
Crux Mathematicorum with Mathematical Mayhem is a problem-solving

journal at the secondary and university undergraduate levels, published by the Canadian

Mathematical Society eight times per year (February, March, April, May, September,

October, November, and December). Its aim is primarily educational; it is not a research

journal.

Editorial Board
Editor-in-Chief Shawn Godin Cairine Wilson Secondary School

975 Orleans Blvd.
Orleans, ON, Canada K1C 2Z5

Associate Editor Jeff Hooper Acadia University

Skoliad Editors Lily Yen Capilano University

Mogens Hansen Yen–Hansen Learning Centre

Acting Mayhem Editor Shawn Godin Cairine Wilson Secondary School

Mayhem Associate Editor Lynn Miller Cairine Wilson Secondary School

Olympiad Editors Robert Woodrow University of Calgary

Nicolae Strungaru Grant MacEwan University

Book Reviews Editor Amar Sodhi Sir Wilfred Grenfell College

Articles Editor Robert Dawson Saint Mary’s University

Problems Editors Ian Affleck University of the Fraser Valley

Edward Barbeau University of Toronto

Chris Fisher University of Regina

Chris Grandison Ryerson University

Anna Kuczynska University of the Fraser Valley

Cosmin Pohoata Princeton University

Nicolae Strungaru Grant MacEwan University

Edward Wang Wilfrid Laurier University

Managing Editor Johan Rudnick Canadian Mathematical Society

Subscription Information
Order enquiries should be sent to 209 - 1725 St. Laurent Blvd., Ottawa, ON K1G 3V4,

or emailed to
subscriptions@cms.math.ca

On-line access is available to subscribers (with some material for the general public) at
journals.cms.math.ca/CRUX/

Rates for 2011 are given below, payable in Canadian dollars for subscribers with Canadian
addresses, and payable in US dollars for subscribers with non-Canadian addresses. For Canadian
addresses, please add 5% GST or 13% HST, as applicable (11883 3979 RT). The subscription
rates include hard copy and on-line access, handling charges and delivery by surface mail.

Institutions $ 132.00
Individual non-CMS members $ 100.00
Schools and CEGEPS $ 52.00
Students $ 47.00
Individual CMS members $ 47.00

Back issues of Crux Mathematicorum and of Crux Mathematicorum with
Mathematical Mayhem are available from the CMS Office for $26 per issue ($13 for CMS
members), plus shipping and handling charges.

Shipping and Handling Rates for Back Issues

Destination First issue Each additional issue Air mail per shipment

Canada (CDN) $ 5.00 $ 1.00 Please contact our
USA (US) $ 7.00 $ 2.00 office for Air Mail
Other (US) $ 8.00 $ 3.00 delivery quotes

Copyright
The Canadian Mathematical Society grants permission to individual readers of this

publication to copy articles for their own personal use.

c©CANADIAN MATHEMATICAL SOCIETY 2011. ALL RIGHTS RESERVED.
PUBLISHED BY THE CANADIAN MATHEMATICAL SOCIETY.

PRINTED IN CANADA BY THISTLE PRINTING LIMITED.

ISSN 1706-8142 (Print) 1496-4309 (Online) See inside back cover for more information
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Ronde finale, 2010/2011

- Solutions to questions of the Niels Henrik Abel Mathematics Contest
2009–2010, 2nd Round

415 Mathematical Mayhem Shawn Godin

415 Mayhem Problems: M507–M512

418 Mayhem Solutions: M470–M475

423 The Olympiad Corner: No. 297 R.E. Woodrow and Nicolae Strungaru

423 Olympiad Corner Problems: OC41–OC50

In this Corner are solutions from readers to some problems from

- Olimpiada Nacional Escolar de Matematica 2009, Level 2
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This new, occasionally appearing column, highlights situations that reappear
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454 Problems: 3676–3687

This month’s “free sample” is:

3687. Proposed by Albert Stadler, Herrliberg, Switzerland.

Let n be a nonnegative integer. Prove that

∞∑
k=0

kn

k!

(
k + 1 −

1

k!

∫ ∞
1

e−ttk+1dt

)
=

n∑
k=0

S(n, k)

k + 2
,

where kn is taken to be 1 for k = n = 0 and S(n, k) are the Stirling
numbers of the second kind that are defined by the recursion

S(n,m) = S(n−1,m−1)+mS(n−1,m), S(n, 0) = δ0,n, S(n, n) = 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3687. Proposé par Albert Stadler, Herrliberg, Suisse.

Soit n un entier non négatif. Montrer que

∞∑
k=0

kn

k!

(
k + 1 −

1

k!

∫ ∞
1

e−ttk+1dt

)
=

n∑
k=0

S(n, k)

k + 2
,

où l’on pose kn = 1 pour k = n = 0 et où S(n, k) sont les nombres de
Striling du second ordre, définis par la récursion

S(n,m) = S(n−1,m−1)+mS(n−1,m), S(n, 0) = δ0,n, S(n, n) = 1 .

459 Solutions: 3568, 3573, 3576–3580, 3582–3587
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SKOLIAD No. 136

Lily Yen and Mogens Hansen
Please send your solutions to problems in this Skoliad by October 1, 2012. A
copy of CRUX with Mayhem will be sent to one pre-university reader who sends
in solutions before the deadline. The decision of the editors is final.

Our contest this month is the Final Round of the Swedish Junior High School
Mathematics Contest 2009/2010. Our thanks go to Paul Vaderlind, Stockholm
University, Sweden for providing us with this contest and for permission to publish
it. We also thank Rolland Gaudet, Université de Saint-Boniface, Winnipeg, MB,
for translating the contest.

Swedish Junior High School Mathematics Contest
Final Round, 2010/2011

3 hours allowed

1. The year 2010 is divisible by three consecutive primes. Find the last year
before that with this property.

O P

A B2. Draw a line from the centre, O, of a circle with radius r
to a point, P , outside the circle. Then choose two points,
A and B, on the circle such that AB has length r and is
parallel with OP . Find the area of the shaded region.

3. Five distinct positive numbers are given. No matter
which two of them you choose, one divides the other. The
sum of the five numbers is a prime. Show that one of the five numbers is 1.

4. A large cube consists of eight identical smaller cubes. The faces of each of the
smaller cubes bear the numbers 3, 3, 4, 4, 5, and 5 such that opposite faces bear
the same number. Assign to each face of the large cube the sum of the four visible
numbers. Show that the numbers assigned to the faces of the large cube cannot
be six consecutive integers.

5. The parallelogram ABCD has area 12. The point P is on the diagonal AC.
The area of 4ABP is one third of the area of ABCD. Find the area of4CDP .

6. Place ten numbers in the grid subject to the
following rules:

1. For neighbours in the bottom row, the number on the
right must be twice as large as the number on the left.

2. Other than in the bottom row, each number is the sum
of the two numbers immediately below it.

Find the smallest positive integer that you can place in the
bottom left position such that the sum of all ten numbers is a square.
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Concours mathématique suédois

Niveau école intermédiaire
Ronde finale 2010/2011

Durée : 3 heures

1. En 2010, on constate que ce nombre est divisible par trois nombres premiers
consécutifs. Déterminer la dernière année avant ça, où cette propriété tenait.

O P

A B2. Tracer une ligne du centre, O, d’un cercle ayant rayon r
jusqu’à un point, P , en dehors du cercle. Choisir alors deux
points, A et B, sur le cercle et tels que AB est de longueur
r et est parallèle à OP . Déterminer la surface ombrée.

3. Cinq nombres positifs distincts vous sont donnés.
Qu’importe lesquels deux vous choisissez, l’un d’eux divise
l’autre. La somme des cinq nombres est un nombre premier. Démontrer que l’un
des cinq nombres est 1.

4. Un gros cube est formé de huit petits cubes identiques. Les faces des petits
cubes portent les nombres 3, 3, 4, 4, 5 et 5, de façon à ce que les faces opposées
portent le même nombre. Assigner à chaque face du gros cube la somme de ses
quatre nombres visibles. Démontrer que les nombres assignés aux faces du gros
cube ne peuvent pas être six entiers consécutifs.

5. Le parallelogramme ABCD a une surface de 12. Le point P se trouve sur
la diagonale AC. La surface de 4ABP est le tiers de la surface de ABCD.
Déterminer la surface de 4CDP .

6. Placer dix nombres sur la grille, sujet aux règles suivantes.

1. Pour des voisins dans la rangée du bas, le nombre à
droite doit être deux fois celui à gauche.

2. Pour les rangées autres que celle du bas, chaque nombre
est la somme des deux nombres immédiatement sous
lui.

Déterminer le plus petit entier positif qu’on peut placer
en bas à l’extrême gauche, si la somme des dix nombres est un nombre carré.

Next follow solutions to the Niels Henrik Abel Mathematics Contest, 2009–
2010, 2nd Round, given in Skoliad 130 at [2011 : 3–5].

1. A four-digit whole number is interesting if the number formed by the leftmost
two digits is twice as large as the number formed by the rightmost two digits. (For
example, 2010 is interesting.) Find the largest whole number, d, such that all
interesting numbers are divisible by d.
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Solution by Gesine Geupel, student, Max Ernst Gymnasium, Brühl, NRW,
Germany.

The first interesting numbers are 1005 and 1206. Since 1005 = 3 · 5 · 67
and 1206 = 2 · 32 · 67, their greatest common divisor is 3 · 67 = 201. Thus, d
is a divisor of 201.

On the other hand, if x is an interesting number whose last two digits form
the number k, then the first two digits of x form the number 2k, so x = 200k+
k = 201k. Thus every interesting number is divisible by 201. Consequently,
d = 201.

Also solved by DAVID GOU, student, Burnaby North Secondary School, Burnaby, BC;
and NELSON TAM, student, John Knox Christian School, Burnaby, BC.

2. A calculator performs this operation: It multiplies by 2.1, then erases all digits
to the right of the decimal point. For example, if you perform this operation on
the number 5, the result is 10; if you begin with 11, the result is 23. Now, if you
begin with the whole number k and perform the operation three times, the result
is 201. Find k.

