

n
√
an!

n2
· (qn − 1)

ln qn
· ln(qnn),

where

qn =
n+1
√
an+1!

n+ 1
· n

n
√
an!

.

By the equality of the limits in the ratio and root tests,

lim
n→∞

n
√
an!

n2
= lim
n→∞

n

…
an!

n2n
= lim
n→∞

an+1

(n+ 1)2
·
Å

n

n+ 1

ã2n
=
a

2
· 1

e2
=

a

2e2
.

Also

lim
n→∞

qn = lim
n→∞

Ç
n+1
√
an+1!

(n+ 1)2

å
·
Å

n2

n
√
an!

ã
·
Å
n+ 1

n

ã
= 1,

so that

lim
n→∞

qn − 1

ln qn
= 1.

Finally,

lim
n→∞

qnn = lim
n→∞

Å
an+1!

an!

ã
·
Ç

1
n+1
√
an+1!

å
·
Å

n

n+ 1

ãn
= lim
n→∞

Å
an+1

(n+ 1)2

ã
·
Ç

(n+ 1)2

n+1
√
an+1!

å
·
Å

n

n+ 1

ãn
=
a

2
· 2e2

a
· 1

e
= e.

It follows that the desired limit is equal to a/2e2.

3765. [2012 : 285, 287] Proposed by M. Bataille.

Let ABC be a triangle with circumcircle Γ and orthocentre H and let the circle
with diameter AH intersect Γ again at K. Prove that

(a) KB ·HC = KC ·HB.

(b) lines KB, HC meet on the circle tangent to Γ at K and passing through H.
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Solved by Š. Arslanagić; O. Geupel; L. Giugiuc; S. Mosca; E. Swylan; I. Uchiha;
P. Y. Woo; and the proposer. We present the solution by Leonard Giugiuc.

To avoid degenerate cases that are easily handled directly, we assume that ABC
is a scalene triangle with no right angle.

A

B C

D

H

K = L

N
O

(a) Let O be the centre of Γ and call D and L the second points where Γ meets
the lines AO and DH, respectively. Because AD is a diameter, ∠ALD = 90◦,
and therefore ALH = 90◦ as well; consequently L lies on the circle with diameter
AH. But by definition, L is also on Γ, so that L and K must be the same point,
and we deduce that K ∈ DH. Again because AD is a diameter of Γ, DB ⊥ AB
and DC ⊥ AC; but because H is the orthocentre, we also have CH ⊥ AB and
BH ⊥ AC, whence BDCH is a parallelogram. Consequently, BH = CD. It
follows that ∆KBD and ∆KCD, which share the same base KD, have equal
altitudes and therefore the same area,

KB ·BD sin∠KBD = KC · CD sin∠KCD.

Since ∠KBD and ∠KCD are supplementary, their sines are equal and we deduce
that KB · BD = KC · CD. Recalling that BDCH is a parallelogram, we have
BD = HC and CD = HB and conclude, finally, that KB ·HC = KC ·HB.

(b) Denote by N the point where HC intersects KB. We are to prove that N
lies on the circle through H that is tangent to Γ at K. From part (a) we know that
NH (which is the same line as HC) is parallel to BD. It follows that the triangles
KNH and KBD are homothetic, so that the dilatation with centre K that takes
KNH to KBD, also takes the circumcircle of ∆KNH to the circumcircle of
∆KBD, namely to Γ. These circumcircles must therefore be tangent at K. This
is precisely what was to be proved: the unique circle that both touches Γ at K
and passes through H contains the point N where the lines KB and HC meet.
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3766. [2012 : 285, 287] Proposed by M. A. Alekseyev.

Let x1 < x2 < · · · < xn be positive integers such that(
n∑
k=1

xk

)2

=
n∑
k=1

x3k .

Prove that xk = k for each k = 1, 2, . . . , n.

Solved by A. Alt; AN-anduud Problem Solving Group; M. Bataille; S. Malikić;
D. Smith; E. Swylan; D. Vǎcaru; and the proposer. We present the solution by
Arkady Alt.

We establish the stronger result that, if {xk : k ≥ 1} is a strictly increasing
sequence of positive integers, then for each positive integer n,

x31 + x32 + · · ·+ x3n ≥ (x1 + x2 + · · ·+ xn)2

with equality if and only if xk = k for 1 ≤ k ≤ n.