Solution by Rowena Ho, student, École Dr. Charles Best Secondary School,
Coquitlam, BC.

To undo the calculator’s operation, divide by 2.1 and round up. That is,
201/2.1 ≈ 95.7 → 96, 96/2.1 ≈ 45.7 → 46, and 46/2.1 ≈ 21.9 → 22.
Then verify: 22 · 2.1 = 46.2 → 46, 46 · 2.1 = 96.6 → 96, and 96 · 2.1 ≈
201.6 → 201. Thus k = 22 is a possible solution.

If you begin with 23, the result after three steps is 210, and if you begin
with 21, the result after three steps is 193. Thus k = 22 is the only integer
solution.

Also solved by LENA CHOI, student, École Dr. Charles Best Secondary School,
Coquitlam, BC; GESINE GEUPEL, student, Max Ernst Gymnasium, Brühl, NRW, Germany;
and KRISTIAN HANSEN, student, Burnaby North Secondary School, Burnaby, BC.

Our solver’s claim that the inverse operation is to divide by 2.1 and round up is not quite
correct. The calculator sends any number in the interval

�
201
2.1

, 202
2.1

�
≈ [95.72,96.19) to 201.

However, chasing such intervals is much more work than estimating a solution, as our solver
does, verifying it, and checking uniqueness.

A

B

C

DE

3. The pentagonABCDE consists of a square,ACDE, with side
length 8, and an isosceles triangle, ABC, such that AB = BC.
The area of the pentagon is 90. Find the area of 4BEC.

Solution by Kristian Hansen, student, Burnaby North Secondary
School, Burnaby, BC.

Note that EB and EC slice the pentagon into three
triangles. You can therefore find the area of 4BEC by sub-
tracting the areas of 4ABE and 4CDE from the area of
the pentagon.
Since ACDE is a square with side 8, ∠CDE = 90◦,
and the area of 4CDE is 8·8

2
= 32. Since 4ABC is

isosceles with base 8, the distance to B from the line through
A and E is 4. Therefore 4ABE has base |AE| = 8,
height 4, and, thus, area 8·4

2
= 16.

B

C

E

A

8

D
8

8

4
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The area of ABCDE is 90, so the area of 4BEC is
90− 32 − 16 = 42.

Also solved by LENA CHOI, student, École Dr. Charles Best Secondary School,
Coquitlam, BC; GESINE GEUPEL, student, Max Ernst Gymnasium, Brühl, NRW, Germany;
and ROWENA HO, student, École Dr. Charles Best Secondary School, Coquitlam, BC.

4. In how many ways can one choose three different integers between 0.5 and
13.5 such that the sum of the three numbers is divisible by 3?

Solution by Lena Choi, student, École Dr. Charles Best Secondary School,
Coquitlam, BC.

Rem. 1 2 0

1 2 3
4 5 6
7 8 9
10 11 12
13

When adding integers and checking divisibility
(by 3), the only relevant property of the integers is the
remainder (after division by 3). The table lists the
remainders of the integers in question.

If all three integers leave remainder 0, so will the
sum. You can choose three of the four numbers 3, 6, 9,
and 12 in four ways. (Choosing three out of four is the same as choosing the one
to leave behind. Surely, you can choose one of four in four ways.)

If all three numbers leave remainder 1, their sum will leave remainder
1 + 1 + 1 = 3 ≡ 0 (mod 3). You must now choose three of the five
numbers 1, 4, 7, 10, and 13. You can choose the first number in 5 ways, the
second in 4 ways, and the third in 3 ways. Thus you can choose the three numbers
in a specific order in 5 · 4 · 3 = 60 ways. Three numbers can be arranged in 6
ways, so you can choose three of five numbers in 60/6 = 10 ways without order.

If all three numbers leave remainder 2, their sum will leave remainder
2 + 2 + 2 = 6 ≡ 0 (mod 3). You can choose three of the four numbers 2,
5, 8, and 11 in four ways.

Finally, if you choose one number in each column in the table, the sum leaves
remainder 1 + 2+ 0 = 3 ≡ 0 (mod 3). You have 5 choices in the first column,
4 in the second, and 4 in the last. Thus you can choose the three numbers in
5 · 4 · 4 = 80 ways.

All in all, you can choose three numbers whose sum leaves remainder 0 when
divided by 3 in 4 + 10 + 4 + 80 = 98 ways.

Also solved by GESINE GEUPEL, student, Max Ernst Gymnasium, Brühl, NRW,
Germany; and ROWENA HO, student, École Dr. Charles Best Secondary School, Coquitlam,
BC.

5. If a and b are positive integers such that a3 − b3 = 485, find a3 + b3.

Solution by the editors.

Note that 485 = 5 · 97, so 485 can only be written as a product of two
integers in two ways, 5 ·97 and 1 ·485. Now, 485 = a3−b3 = (a−b)(a2+ab+
b2), and both a− b and a2 + ab+ b2 are integers. Also a− b < a2 + ab+ b2

since both a and b are positive integers. This leaves two cases:
If a−b = 1 and a2+ab+b2 = 485, then a = b+1 and (b+1)2+(b+

1)b+b2 = 485, hence b2+2b+1+b2 +b+b2 = 485, so 3b2+3b−484 = 0,
thus 3(b2 + b) = 484. Since b is an integer and 484 is not a multiple of 3, this
is not possible.
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If a− b = 5 and a2 + ab+ b2 = 97, then a = b+5 and (b+5)2 +(b+
5)b+b2 = 97, so b2+10b+25+b2 +5b+b2 = 97, thus 3b2+15b−72 = 0,
hence 3(b + 8)(b − 3) = 0. Since b is positive, b = 3 and a = b + 5 = 8.

Hence the only solution is that a = 8 and b = 3. Thus a3+b3 = 83+33 =
512 + 27 = 539.

6. If a and b are positive integers such that a3 + b3 = 2ab(a + b), find
a−2b2 + a2b−2.

Solution by the editors.

Note that a3+b3 = (a+b)(a2−ab+b2). Since a3+b3 = 2ab(a+b) and
a+ b 6= 0, a2 − ab+ b2 = 2ab, so a2 + b2 = 3ab. Now divide through by ab;

then a
b
+ b

a
= 3. Thus 32 = (a

b
+ b

a
)2 = a2

b2 +2a
b
· b
a
+ b2

a2 = a2b−2+2+a−2b2,

and hence a−2b2 + a2b−2 = 32 − 2 = 7.

7. Let D be the midpoint of side AC in 4ABC. If ∠CAB = ∠CBD and the
length of AB is 12, then find the square of the length of BD.

Solution by the editors.

Let a be |AD| (which equals |CD| since D is the
midpoint), let b be |BC|, and let x be |BD|, as
labeled in the diagram. Since ∠CAB = ∠CBD and
∠ACB = ∠BCD then 4ABC ∼ 4BDC. Therefore
|AC|
|BC| =

|BC|
|CD| and

|BC|
|AB| =

|CD|
|BD| , so

2a
b

= b
a
and b

12
= a

x
,

hence 2a2 = b2 and bx = 12a. Thus b2x2 = 144a2 =
72 · 2a2 = 72b2, so |BD|2 = x2 = 72.

D

a

A 12 B

b

C

a

x

8. If x, y, and z are whole numbers and xyz+xy+2yz+xz+x+2y+2z = 28
find x + y + z.

Solution by the editors.

Note: The question should have said that x, y, and z are positive integers.

Noting that many of the terms in the given equation contain an x, one may
try to factor out that x: x(yz+ y+z+1)+2yz+2y+2z = 28. Noting that
the x-free terms almost equal twice the expression in the brackets, one may try to
reconstruct the expression in the brackets: x(yz+y+z+1)+2yz+2y+2z+2 =
30, so x(yz+y+z+1)+2(yz+y+z+1) = 30, so (x+2)(yz+y+z+1) = 30.

Encouraged by this success, try the idea again: (x+2)
�
y(z+1)+z+1

�
= 30,

so (x + 2)(y + 1)(z + 1) = 30 = 2 · 3 · 5. Since x, y, and z are all positive
integers, x + 2 ≥ 3, y + 1 ≥ 2, and z + 1 ≥ 2. Therefore the only possible
solutions are (x+2, y+1, z+1) = (3, 2, 5), (x+2, y+1, z+1) = (3, 5, 2),
(x + 2, y + 1, z + 1) = (5, 2, 3), and (x + 2, y + 1, z + 1) = (5, 3, 2).
That is, (x, y, z) = (1, 1, 4), (x, y, z) = (1, 4, 1), (x, y, z) = (3, 1, 2), and
(x, y, z) = (3, 2, 1). In all four cases, x + y + z = 6.

If you allow x, y, and z to be whole numbers, you have to consider a few more cases
for (x, y, z), namely: (0, 0, 14), (0, 2, 4), (0, 4, 2), (0, 14, 0), (1, 0, 9), (1, 9, 0), (3, 0, 5),
(3, 5, 0), (4, 0, 4), (4, 4, 0), (8, 0, 2), (8, 2, 0), (13, 0, 1), (13, 1, 0), and (28, 0, 0). This
adds 8, 10, 14, and 28 as possible values of x + y + z.
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9. Henrik’s math class needs to choose a committee consisting of two girls and
two boys. If the committee can be chosen in 3630 ways, how many students are
there in Henrik’s math class?

Solution by the editors.

Say Henrik’s class has x girls and y boys. You can choose the first girl for
the committee in x ways and the second girl in x− 1 ways. Thus you can choose
the two girls in a particular order in x(x − 1) ways. However, the order the two
girls were chosen in is irrelevant, so the number of ways to choose the girls for the
committee is 1

2
x(x− 1).

Likewise, you can choose the boys in 1
2
y(y− 1) ways. Thus you can choose

the committee in 1
2
y(y − 1) · 1

2
x(x − 1) ways, so

1

4
x(x − 1)y(y − 1) = 3630,

so
x(x − 1)y(y − 1) = 14520 = 23 · 3 · 5 · 112.