Observe that, if x0 = 0 and i ≥ 2, then xi ≥ xi−1 + 1 and xi−2 ≤ xi−1− 1, so that

xixi−1 − xi−1xi−2 ≥ (x2i−1 + xi−1)− (x2i−1 − xi−1) = 2xi−1.

This implies that, for k ≥ 2,

xkxk−1 =
k∑
i=2

(xixi−1 − xi−1xi−2) ≥ 2
k∑
i=2

xi−1.

Equality occurs if and only if xi = xi−1 + 1, i.e. xi = i for 1 ≤ i ≤ k.

For each positive integer n,

n∑
k=1

x3k ≥
n∑
k=1

x2k(1 + xk−1) =
n∑
k=1

x2k +
n∑
k=1

xk(xkxk−1)

=
n∑
k=1

x2k + 2
n∑
k=2

xk(x1 + x2 + · · ·+ xk−1) =

(
n∑
k=1

xk

)2

,

with equality if and only if xk = k for 1 ≤ k ≤ n.

Editor’s note. There were three flawed solutions that sought to prove the equality
by induction. They failed to consider the possibility that the truth of the equation
in the problem for n = m+1 need not entail that it holds for any m of the integers
involved.

Bataille built his solution on the identity

n∑
k=1

x3k −

(
n∑
k=1

xk

)2

=
n∑
k=1

xk

k∑
j=1

(xj + xj−1)(xj − xj−1 − 1).
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It is likely that this problem goes back a long way. Malikić pointed out that a
version of it appeared on page 135 of Volume 38:4 (April, 2012) of this journal
as problem OC16, with a solution due to Titu Zvonaru of Comanesti, Romania.
Mihaly Bencze noted that he published a solution to it in an article appearing in
Octagon Mathematical Magazine 6:2 (October, 1998), 110-115. There are vastly
many sets of integers for which the sum of the cubes is equal to the square of the
sum, even for as few as three elements, when we allow repetitions and negative
integers. The 2013 paper Sum of cubes is square of sum by Samer Seraj and
Edward Barbeau (arxiv. org/ pdf/ 1306. 5757v1. pdf ) explores this fecund area
and includes Seraj’s proof of the inequality of our solution. Earlier references to
the problem are welcome.

3767. [2012 : 285, 287] Proposed by D. Milos̆ević.

Let R, r be the circumradius and inradius of a right-angled triangle. Prove that

R

r
+
r

R
≥ 2
√

2 .

Solved by A. Alt; AN-anduud Prolem Solving Group; G. Apostolopoulos; Š. Ar-
slanagić; D. Bailey, E. Campbell and C. R. Diminnie; M. Bataille; B. D. Beasley;
C. Curtis; M. Dincǎ; J. Hawkins and D. Stone; R. Hess; V. Konečný; D. Koukakis;
K. Lau; S. Malikić; C. M. Quang; C. Sánchez-Rubio; E. Suppa; E. Swylan;
I. Uchiha; D. Vǎcaru; H. Wang and J. Wojdylo; P. Y. Woo; T. Zvonaru; and
the proposer. We present 2 solutions.

Solution 1 by Brian D. Beasley.

Since the function f(x) = x+
1

x
is increasing on [1,∞), it suffices to show that

r

R
≤
√

2− 1,

as then
R

r
≥
√

2 + 1

and hence
R

r
+
r

R
= f

Å
R

r

ã
≥ f(

√
2 + 1) = 2

√
2.

For a right triangle, we have r = ab/(a+ b+ c) and R = c/2. Then

r

R
=

2ab

c(a+ b+ c)
=
a+ b− c

c
,

since c(a+ b+ c)(a+ b− c) = c(a2 + 2ab+ b2 − c2) = 2abc. Thus to establish that
r/R ≤

√
2− 1, we must show that (a+ b)/c ≤

√
2, or equivalently that 2ab ≤ c2.

Crux Mathematicorum, Vol. 39(7), September 2013



SOLUTIONS / 335

This follows immediately from c2 − 2ab = (a − b)2 ≥ 0, with equality if and only
if a = b.