The left-hand side includes two pairs of consecutive integers. To match those on
the right-hand side, one pair must be 11 and 2 · 5 = 10, while the other is 11
and 22 · 3 = 12. Thus x = 11 and y = 12 or the other way around. In either
case, Henrik’s class has 23 students.

10. Let S be 1!(12 + 1 + 1) + 2!(22 + 2 + 1) + 3!(32 + 3 + 1) + · · · +
100!(1002 + 100+ 1). Find

S + 1

101!
. (As usual, k! = 1 · 2 · 3 · · · · · (k − 1) · k.)

Solution by the editors.

Each term in the sum has the form

k!(k2 + k + 1) = k!
�
(k2 + 2k + 1) − k

�
= k!

�
(k + 1)2 − k

�
= k!(k + 1)2 − k! k = (k + 1)! (k + 1) − k! k

Therefore the sum is telescoping:

S = (2! · 2− 1! · 1) + (3! · 3 − 2! · 2)
+ · · ·+ (100! · 100 − 99! · 99) + (101! · 101 − 100! · 100)

= 101! · 101− 1! · 1 = 101! · 101− 1 ,

so S + 1 = 101! · 101, thus S+1
101!

= 101.

This issue’s prize of one copy of Crux Mathematicorum for the best
solutions goes to Rowena Ho, student, École Dr. Charles Best Secondary School,
Coquitlam, BC.

We hope that the very low number of reader solutions this time was caused
by the irregular production schedule that Crux Mathematicorum has suffered
and the due date in September.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The interim Mayhem Editor is Shawn Godin (Cairine Wilson Secondary
School, Orleans, ON). The Assistant Mayhem Editor is Lynn Miller (Cairine
Wilson Secondary School, Orleans, ON). The other staff members are Ann
Arden (Osgoode Township District High School, Osgoode, ON), Nicole Diotte
(Windsor, ON), Monika Khbeis (Our Lady of Mt. Carmel Secondary School,
Mississauga, ON) and Daphne Shani (Bell High School, Nepean, ON).

Mayhem Problems

Please send your solutions to the problems in this edition by 15 October 2012.

Solutions received after this date will only be considered if there is time before publication

of the solutions.

Each problem is given in English and French, the official languages of Canada. In

issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8, French

will precede English.

The editor thanks Rolland Gaudet, Université de Saint-Boniface, Winnipeg, MB,

for translating the problems from English into French.

M507. Proposed by the Mayhem Staff.

A 4 by 4 square grid is formed by removable pegs that are
one centimetre apart as shown in the diagram. Elastic bands may
be attached to pegs to form squares, two different 2 by 2 squares
are shown in the diagram. What is the least number of pegs that
must be removed so that no squares can be formed?

M508. Proposed by the Mayhem Staff.

In 1770, Joseph Louis Lagrange proved that every non-negative integer can
be expressed as the sum of the squares of four integers. For example 6 = 22 +
12+12+02 and 27 = 52+12+12+02 = 42+32+12+12 = 32+32+32+02

(in the theorem it is acceptable to use 02, or to use a square more than once).
Notice that 27 had several different representations. Show that there is a number,
not greater than 1 000 000 that can be represented as a sum of four distinct
non-negative integers in more than 100 ways. (Note that rearrangements are
not considered different, so 42 +32 +22 +12 = 12 +22 +32 +42 are the same
representation of 30.)
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M509. Proposed by Titu Zvonaru, Cománeşti, Romania.

Let ABC be a triangle with angles B and C acute. Let D be the foot of
the altitude from vertex A. Let E be the point on AC such that DE ⊥ AC
and let M be the midpoint of DE. Show that if AM ⊥ BE, then 4ABC is
isosceles.

M510. Proposed by Šefket Arslanagić, University of Sarajevo, Sarajevo, Bosnia
and Herzegovina.

If a, b, c ∈ C such that |a| = |b| = |c| = r > 0 and a + b + c 6= 0,
compute the value of the expression

|ab + bc + ca|
|a+ b + c|

in terms of r.

M511. Proposed by Gili Rusak, student, Shaker High School, Latham, NY,
USA.

Pens come in boxes of 48 and 61. What is the smallest number of pens that
can be bought in two ways if you must buy at least one box of each type?

M512. Selected from a mathematics competition.

A class of 20 students was given a three question quiz. Let x represent
the number of students that answered the first question correctly. Similarly, let y
and z represent the number of students that answered the second and the third
questions correctly, respectively. If x ≥ y ≥ z and x+y+z ≥ 40, determine the
smallest possible number of students who could have answered all three questions
correctly in terms of x, y and z.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M507. Proposé par l’Équipe de Mayhem.

Un grillage 4 par 4 est formé de chevilles amovibles se situant
à un centimètre l’une de l’autre, tel qu’illustré dans le schéma. Des
élastiques sont attachés aux chevilles de façon à former des carrés ;
deux carrés différents de taille 2 par 2 sont illustrés dans le schéma.
Quel est le plus petit nombre de chevilles qui doivent être enlevées
de façon à ce que pas un seul carré puisse être formé ?
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M508. Proposé par l’Équipe de Mayhem.

En 1770, Joseph Louis Lagrange a démontré que tout entier non négatif
pouvait s’écrire comme somme de carrés de quatre entiers. Par exemple,
6 = 22 + 12 + 12 + 02 et 27 = 52 + 12 + 12 + 02 = 42 + 32 + 12 + 12.
(Dans le théorème de Lagrange il est permis d’utiliser 02 et de répéter un carré.)
Remarquer que 27 a plusieurs représentations différentes. Démontrer qu’il y a un
nombre inférieur ou égal à 1 000 000 qui peut être représenté comme somme
de carrés de quatre entiers non négatifs distincts, de plus de 100 manières.
(Noter que les réarrangements ne sont pas considérés distincts, c’est-à-dire que
42 + 32 + 22 + 12 = 12 + 22 + 32 + 42 constituent la même représentation de
30.)

M509. Proposé par Titu Zvonaru, Cománeşti, Roumanie.

Soit ABC un triangle avec angles aigus B et C. Soit D le pied de l’altitude
à partir du sommet A. Soit E le point sur AC tel que DE ⊥ AC ; soit M le
mipoint de DE. Démontrer que si AM ⊥ BE alors 4ABC est isocèle.

M510. Proposé par Šefket Arslanagić, Université de Sarajevo, Sarajevo,
Bosnie et Herzégovine.

Si a, b, c ∈ C tels que |a| = |b| = |c| = r > 0 et a + b + c 6= 0, calculer
la valeur de l’expression

|ab + bc + ca|
|a+ b + c|

en termes de r.

M511. Proposé par Gili Rusak, étudiant, Shaker High School, Latham, NY,
É-U.

Des plumes nous viennent en bôıtes de 48 et de 61. Quel est le plus petit
nombre de plumes qui peuvent être achetées de deux manières différentes si on
doit acheter au moins une bôıte de chaque type ?

M512. Sélectionné à partir de concours mathématiques.

Une classe de 20 étudiants a subi un examen à trois questions. Soit x le
nombre d’étudiants ayant répondu correctement à la première question. De même,
soit y et z les nombres d’étudiants ayant répondu correctement à la deuxième
puis à la troisième question respectivement. Si x ≥ y ≥ z et x + y + z ≥ 40,
déterminer, en termes de x, y et z, le plus petit nombre possible d’étudiants ayant
pu répondre correctement aux trois questions.
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Mayhem Solutions

M470. Proposed by the Mayhem Staff

Vazz needs to buy desks and monitors for his new business. A desk costs
$250 and a monitor costs $260. Determine all possible ways that he could spend
exactly $10 000 on desks and monitors.

Solution by Gili Rusak, student, Shaker High School, Latham, NY, USA.

Let d and m represent the number of desks and monitors Vazz buys,
respectively. Using the information from the problem we get 250d + 260m =
10 000 which reduces to 25d + 26m = 1000 or 26m = 1000 − 25d. Looking
at this modulo 25 we get m ≡ 0 (mod 25). Since 25d + 26m = 1000, we
must have 26m ≤ 1000, so m < 50.

Therefore, m, being a non-negative integer, can only equal 0 or 25. When
m = 0, d = 40 and when m = 25, d = 14.

There are only two possibilities for Vazz to buy: 14 desks and 25 monitors
or 40 desks and 0 monitors.

Also solved by FLORENCIO CANO VARGAS, Inca, Spain; JEREMY COOPER,
student, Angelo State University, San Angelo, TX, USA; A. WIL EDIE, student,
Missouri State University, Springfield, MO, USA; MUHAMMAD HAFIZ FARIZI,
student, SMPN 8, Yogyakarta, Indonesia; AFIFFAH NUUR MILA HUSNIANA,
student, SMPN 8, Yogyakarta, Indonesia; MUHAMMAD ROIHAN MUNAJIH,
student, SMPN 8, Yogyakarta, Indonesia; RICARD PEIRÓ, IES “Abastos”, Valencia,
Spain; CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; BRUNO
SALGUEIRO FANEGO, Viveiro, Spain; and NECULAI STANCIU, George Emil Palade
Secondary School, Buzău, Romania.

M471. Proposed by the Mayhem Staff

Square based pyramidABCDE has a square baseABCD with side length
10. Its other four edges AE, BE, CE, and DE each have length 20. Determine
the volume of the pyramid.

Solution by Scott Brown, Auburn University, Montgomery, AL, USA.

A

B

C

F

E

H

sh

b

The volume of a square pyramid as

shown in the diagram is V = b2h
3

. Accord-
ing to the information given, b = 10 and the
edges EA = EB = EC = ED = 20.

To find h, we will first find the slant
height s. Consider the triangle EBC and
let s = EF , where F is the midpoint of side
BC. Now, triangle EFB is a right triangle,
where EB = 20 and BF = 5.

Using the Pythagorean Theorem yields
s2 = 202 − 52 = 375. So the slant height
is s = 5

√
15.

Now let H be the point where the height meets the square base of the
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pyramid. Triangle EHF is a right triangle. Using the Pythagorean Theorem
again yields h2 = (5

√
15)2 − 52 = 350. So the height is h = 5

√
14.

Thus the volume is V = b2h
3

= 500
√

14
3

square units.

Also solved by FLORENCIO CANO VARGAS, Inca, Spain; MUHAMMAD
HAFIZ FARIZI, student, SMPN 8, Yogyakarta, Indonesia; AFIFFAH NUUR
MILA HUSNIANA, student, SMPN 8, Yogyakarta, Indonesia; MITEA MARIANA,
No. 2 Secondary School, Cugir, Romania; MUHAMMAD ROIHAN MUNAJIH,
student, SMPN 8, Yogyakarta, Indonesia; RICARD PEIRÓ, IES “Abastos”, Valencia,
Spain; CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; GILI
RUSAK, student, Shaker High School, Latham, NY, USA; BRUNO SALGUEIRO FANEGO,
Viveiro, Spain(two solutions); AND NECULAI STANCIU, George Emil Palade Secondary
School, Buzău, Romania.

The problem could also be solved by using the Pythagorean Theorem to find the length of
the diagonal of the base, then using the Pythagorean Theorem a second time in a triangle such
as 4EHB. About half the solutions used this method while the rest were similar to the featured
solution.

M472. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania

Suppose that x is a real number. Without using calculus, determine the

maximum possible value of
2x2

− 8x + 17

x2 − 4x + 7
and the minimum possible value of

x2 + 6x + 8

x2 + 6x + 10
.

Solution by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain.

We have

2x2 − 8x + 17

x2 − 4x + 7
=

2(x2 − 4x + 7) + 3

x2 − 4x+ 7

= 2 +
3

x2 − 4x+ 7

= 2 +
3

(x − 2)2 + 3
.

Hence maximizing
2x2

− 8x + 17

x2 − 4x + 7
is equivalent to maximizing

3

(x − 2)2 + 3
. This,

in turn, is equivalent to minimizing (x − 2)2 + 3. Since (x − 2)2 ≥ 0, the sum
(x − 2)2 + 3 is a minimum when x − 2 = 0, i.e. when x = 2.

Thus the maximum value of
2x2

− 8x + 17

x2 − 4x + 7
is 2 + 3

3
= 3.

Similarly, we have

x2 + 6x + 8

x2 + 6x + 10
= 1 − 2

(x + 3)2 + 1
.

Hence minimizing
x2 + 6x + 8

x2 + 6x + 10
is equivalent to maximizing

2

(x + 3)2 + 1
. Thus

the minimum occurs when x = −3 and the minimum value is −1.
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Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; FLORENCIO
CANO VARGAS, Inca, Spain; MITEA MARIANA, No. 2 Secondary School, Cugir, Romania;
RICARD PEIRÓ, IES “Abastos”, Valencia, Spain; CAO MINH QUANG, Nguyen Binh Khiem
High School, Vinh Long, Vietnam; HENRY RICARDO, Tappan, NY, USA; GILI RUSAK,
student, Shaker High School, Latham, NY, USA; BRUNO SALGUEIRO FANEGO, Viveiro,
Spain; and the proposer.

M473. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania

Determine all pairs (a, b) of positive integers for which a2+b2−2a+b = 5.

I. Solution by George Apostolopoulos, Messolonghi, Greece.

Rearranging the equation we obtain a2 − 2a + b2 + b − 5 = 0 which we
will treat as a quadratic equation in a with discriminant

D = (−2)2 − 4 · 1(b2 + b − 5) = 4 − 4b2 − 4b + 20 = −4b2 − 4b + 24.

In order for our quadratic equation to have real solutions we must have D ≥ 0,
so

−4b2 − 4b + 24 ≥ 0 ⇔ b2 + b − 6 ≤ 0

⇔ (b − 2)(b + 3) ≤ 0

⇔ −3 ≤ b ≤ 2.

But b is a positive integer, so b = 1 or b = 2.

For b = 1, we get a = 3 or a = −1. For b = 2, we get a = 1. Thus the
solutions are the pairs (a, b) = (3, 1) and (a, b) = (1, 2).

II. Solution by Samuel Gómez Moreno, Universidad de Jaén, Jaén, Spain.

First observe that

(2(a − 1))2 + (2b + 1)2 = 4

�
(a − 1)2 +

�
b +

1

2

�2
�

= 4

�
a2 − 2a + 1 + b2 + b +

1

4

�
= 4

�
(a2 − 2a + b2 + b) +

5

4

�
= 4

�
5 +

5

4

�
= 25. (1)

Since there are only two possibilities of writing 25 as the sum of the squares
of two non-negative integers, namely 25 = 02 + 52 and 25 = 32 + 42, equation
(1) gives us the solutions (a, b) = (3, 1) and (a, b) = (1, 2).
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Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca, Spain;
FLORENCIO CANO VARGAS, Inca, Spain; MITEA MARIANA, No. 2 Secondary School,
Cugir, Romania; RICARD PEIRÓ, IES “Abastos”, Valencia, Spain; CAO MINH QUANG,
Nguyen Binh Khiem High School, Vinh Long, Vietnam; GILI RUSAK, student, Shaker High
School, Latham, NY, USA; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; and the proposer.
One incomplete solution was received.

M474. Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia

Let a, b and x be positive integers such that x2 − bx+ a− 1 = 0. Prove
that a2 − b2 is not a prime number.

Solution by Cao Minh Quang, Nguyen Binh Khiem High School, Vinh Long,
Vietnam.

Assume that a2−b2 is a prime number. Since a2−b2 = (a−b)(a+b), and
a, b > 0, hence a−b = 1. Therefore x2−bx+b = 0, so (x2−1)−b(x−1) =
−1 which implies that (x − 1)(x + 1− b) = −1.

Since x is a positive integer, we must have x− 1 = 1, x+ 1− b = −1 or
x = 2, b = 4 which implies that a = 5. This yields a2 − b2 = 9, which is not
prime, a contradiction, and we are done.

Also solved by FLORENCIO CANO VARGAS, Inca, Spain; SAMUEL GÓMEZ
MORENO, Universidad de Jaén, Jaén, Spain; RICARD PEIRÓ, IES “Abastos”, Valencia,
Spain; GILI RUSAK, student, Shaker High School, Latham, NY, USA; BRUNO SALGUEIRO
FANEGO, Viveiro, Spain; NECULAI STANCIU, George Emil Palade Secondary School, Buzău,
Romania; and the proposer.

The proposer and most of the solvers worked on the assumption that a prime is a positive
integer. If we are working with integers, then we can consider numbers like −11 to be prime as
well. In this case, 11 and −11 are called associates, and ±1 are called units. Then a prime
number is only divisible by a unit or one of its associates. This idea is used in number theory
when extending the idea of number system and hence extending the idea of what a prime is in
this number system. Only Peiró considered the case where a2 − b2 < 0 which leads to a = 1,
b = 2 and a2 − b2 = −3, a prime, which contradicts the problem.

M475. Proposed by Edward T.H. Wang, Wilfrid Laurier University, Waterloo,
ON

Let bxc denote the greatest integer not exceeding x. For example,
b3.1c = 3 and b−1.4c = −2. Let {x} denote the fractional part of the real
number x, that is, {x} = x − bxc. For example, {3.1} = 0.1 and
{−1.4} = 0.6. Show that there exist infinitely many irrational numbers x such
that x · {x} = bxc.

Solution by Florencio Cano Vargas, Inca, Spain.

First note that the only rational solution is x = 0 (this was problem M437
[2010 : 135,136; 2011 : 14]). Next note there there is no solution if x < 0. Indeed
if x < 0, then x · {x} > x > bxc. Also note that if 0 < x < 1, then {x} = x
so x · {x} = x2 > 0 = bxc. Clearly, x and {x} are either both rational or both
irrational. Thus we will limit ourselves to the case x > 1, where x is irrational.
We will solve the equation for {x}. Let bxc = k > 0, for some positive integer
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k. Then x = k + {x} with 0 < {x} < 1. The given equation is then

({x} + k) · {x} = k,

with solution given by

{x} =
k

2

�r
1 +

4

k
− 1

�
,

where we have discarded the “minus” solution since 0 < {x} < 1. We see that
this solution falls in this range sincer

1 +
4

k
− 1 > 1 − 1 = 0

and

k

2

�r
1 +

4

k
− 1

�
=

1

2
[
p
k2 + 4k − k]

=
1

2
[
È
(k + 2)2 − 4 − k]

<
1

2
[
È
(k + 2)2 − k] = 1.

Therefore we end up with infinitely many irrational solutions for {x}, and
hence we get the infinite family of solutions

x =
k

2

�r
1 +

4

k
+ 1

�
,

where k is any positive integer.

Also solved by SAMUEL GÓMEZ MORENO, Universidad de Jaén, Jaén, Spain;
RICARD PEIRÓ, IES “Abastos”, Valencia, Spain; GILI RUSAK, student, Shaker High School,
Latham, NY, USA; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; NECULAI STANCIU,
George Emil Palade Secondary School, Buzău, Romania; and the proposer.
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THE OLYMPIAD CORNER
No. 297

R.E. Woodrow and Nicolae Strungaru

The problems from this issue come from the Indian IMO Selection Test,
the Colombian Mathematical Olympiad, the Singapore Mathematical Olympiad,
the Serbian Mathematical Olympiad, the Romanian National Olympiad, and the
Finnish National Olympiad. Our thanks go to Adrian Tang for sharing the
material with the editors.

The solutions to the problems are due to the editors by 1 November 2012.

Each problem is given in English and French, the official languages of Canada. In

issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8, French

will precede English. In the solutions’ section, the problem will be stated in the language

of the primary featured solution.

The editors thank Jean-Marc Terrier of the University of Montreal for translations

of the problems.

OC41. Let P be a point in the interior of a triangle ABC. Show that

PA

BC
+

PB

AC
+

PC

AB
≥

√
3 .

OC42. Find the smallest n for which n! has at least 2010 different divisors.

OC43. Find all functions f : R → R satisfying

f(x3 + y3) = xf(x2) + yf(y2) ; ∀x, y ∈ R .