Hence R/r + r/R ≥ 2
√

2 for any right triangle, with equality if and only if the
triangle is also isosceles.

Solution 2 by Itachi Uchiha.

A

B C

I

J KO

R

r

Assume notation as on the diagram, where O and I represent the circumcenter
and the incenter, respectively. We have

R = AO ≥ AJ = AI + IJ ≥ AI + IK = (
√

2 + 1)r

Therefore,
R

r
≥
√

2 + 1 and 0 <
r

R
≤
√

2− 1 with equality holding if and only if

AB = AC. Hence

R

r
+
r

R
=

 Å
R

r
− r

R

ã2
+ 4 ≥

…Ä√
2 + 1−

√
2 + 1

ä2
+ 4 = 2

√
2

with equality if and only if the right-angled triangle is isosceles.

3768. [2012 : 285, 287] Proposed by A. Altintaş.

In the equilateral triangle ABC, E and D lie on side AC such that ∠EBD = 30◦,
AE = x, ED = y and DC = z. Show that

y2 = (x+ z)2 − xz .

Editor’s comment. The statement of the problem requires a further condition. We
must add that the points should be labeled so that D lies between C and E. Several
correspondents provided a proof that if the order of the points were A, D, E, C,
then the claimed result never holds.

Solved by A. Alt; AN-anduud Prolem Solving Group; Š. Arslanagić; M. Bataille;
C. Curtis; P. Deiermann; O. Geupel; L. Giugiuc; J. Hawkins and D. R. Stone;
R. Hess; V. Konečný; D. Koukakis; C. Sánchez-Rubio; D. Smith; M. Stoënescu;
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E. Suppa; E. Swylan; I. Uchiha; H. Wang and J. Wojdylo; P. Y. Woo; T. Zvonaru;
and the proposer. We present the solution by Leonard Giugiuc.

Reflect A in the line BE to the point A′, and C in BD to the point C ′. Because
BA = BC and

∠DBC ′ + ∠A′BE = ∠CBD + ∠EBA = 30◦ = ∠DBE,

the points A′ and C ′ must coincide, and we get a triangle EDA′ with sides x, y,
and z; moreover,

∠EA′D = ∠EA′B + ∠BA′D = ∠EAB + ∠BCD = 2 · 60◦ = 120◦.

The cosine law implies that

ED2 = EA′2 +A′D2 − 2EA′ ·A′D cos∠EA′D,

y2 = x2 + z2 − 2xz cos 120◦

= x2 + z2 + xz

= (x+ z)2 − xz.

Editor’s comment. Deiermann observed that, more generally, a similar result holds
for isosceles triangles: It would be no harder to start with an isosceles triangle
ABC whose angles at A and C equal η, where η is a fixed angle between 0 and π

2 .
One would then define E and C to be points of side AC (in the order A,E,D,C)
such that ∠DBE = π

2 − η. Letting, as before, x = AE, y = ED, and z = DC, the
relationship is now

y2 = (x+ z)2 − 2xz(1 + cos 2η).

3769. [2012 : 285, 287] Proposed by P. Ligouras.

Let a, b, and c be the sides, r the inradius and R the circumradius of a triangle
ABC. Prove that

a3c

a2 + ab+ b2
+

b3a

b2 + bc+ c2
+

c3b

c2 + ca+ a2
≥ 6rR .

Solved by A. Alt; AN-anduud Problem Solving Group; G. Apostolopoulos; Š. Ar-
slanagić; M. Bataille; O. Faynshteyn; O. Geupel; K. Lau; S. Malikić; P. Perfetti;
C. M. Quang; T. Zvonaru; and the proposer. We present 2 solutions.

Solution 1 by George Apostolopoulos.

Since a2 + ab+ b2 ≥ 3ab, we have

a3

a2 + ab+ b2
= a− a2b+ ab2

a2 + ab+ b2
≥ a− a2b+ ab2

3ab
= a− 1

3
(a+ b) =

2a− b
3

.
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Therefore,
a3c

a2 + ab+ b2
≥ 2ac− bc

3
.

Similarly, we have

b3a

b2 + bc+ c2
≥ 2ab− ca

3
and

c3b

c2 + ca+ a2
≥ 2bc− ab

3
.