OC44. In a scalene triangle ABC, we denote by α and β the interior angles
at A and B. The bisectors of these angles meet the opposite sides of the triangle
at points D and E respectively. Prove that the acute angle between the lines D

and E does not exceed |α−β|
3

.

OC45. Let a1, a2, a3, ..., a15 be prime numbers forming an arithmetic
progression with common difference d > 0. If a1 > 15, prove that d > 30, 000.

OC46. Let p be a prime number, and let x, y, z be integers so that 0 < x <
y < z < p. Suppose that x3, y3 and z3 have the same remainders when divided
by p. Prove that x2 + y2 + z2 is divisible by x + y + z.
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OC47. Let a, b be two distinct odd positive integers. Let an be the sequence
defined as a1 = a ; a2 = b ; an = the largest odd divisor of an−1 + an−2.
Prove that there exists a natural number N so that, for all n ≥ N we have
an = gcd(a, b).

OC48. The angles of a triangle ABC are π
7
, 2π

7
and 4π

7
. The bisectors meet

the opposite sides at A′, B′ and C′. Prove that A′B′C′ is an isosceles triangle.

OC49. Let N be a positive integer. How many non congruent triangles are
there, whose vertices lie on the vertices of a regular 6N -gon?

OC50. Let n ≥ 2. If n divides 3n + 4n, prove that 7 divides n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC41. Soit P un point intérieur d’un triangle ABC. Montrer que

PA

BC
+

PB

AC
+

PC

AB
≥

√
3 .

OC42. Trouver le plus petit n pour lequel n! possède au moins 2010 diviseurs
différents.

OC43. Trouver toutes les fonctions f : R → R satisfaisant

f(x3 + y3) = xf(x2) + yf(y2) ; ∀x, y ∈ R .

OC44. Dans un triangle scalène ABC, notons α et β les angles intérieurs en
A et B. Les bissectrices respectives de ces angles coupent les côtés opposés du
triangle aux points D et E. Montrer que l’angle aigu entre les droites D et E

n’excède pas |α−β|
3

.

OC45. Soit a1, a2, a3, ..., a15 des nombres premiers formant une progression
arithmétique de raison d > 0. Si a1 > 15, montrer que d > 30, 000.

OC46. Soit p un nombre premier, et soit x, y, z trois entiers tels que 0 < x <
y < z < p. Supposons que x3, y3 et z3 ont les mêmes restes lorsqu’on les divise
par p. Montrer que x2 + y2 + z2 est divisible par x + y + z.

OC47. Soit a, b deux entiers positifs impairs distincts. Soit an la suite définie
par a1 = a ; a2 = b ; an = le plus grand diviseur impair de an−1 + an−2.
Montrer qu’il existe un nombre naturel N tel que, pour tous les n ≥ N , on a
an = gcd(a, b).

OC48. Les angles d’un triangleABC sont π
7
, 2π

7
et 4π

7
. Les bissectrices coupent

les côtés opposés en A′, B′ et C′. Montrer que A′B′C′ est un triangle isocèle .

OC49. Soit N un entier positif. Combien y a-t-il de triangles non congruents
dont les sommets sont sur les sommets d’un 6N -gone régulier ?
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OC50. Soit n ≥ 2. Si n divise 3n + 4n, montrer que 7 divise n.

First the editor apologize to Paolo Perfetti, Dipartimento di Matematica,
Università degli studi di Tor Vergata Roma, Rome, Italy; whose solutions were
misfiled. Correct solutions were received for: Indian Team Selection Test 2007,
#2 and #7; Mediterranean Mathematics Competition 2007, #1 and #4; and
Bulgarian Team First Selection Test, #1. Next we turn to the Olimpiada Nacional
Escolar de Matematica 2009, Level 2, given at [2010: 373].

1. Let a, b, c and d be four integer numbers whose sum is 0. Let

M = (bc − ad)(ac− bd)(ab − cd) .

Show that there is a whole number P such that P 2 = M .

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Henry Ricardo, Tappan, NY, USA; Edward T.H. Wang, Wilfrid Laurier
University, Waterloo, ON; Konstantine Zelator, University of Pittsburgh,
Pittsburgh, PA, USA; and Titu Zvonaru, Cománeşti, Romania. We give Ricardo’s
write-up.

Replacing d by −a− b − c in each factor of M and factoring, we see that
bc−ad = (a+b)(a+c), ac−bd = (a+b)(b+c), and ab−cd = (a+c)(b+c).
Thus M = (bc − ad)(ac − bd)(ab − cd) = (a + b)2(a + c)2(b + c)2 =
[(a+ b)(a + c)(b + c)]2 = P 2.

2. An equilateral triangle of side length 6 is divided into 36 small equilateral
triangles of side length 1. The resulting chart is covered by m markers of type A
and n markers of type B without doubling or leaving empty spaces.
Markers of type A are formed by two equilateral
triangles of side length 1 and markers of type B are
formed from 3 small triangles, as shown in the figure.
Determine all possible values of m.

A B

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA.

Since each marker of type A covers two triangles and each marker of type
B covers three triangles, we have

2m + 3n = 36,

for nonnegative integers m and n. This implies that m ∈ {0, 3, 6, 9, 12, 15, 18}.
We will show that m = 0, 3, 6, 9 are possible, while m = 12, 15, 18 are
impossible.

We orient the large triangle and number the smaller triangles as shown in
the following diagrams.
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17
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22

23
24
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26
27

28
29

30
31

32
33

34
35

36

10
11
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14
15
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5
6

7
8

9

2
3

4

1

m = 0

17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36

10
11

12
13

14
15

16

5
6

7
8

9

2
3

4

1

m = 3

17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36

10
11

12
13

14
15

16

5
6

7
8

9

2
3

4

1

m = 6

17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36

10
11

12
13

14
15

16

5
6

7
8

9

2
3

4

1

m = 9

The diagrams show that m = 0, 3, 6, 9 are possible. For m = 3, we
replaced the triples (4, 8, 9) and (15, 16, 24) covered by markers of type B in
the m = 0 case with the pairs (4, 8), (9, 15), (16, 24) covered by markers
of type A. Similarly for m = 6, we make the further switch of (11, 10, 18)
and (17, 27, 26) to (11, 10), (18, 17), and (27, 26); and for m = 9, we make
the additional switch of (13, 14, 22) and (12, 20, 19) to (14, 22), (13, 12), and
(20, 19).

We note that of the 36 small triangles 21 have a vertex uppermost, while
15 have an edge uppermost. Each marker of type A always covers one triangle of
each of these types, while each marker of type B covers two of one type and one
of the other.

If m = 12, then of the 12 triangles covered by markers of type B, nine
have a vertex on top, and three have the edge on top, which is impossible since at
least one third of the triangles covered by markers of type B must have an edge on
top. Hence, m 6= 12. If m = 15, then all of the six triangles covered by markers
of type B have a vertex on top. Hence, m 6= 15. Likewise, m 6= 18 since 18
markers of type A would require 18 triangles with an edge on top.

Thus, as claimed,

m ∈ {0, 3, 6, 9}.

3. For each positive integer n let d be the largest divisor of n with d ≤ √
n, and

define an = n
d
− d. Show that in the sequence a1, a2, a3 . . ., each nonnegative

integer k appears infinitely often.

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA; and
Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA. We give the
solution by Curtis.
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List the primes 2 = p1 < p2 < p3 < · · · . Given a nonnegative integer
k, for each positive integer j with pj > k we define nj(k) = pj(pj − k), and

dj = pj − k. Then dj is the largest divisor of nj(k) with dj ≤
È
nj(k), and

anj(k) =
nj(k)

dj
−dj = k. Hence, k appears infinitely often in the sequence {an}.

4. On a circle N ≥ 5 points are marked so that the N arcs formed have the
same length. A coin is placed on each point, and Ricardo and Tomás play a game
with the following rules:

• They play alternately.

• Ricardo starts.

• A player may take a coin only if that coin forms an acute triangle with at
least two other coins.

A player loses when he cannot take any coin during his turn.
Does either player have a winning strategy? If so, what is it?

Discussion and solution by Stan Wagon, Macalester College, St. Paul, MN, USA.

The following solution is adapted from a solution in Spanish found by Witold
Jarnicki at www.fileden.com/files/2008/5/31/1938837//CuartaFase2009.pdf.
It is by Sergio Vera (the author of the problem). We use Alice and Bob for the
two players, with Alice moving first.

Bob has a winning strategy for every N ≥ 4. When N is even, Bob can
simply choose the point diametrically opposite to Alice. For if Alice chooses X
there is an acute triangle Xab and neither a nor b can be −X and b cannot be
−a. But then Bob has triangle (−X,−a,−b), all of which are available, by the
symmetry that faced Alice. Thus Alice will always face a symmetric configuration,
and therefore Bob can always move after Alice does.

Now assume N = 2m+1. Call a configuration C of 2k+1 coins, balanced
if for any point X ∈ C, the diameter through X splits the remaining 2k points
into two equalized sets. Then the initial configuration is balanced. To be precise:
the diameter through X defines two semicircles. For C to be balanced, each
semicircle has the point X and exactly k other points.

The following easily proved fact is useful: Three points on a circle form an
acute triangle if and only if for every diameter, the three points include one on
one side of the diameter and one on the other.

Two key facts:

Fact 1: For a 5-coin balanced situation, the player to move loses.

Fact 2: For k ≥ 3 and a 2k + 1-coin balanced situation C, any move on C can
be followed by another move resulting in a 2k − 1-coin balanced situation.

These two facts suffice, since starting from N Bob can keep things balanced,
and so eventually the case N = 5 is reached and Alice loses.
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Proof of Fact 1. If the first player takes coin X, the second player takes any
of the “neighbours” of X (moving around the circle). If the points are Pi in order,
suppose the first player takes P1 and second takes P2. Then 4P2P4P5 is acute,
for if not, there would be a diameter with P2, P4, and P5 on one side. But the
diameter from P2 splits P4 and P5, so any diameter with P2, P4, and P5 on one
side would have to be on one side of diameter from P2, impossible.

Proof of Fact 2. If the first player takes coin X, the second player takes the
coin Y that is the farthest from X (thinking in terms of angular measure from
the center): Let P and Q be the neighbours of X on the two sides. Then Y PQ
is acute as in the proof of Fact 1, and the removal of X and Y leaves a balanced
position.

Note: One can summarize Bob’s strategy in all cases (except N = 5) by
simply saying: If Alice chooses X, Bob chooses the point nearest −X.

Alternate solution by Stephen Morris, Newbury, England; and Stan Wagon,
Macalester College, St. Paul, MN, USA.

Let Alice and Bob be the players who move first or second, respectively. We
let P1 to PN be the positions the coins occupy at the start, in counterclockwise
order. If N is even, then Bob wins by always choosing the point diametrically
opposite to Alice’s choice (as described in the other proof).

Assume 5 ≤ N = 2m+1. Call two positions opposite if they are as close as
is possible to being diametrically opposite; each position is opposite two positions
(that is, P1 and either Pm+1 or Pm+2). We claim that a winning strategy for
Bob is to take an immediately winning move when available and otherwise take
the coin closest to being opposite to Alice’s last move. In what follows assume
that Bob plays by this strategy. We assume the standard geometrical fact that a
chord in a circle subtends an obtuse angle on its near side and an acute angle on
its far side.

Case 1. If a player has a legal move, then all available moves are legal.

Proof. Let P be one of the remaining points, use the diameter from P to
divide the points into two sets, and choose the points Q and R, respectively, in
each set that is farthest from P . Then 4PQR is an acute triangle. The angles
at Q and R are acute because these points straddle a diameter; the angle at P is
acute because if not then Q and R, and therefore all the remaining coins, would
be on the same side of the diameter parallel to QR, contradicting the fact that
there is a legal move.

Case 2. If there are four coins left and they do not lie on a semicircle then Bob
has an immediately winning move.

Proof. The diameter through one of the points divides the other three into
a pair and a singleton. The singleton wins.

Case 3. If a set of coin positions is contained in a semicircle, then there is a set
of m contiguous vacancies.

Proof. The diameter through any position partitions the rest into two sets
of size m. A diameter not through a position can be rotated until it just touches
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a position without affecting the state.

Case 4. At the start, and after each move by Bob, vacant positions can be paired
so that they are opposite each other.

Proof. At the start there are no vacancies. Suppose the assertion is true,
Alice chooses a coin, and Bob has a legal choice. If Bob takes an opposite coin
then it remains true. Suppose Bob cannot take an opposite coin. Suppose without
loss of generality, that Alice takes P1 and Bob takes coin Pm+r+1 (a legal choice
by Case 1). Positions m + 2, . . . ,m + r must be vacant and be paired in the
initial pairing. Since 1 is unavailable, m+2 is paired with 2 and, similarly, these
pairings must be (m+ 2, 2), (m+ 3, 3), . . . , (m+ r, r). Following Bob’s move
there is a new pairing that includes (m+ 2, 1), (m+ 3, 2), . . . , (m+ r + 1, r)
and is otherwise the same.

Case 5. Alice never has an immediately winning move. This means that the given
strategy wins for Bob.

Proof. Suppose she did. If Bob had been faced with 4 coins and had a
legal move, then he would have won by Case 2. Therefore, Alice was facing at
least 5 coins. For Alice’s move to be winning, she must see a semicircle having
only one coin in it. By Case 3, she is faced with a set of m contiguous positions
containing one coin. No positions in this set are opposite so there are m − 1
vacancies paired with other positions in the pairing from Case 4. This leaves at
most two other positions that can contain coins. But that only allows for three
coins, contradiction.

We return to the files of solutions for the October 2010 number of the Corner
and the Sélection OIM 2006 given at [2010: 374–376].

1. Dans le triangle ABC soit D le milieu du côté BC et E la projection de C
sur AD. On suppose que ∠ACE = ∠ABC. Montrer que le triangle ABC est
soit isocèle, soit rectangle.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Chip
Curtis, Missouri Southern State University, Joplin, MO, USA; and Titu Zvonaru,
Cománeşti, Romania. We give the solution of Amengual Covas.

A

B C
D

E

F

We put CA = b, AB = c
and denote by F the foot of the
perpendicular from A to BC.

We have ∠BAF = ∠EAC =
∠DAC (since both ∠BAF and ∠EAC
are complementary to ∠ABC).

Thus the two lines AF and AD
are equally inclined to the arms of ∠A.
Since AD is a median, AF is the
symmedian of 4ABC at A and so AF
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divides the side BC in the ratio of the square of the sides:

BF

FC
=

c2

b2
. (1)

Now, BF = c cosB and FC = b cosC. Hence, from equation (1), we get

cosB

cosC
=

c

b
=

sinC

sinB
,

by the law of sines, which is equivalent to

sinB cosB − sinC cosC = 0

or, equivalently,

sin 2B − sin 2C = 0

which we rewrite as

2 cos

�
2B + 2C

2

�
sin

�
2B − 2C

2

�
= 0,

that is,

cos(B + C) sin(B − C) = 0.

Hence, either cos(B + C) = 0 or sin(B − C) = 0.
Thus, if cos(B +C) = 0, then B +C = 90◦ and 4ABC is right-angled

at A. If sin(B − C) = 0, then B = C and 4ABC is isosceles with b = c.

4. Soient 1 = d1 < d2 < . . . < dk = n les diviseurs positifs de n. Déterminer
tous les n tels que

2n = d2
5 + d2

6 − 1 .

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA.

We claim that the only solution is n = 272.
Note first that 2n > d2

5, and 2n < 2d2
6, so that d5 <

√
2n and d6 >√

n. These imply that n has at most 10, but at least 6 positive divisors. If
n = pr1

1 pr2

2 · · · pr`

` , where p1 < p2 < · · · < p` are primes, then the
number of divisors of n is (r1 + 1)(r2 + 1) · · · (r` + 1) ≤ 10. Hence, ` ≤ 3.

Case 1. Suppose n = pr, where p is prime. Then the divisors of n are
1, p, p2, p3, . . . , pr. Thus, 5 ≤ r ≤ 9. Hence,

2pr = (p4)2 + (p5)2 − 1.

This implies that p divides 1, a contradiction.

Case 2. Suppose n = pr1

1 pr2

2 , where p1 < p2 are primes and r1, r2 ≥ 1. If p1

and p2 are both odd, then 2n = d2
5 + d2

6 − 1 is odd, a contradiction. Hence,
p1 = 2.
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Letting p = p2, we have d5 = 2s1ps2 and d6 = 2t1pt2 for 0 ≤ si, ti ≤ ri,
i = 1, 2. Thus the condition of the problem becomes

2r1+1pr2 = (2s1ps2)2 + (2t1pt2)2 − 1.

If either s1 ≥ 1 and t1 ≥ 1 or s2 ≥ 1 and t2 ≥ 1, then a prime divides 1, a
contradiction. Since (r1 + 1)(r2 + 1) ≤ 10, it follows that r1, r2 ≤ 4. In the
following table, showing the possible pairs (r1, r2), the condition is satisfied by
primes p that satisfy d2

5 + d2
6 − 1 − 2n = 0 .

(r1, r2) n divisors of n Notes d5 d6 d2
5 + d2

6 p

in increasing order −1 − 2n

(1, 2) 2p2 {1, 2, p, 2p, p2, 2p2} p2 2p2 5p4 − 1 − 4p2 None

(1, 3) 2p3 {1, 2, p, 2p, p2, 2p2, p2 2p2 5p4 − 1 − 4p3 None

p3, 2p3}
(1, 4) 2p4 {1, 2, p, 2p, p2, p2 2p2 5p4 − 1 − 4p4 None

2p2, p3, 2p3p4, 2p4}
(2, 1) 4p {1, 2, 4, p, 2p, 4p} p ≥ 5 2p 4p 20p2 − 1 − 8p None

(2, 1) 4p {1, 2, p, 4, 2p, 4p} p = 3 2p 4p 20p2 − 1 − 8p None

(2, 2) 4p2 {1, 2, 4, p, 2p, 4p, p ≥ 5 2p 4p 20p2 − 1 − 8p2 None

p2, 2p2, 4p2}
(2, 2) 4p2 {1, 2, p, 4, 2p, p2, p = 3 2p p2 4p2 + p4 None

4p, 2p2, 4p2} −1 − 8p2

(3, 1) 8p {1, 2, 4, 8, p, 2p, p ≥ 11 p 2p 5p2 − 1 − 16p None

4p, 8p}
(3, 1) 8p {1, 2, 4, p, 8, 2p, p = 5, 7 8 2p 64 + 4p2 None

4p, 8p} −1 − 16p

(3, 1) 8p {1, 2, p, 4, 2p, 8, p = 3 2p 8 4p2 + 64 None

4p, 8p} −2 − 16p

(4, 1) 16p {1, 2, 4, 8, 16, p, p ≥ 17 16 p 256 + p2 17

2p, 4p, 8p, 16p} −1 − 32p

(4, 1) 16p {1, 2, 4, 8, p, 16, p = 11, 13 p 16 p2 + 256 17

2p, 4p, 8p, 16p} −1 − 32p

(4, 1) 16p {1, 2, 4, p, 8, 2p, p = 5, 7 8 2p 64 + 4p2 None

16, 4p, 8p, 16p} −1 − 32p

(4, 1) 16p {1, 2, p, 4, 2p, 8, p = 3 2p 8 4p2 + 64 None

4p, 16, 8p, 16p} −1 − 32p

Hence, the only solution in this case is p = 17, corresponding to n =
16 · 17 = 272. For this n, we have d5 = 16 and d6 = 17.

Case 3. Suppose n = pr1

1 pr2

2 pr3

3 , with p1 < p2 < p3 primes and r1, r2, r3 ≥ 1.
Then 2 · 2 · (r3 + 1) ≤ (r1 + 1)(r2 + 1)(r3 + 1) ≤ 10, implies that r3 ≤ 3

2
.