Adding up these three inequalities, we have

a3c

a2 + ab+ b2
+

b3a

b2 + bc+ c2
+

c3b

c2 + ca+ a2
≥ 1

3
(ab+ bc+ ca).

Hence, it suffices to prove that

ab+ bc+ ca ≥ 18rR. (1)

By the AM-HM inequality, we have (a+ b+ c)(
1

a
+

1

b
+

1

c
) ≥ 9, so

ab+ bc+ ca ≥ 9abc

a+ b+ c
. (2)

Since it is well-known that abc = 2rR(a+ b+ c), from inequality (2) we have that
ab+bc+ca ≥ 18rR establishing inequality (1). It is easy to see that equality holds
if and only if the triangle is equilateral.

Solution 2 by Kee-Wai Lau.

We have that

(a3 − b3)c

a2 + ab+ b2
+

(b3 − c3)a

b2 + bc+ c2
+

(c3 − a3)b

c2 + ca+ a2
= (a− b)c+ (b− c)a+ (c− a)b = 0.

Now, applying the well-known result that abc = 2(a+ b+ c)rR, we obtain

a3c

a2 + ab+ b2
+

b3a

b2 + bc+ c2
+

c3b

c2 + ca+ a2
=

1

2

∑
cyclic

(a3 + b3)c

a2 + ab+ b2

=
1

6

∑
cyclic

3(a+ b)(a2 − ab+ b2)c

a2 + ab+ b2
=

1

6

∑
cyclic

(a2 + ab+ b2 + 2a2 + 2b2 − 4ab)(a+ b)c

a2 + ab+ b2

=
1

6

∑
cyclic

Å
1 +

2(a− b)2

a2 + ab+ b2

ã
(a+ b)c ≥ 1

6

∑
cyclic

(a+ b)c

=
1

3
(ab+ bc+ ca) =

2(ab+ bc+ ca)(a+ b+ c)rR

3abc

=

Å
6 +

2(a− b)2 + (b− c)2a+ (c− a)2b

3abc
rR

ã
≥ 6rR.
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3770. [2012 : 286, 287] Proposed by W. Gosnell.

Given a right-angled triangle with legs a, b and hypotenuse c. Assume that the
square of the hypotenuse is equal to twice the triangle’s area plus its perimeter.

Also assume that c− a = 1. Find a, b and c in terms of ϕ =
1 +

√
5

2
.

Solved by Š. Arslanagić (2 solutions); M. Bataille; B. D. Beasley; E. Campbell;
D. Bailey and C. R. Diminnie; M. Coiculescu; C. Curtis; O. Geupel; J. Hawkins
and D. R. Stone; R. Hess; K. E. Lewis; S. Malikić; D. E. Manes; C. Sánchez-
Rubio; D. Smith; E. Suppa; I. Uchiha; H. Wang and J. Wojdylo; T. Zvonaru; and
the proposer. We present the solution by Kathleen E. Lewis.

By the given assumptions, we have

(a+ 1)2 = c2 = ab+ 2a+ b+ c = ab+ 2a+ b+ 1,

so a2 = ab+ b = b(a+ 1) = bc. Thus, c2 − b2 = bc, and then
(c
b

)2
−
(c
b

)
− 1 = 0.

Solving for
c

b
, we get

c

b
=

1±
√

5

2
. Since a negative value for

c

b
makes no sense in

this context, we have
c

b
=

1 +
√

5

2
= φ.

Since
(a
b

)2
+

Å
b

b

ã2
=
(c
b

)2
, then

(a
b

)2
+ 1 = φ2 = φ + 1 and

a

b
=
√
φ. Hence

bφ = c = a+ 1 = b
√
φ+ 1, so b =

1

φ−
√
φ

= φ+
√
φ. Finally, c = bφ = φ(φ+

√
φ)

and a = b
√
φ =
√
φ(φ+

√
φ) = φ(1 +

√
φ).

Editor’s comment. Note that since φ2 = φ+ 1, there are many possible equivalent
forms for the values of a, b and c. For examples, the following are some of the

expressions for a given by the solvers: φ+φ3/2,

√
φ

φ−
√
φ

,

√
φ+ 1

φ− 1
, φ+

√
φ+ φ2.
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