Hence, r3 = 1. Likewise, r1 = r2 = 1, so that n = p1p2p3. As in case 2,
p1 = 2. We have

4p2p3 = 22α1p2α2

2 p2α3

3 + 22β1p2β2

2 p2β3

3 − 1,

where, for i = 1, 2, 3, αi, βi ∈ {0, 1}, and either αi = 0 or βi = 0. Also, α1

and β1 cannot both be 0. We test the possibilities.
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(α1, β1, α2, 4p2p3 = 22α1p
2α2
2 p

2α3
3 + Implication Possible?

β2, α3, β3) 22β1p
2β2
2 p

2β3
3 − 1

(0, 1, 0, 0, 0, 0) 4p2p3 = 1 + 4 − 1 = 4 p2 = p3 = 1 No

(0, 1, 0, 0, 0, 1) 4p2p3 = 1 + 4p2
3 − 1 = 4p2

3 p2 = p3 No

(0, 1, 0, 0, 1, 0) 4p2p3 = p2
3 + 4 − 1 = p2

3 + 3 p3 = 3 No

(0, 1, 0, 1, 0, 0) 4p2p3 = 1 + 4p2
2 − 1 = 4p2

2 p2 = p3 No

(0, 1, 0, 1, 0, 1) 4p2p = 1 + 4p2
2p

2
3 − 1 = 4p2

2p
2
3 p2 = p3 = 1 No

(0, 1, 0, 1, 1, 0) 4p2p3 = p2
3 + 4p2

2 − 1

(0, 1, 1, 0, 0, 0) 4p2p3 = p2
2 + 4 − 1 = p2

2 + 3 p2 = 3, p3 = 1 No

(0, 1, 1, 0, 0, 1) 4p2p3 = p2
2 + 4p2

3 − 1

(0, 1, 1, 0, 1, 0) 4p2p3 = p2
2p

2
3 + 4 − 1 = p2

2p
2
3 + 3 No

(1, 0, 0, 0, 0, 0) 4p2p3 = 4 + 1 − 1 = 4 No

(1, 0, 0, 0, 0, 1) 4p2p3 = 4 + p2
3 − 1 = p2

3 + 3 p3 = 3 No

(1, 0, 0, 0, 1, 0) 4p2p3 = 4p2
3 + 1 − 1 = 4p2

3 No

(1, 0, 0, 1, 0, 0) 4p2p3 = 4 + p2
2 − 1 = p2

2 + 3 p2 = 3, p3 = 1 No

(1, 0, 0, 1, 0, 1) 4p2p3 = 4 + p2
2p

2
3 − 1 = p2

2p
2
3 + 3 p2p3 = 1 or 3 No

(1, 0, 0, 1, 1, 0) 4p2p3 = 4p2
3 + p2

2 − 1

(1, 0, 1, 0, 0, 0) 4p2p3 = 4p2
2 + 1 − 2 = 4p2

2 p3 = p2 No

(1, 0, 1, 0, 0, 1) 4p2p3 = 4p2
2 + p2

3 − 1

(1, 0, 1, 0, 1, 0) 4p2p3 = 4p2
2p

2
3 + 1 − 1 = 4p2

2p
2
3 p2p3 = 1 No

Hence there are four possibilities to consider. We note that the divisors of
n, in increasing order, are

{1, 2, p2, 2p2, p3, 2p3, p2p3, 2p2p3} or {1, 2, p2, p3, 2p2, 2p3, p2p3, 2p2p3}.

• Suppose (α1, β1, α2, β2, α3, β3) = (0, 1, 0, 1, 1, 0). Then d5 = p3 and
d6 = 2p2. In neither of the above orders for the divisors of n does d6 = 2p2.

• Suppose (α1, β1, α2, β2, α3, β3) = (0, 1, 1, 0, 0, 1). Then d5 = p2 and
d6 = 2p3. But p2 is the third smallest rather than the fifth smallest divisor
of n.

• Suppose (α1, β1, α2, β2, α3, β3) = (1, 0, 0, 1, 1, 0). Then d5 = 2p3 and
d6 = p2 < d6, a contradiction.

• Suppose (α1, β1, α2, β2, α3, β3) = (1, 0, 1, 0, 0, 1). Then d5 = 2p2 and
d6 = p3, which is also impossible since the sixth smallest divisor of n is 2p3

rather than p3.

Hence, the case of three distinct prime factors for n is impossible.
Thus, the only solution is n = 272.

6. Trouver toutes les fonctions f : R → R telles que pour tout, x, y ∈ R on ait
l’égalité suivante

f(f(x) − y2) = f(x)2 − 2f(x)y2 + f(f(y)) . (1)
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Solved by Michel Bataille, Rouen, France.

It is readily checked that the zero function x 7→ 0 and the square function
x 7→ x2 are solutions. We show that there are no other solutions. To this
aim, consider f , different from the zero function, satisfying the given functional
equation (1). Taking x = y = 0 in (1), we obtain f(0) = 0 and then with
y = 0, (1) gives f(f(x)) = f(x)2 for all x ∈ R. It follows that (1) rewrites as

f(f(x) − y2) = f(x)2 − 2f(x)y2 + f(y)2. (2)

With x = 0 and x = y in turn, (2) yields

f(−y2) = f(y)2 (3)

and
f(f(x) − x2) = 2f(x)(f(x) − x2). (4)

Using (3), we can rewrite (2) as

f(f(x) − y2) − (f(x) − y2)2 = f(−y2) − (−y2)2 (5)

and then, taking the images under f and using (4), we are led to

f(x)(f(x) − 2y2)(f(y)2 − y4) = 0 (x, y ∈ R). (6)

Now, assume that for some real number f(a)2 6= a4. Then, a 6= 0 and from
(3), we would have f(x) = 0 or f(x) = 2a2 for all x ∈ R. Taking b ∈ R such
that f(b) 6= 0 (this is possible because f is not the zero function), we obtain
f(b) = 2a2 and from (5) with x = b

4a4 − 4a2y2 = f(2a2 − y2) − f(y)2

for all y ∈ R. Since the right-hand side can take at most 3 values (namely
0, 2a2,−2a2) while the left-hand side can take infinitely many values, we have
reached a contradiction. We conclude that for all y, we have f(y)2 = y4.
Recalling (1), f(−y2) = y4, hence f(u) = u2 for all negative real numbers
u. Also, since y8 = f(−y2)2 = f(f(−y2)) = f(y4), we see that f(u) = u2

when u is positive and finally, f is the square function.

7. Les trois zéros réels du polynôme P (x) = x3 − 2x2 −x+1 sont a > b > c.
Trouver la valeur de l’expression

a2b + b2c + c2a .

Solved by Arkady Alt, San Jose, CA, USA; Chip Curtis, Missouri Southern State
University, Joplin, MO, USA; and Titu Zvonaru, Cománeşti, Romania. We give
Zvonaru’s write-up.

Since P (−1) = −1, P (0) = 1, P (1) = −1, P (2) = −1, P (3) = 7, it
follows that a ∈ (2, 3), b ∈ (0, 1), c ∈ (−1, 0).

We let α = a2b + b2c + c2a, and β = ab2 + bc2 + ca2.
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Since c > −1 and 1 > b > 0, we have

c > −1 ⇒ bc > −b > −1,

hence bc + 1 > 0 or b2c + b > 0.
It follows that, because a > 1,

α > a2b + b2c = a2b + b2c + b − b > a2b − b = b(a2 − 1) > 0,

hence α > 0.
Since a, b, c are the roots of the equation P (x) = 0, we have

a + b + c = 2,

ab + bc + ca = −1,

abc = −1.

From these, we obtain

−2 = (a+b+ c)(ab+bc+ ca) = a2b+ab2+b2c+bc2+ c2a+ ca2+3abc,

that is,
α + β = 1. (1)

Furthermore, we have

αβ = (a2b + b2c+ c2a)(ab2 + bc2 + ca2)

= a3b3 + b3c3 + c3a3 + 3a2b2c2 + abc(a3 + b3 + c3). (2)

Since (x + y + z)3 = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 +
3x2z + 3xz2 + 6xyz, we deduce that

8 = (a + b + c)3 = a3 + b3 + c3 + 3α + 3β − 6

⇒ a3 + b3 + c3 = −3α − 3β + 14 (3)

and

−1 = (ab + bc + ca)3

= a3b3 + b3c3 + c3a3 + 3a2b3c + 3a3b2c + 3ab3c2

+ 3a3bc2 + 3ab2c3 + 3a2bc3 + 6a2b2c2

= a3b3 + b3c3 + c3a3 + 3abc(α + β) + 6a2b2c2

⇒ a3b3 + b3c3 + c3a3 = 3α + 3β − 7. (4)

Using (3) and (4), by (2) we obtain

αβ = 3α + 3β − 7 + 3 + 3α + 3β − 14,

that is
αβ = −12. (5)
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Solving the system (1) and (5),

α + β = 1

αβ = −12,

we obtain (α, β) = (4,−3) and (α, β) = (−3, 4).
Since α > 0, we must have α = 4, hence

a2b + b2c + c2a = 4.

10. Soient a, b, c des nombres réels positifs avec 1
a
+ 1

b
+ 1

c
= 1. Démontrer

l’inégalité suivante:p
ab + c +

p
bc + a +

p
ca+ b ≥

√
abc+

√
a +

√
b +

√
c .

Solved by Arkady Alt, San Jose, CA, USA; George Apostolopoulos, Messolonghi,
Greece; Michel Bataille, Rouen, France; Paolo Perfetti, Dipartimento di
Matematica, Università degli studi di Tor Vergata Roma, Rome, Italy; Henry
Ricardo, Tappan, NY, USA; and Titu Zvonaru, Cománeşti, Romania. We give
the solution by Ricardo.

We have

√
abc =

√
abc

�
1

a
+

1

b
+

1

c

�
=

r
bc

a
+

É
ca

b
+

r
ab

c
.

Thus it is sufficient to prove thatX
cyclic

p
a + bc ≥

X
cyclic

�
√
a +

r
bc

a

�
. (1)

For positive numbers x, y, z, with 1
x
+ 1

y
+ 1

z
= 1, we see that

√
x + yz ≥

√
x +

È
yz
x

is equivalent to

x + yz ≥ x +
yz

x
+ 2

√
yz = x + yz

�
1 − 1

y
− 1

z

�
+ 2

√
yz,

or y + z ≥ 2
√
yz, which is true by the AGM inequality. Applying this result to

each term of the left-hand cyclic sum in (1), our inequality is proved.

Next we turn to the Japanese Mathematical Olympiad, First Round, given
at [2010 : 376–377].

1. Let ABCD be a convex quadrilateral with AB = 3, BC = 4, CD = 5,
DA = 6 and ∠ABC = 90◦. Find the area of ABCD.
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Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Henry Ricardo, Tappan, NY, USA; Konstantine Zelator, University of Pittsburgh,
Pittsburgh, PA, USA; and Titu Zvonaru, Cománeşti, Romania. We give the write-
up of Zvonaru.

By the pythagorean theorem we obtain
AC = 5. It follows that the triangle ACD is
isosceles.

Let M be the midpoint of AD, hence CM
is the altitude of triangle ACD. Thus we have
AM = 3, and AC = 5, from which we deduce
that MC = 4.

It follows that

A

B C

D

M

area of ABCD = area of ABC + area of ACD =
3 · 4
2

+
6 · 4
2

= 18.

2. Determine the tens place of 111213

(1213th power of 11, not the 13th power
of 1112).

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Norvald Midttun, Royal Norwegian Naval Academy, Sjøkrigsskolen, Bergen,
Norway; Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA; and
Titu Zvonaru, Cománeşti, Romania. We give the write-up by Midttun.

From the binomial theorem we find

1110 = (10 + 1)10 =
10X
i=0

�
10

i

�
· 10i · 110−i

=

�
10

0

�
· 100 +

�
10

1

�
· 101 +

10X
i=2

�
10

i

�
· 10i

= 1 + 100 + 100
10X
i=2

�
10

i

�
· 10i−2 = 100N + 1,

for some positive integer N . Similarly, we find

1110n = (1110)n = (100N + 1)n = 100N1 + 1

and 1213 = 10M + 2. Now we have

(11)12
13

= 1110M+2 = 1110M ·112+(100M1+1)(100+21) = 100M2+21.

So the tens digit is 2.

3. AB is a segment on a plane with length 7, and P is a point such that
the distance between P and line AB is 3. Find the smallest possible value of
AP × BP .
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Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA; and Titu
Zvonaru, Cománeşti, Romania. We use the solution by Zelator.

A B

P

3 units

7 units

`2

`1

θ

P ′

Let `1 be the line through A and B, and let `2 be a line parallel to `1
such that the distance between `1 and `2 is 3 units. Without loss of generality
we can assume that P is on `2. Let θ be the measure of the ∠APB. The
area of the triangle APB is equal to 1

2
(AP )(PB) sin θ, yet is also equal to

1
2
(AB)(3) = 1

2
(7)(3) = 21

2
. Thus, 1

2
(AP )(PB) sin θ = 21

2
and hence

(AP )(PB) =
21

sin θ
. (1)

Clearly, according to (1), the product AP · BP will be at minimum, when
sin θ is at maximum, that is, when sin θ = 1, so θ = 90◦. Note that there are
two such positions of the point P along the line l2 which produce the smallest
possible value of AP · BP . These two positions, P and P ′, are the intersection
points of the line l2 and the semicircle with diameter AB = 7.

Therefore, the smallest possible value of AP · BP is 21.

4. The tens digit of the 4-digit integer n is nonzero. If we take the first 2
digits and the last 2 digits as two 2-digit integers, their product is a divisor of n.
Determine all n with this property.

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA; and
Titu Zvonaru, Cománeşti, Romania. We give the solution of Curtis.

Write n = 100x + y, where 10 ≤ x ≤ 99 and 10 ≤ y ≤ 99. Then xy
divides 100x+ y. This implies that x divides y. Write y = tx. The constraints
on x and y imply that 1 ≤ t ≤ 9. Note that n

xy
= 100x+y

xy
= 100x+tx

tx2 = 100+t
tx

.

In particular, t must divide 100. Thus, t ∈ {1, 2, 4, 5}.

• If t = 1, then y = x, and n
xy

= 101
x

, which is not an integer for 10 ≤ x ≤
99.

• If t = 2, then y = 2x, and n
xy

= 102
2x

= 51
x
. Since 99 ≥ y = 2x ≥ 20,

we must have x = 17. This corresponds to n = 1734.

• If t = 4, then y = 4x, and n
xy

= 104
4x

= 26
x
. The only suitable x is x = 13,

corresponding to n = 1352.

• If t = 5, then n
xy

= 105
5x

= 21
x
. None of the divisors of 21 is in the

appropriate interval.
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Hence, the only n’s with the desired property are n ∈ {1352, 1734}.

6. We have 15 cards numbered 1, 2, . . . , 15. How many ways are there to choose
some (at least one) cards so that all numbers on these cards are greater than or
equal to the number of cards chosen?

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Norvald Midttun, Royal Norwegian Naval Academy, Sjøkrigsskolen, Bergen,
Norway; and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We
give Wang’s write-up.

We consider the general problem for which there are n cards numbered
1, 2, . . . , n, respectively.

Let f(n) denote the number of ways of choosing k (at least one) cards so
that all numbers on these cards are at least k.

We prove that f(n) = Fn+2 − 1 where Fn denotes the nth Fibonacci
number defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.

Let the n cards be denoted by c1, c2, . . . , cn where the number on ci is i,
1 ≤ i ≤ n. Suppose we choose only k cards, k ≥ 1. Then clearly the given
condition is satisfied if and only if all of these cards are chosen from ck, ck+1, . . . , cn.
This is possible if and only if k ≤ n + 1 − k or k ≤ bn+1

2
c.

Hence the total number of possible selections is

f(n) =

bn+1
2 cX

k=1

�
n + 1 − k

k

�
=

�
n

1

�
+

�
n − 1

2

�
+ · · · +

�
n + 1 − bn+1

2
c

bn+1
2

c

�
.

Now we recall the following well known fact which can be found, for example, on
p. 87 of Basic Techniques of Combinatorial Theory by Daniel I.A. Cohen and can
be proved by induction:�

n

0

�
+

�
n − 1

1

�
+

�
n − 2

2

�
+ · · · = Fn+1.

Replacing n by n + 1, we then have

f(n) =

�
n

1

�
+

�
n − 1

2

�
+ · · · = Fn+2 − 1.

In particular, for the given problem, the answer is f(15) = F17 −1. By straight-
forward computations, we find F17 = 1597 so f(15) = 1596.

7. In how many ways can 100 be written as a sum of nonnegative powers of 3?

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give the
write-up by Curtis.

This is equivalent to finding the number of solutions in nonnegative integers
to the equation

81x4 + 27x3 + 9x2 + 3x1 + x0 = 100.
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Once x4, x3, x2, and x1 are determined, x0 is determined. We must have x4 ∈
{0, 1}.
Case 1. If x4 = 1, then x3 = 0, and x2 ∈ {0, 1, 2}.

(a) If x2 = 2, then x1 = 0, yielding only one solution.

(b) If x2 = 1, then x1 ∈ {0, 1, 2, 3}, yielding 4 solutions.

(c) If x2 = 0, then x1 ∈ {0, 1, 2, 3, 4, 5, 6}, yielding 7 solutions.

Case 2. If x4 = 0, then x3 ∈ {0, 1, 2, 3}.

(a) If x3 = 3, then x2 ∈ {0, 1, 2}, yielding 12 solutions, as in the total for
case 1.

(b) If x3 = 2, then x2 ∈ {0, 1, 2, 3, 4, 5}, yielding (in reverse order) 1, 4, 7,
10, 13, and 16 solutions, for a total of 51.

(c) If x3 = 1, then x2 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}, yielding (in reverse order) 1,
4, 7, 10, 13, 16, 19, 22, and 25 solutions, for a total of 117.

(d) If x3 = 0, then x2 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, yielding (in reverse
order) 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34 solutions, for a total
of 210.

In case 1, we have 12 solutions; in case 2, we have 390, for a grand total of
402 solutions.

9. How many pairs of integers (a, b) satisfy a2b2 = 4a5 + b3?

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA; and Titu
Zvonaru, Cománeşti, Romania. We give the write-up of Curtis, noting that the
solution does not consider the possibility of negative values such as (−1, 2) and
(2,−4).

Any odd prime dividing a divides b3 and hence b; conversely, any odd prime
dividing b divides 4a5 and hence a. Let p be an odd prime dividing a and b. Write
a = pru and b = psv, with r, s ≥ 1, and gcd(p, u) = gcd(p, v) = 1. Then

p2r+2su2v2 = 4p5ru5 + p3sv3. (1)

We claim that the largest exponent on p in equation (1) is 2r + 2s. Indeed, the
smallest two exponents on p in equation (1) must be the same, since otherwise,
dividing by the smallest power of p would give two terms still divisible by p while
the third term would not be.

• If 2r + 2s = 5r ≤ 3s, then r = 2
3
s, so that 10

3
s ≤ 3s, a contradiction.

• If 2r + 2s = 3s ≤ 5r, then s = 2r, so that 6r ≤ 5r, a contradiction.
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That proves the claim. Thus, 5r = 3s ≤ 2r + 2s, so that

pmu2v2 = 4u5 + v3,

where m = (2r+2s)−3s = 2r− s = 2r− 5
3
r = 1

3
r. Applying this argument

to each of the odd primes dividing a and b, we obtain

kY
i=1

pmi

i · 22x+2y = 25x+2 + 23y.

By the same reasoning as before, the two smallest exponents on 2 must be equal.

Case 1. If x = 0, then

xY
i=1

pmi

i · 22y = 4 + 23y.

If y ≥ 2, then all of the exponents on 2 are different. Hence, y ∈ {0, 1}.

(a) If y = 0, then
kY

i=1

pmi

i = 5,

so that the only odd prime dividing a and b is 5. Also, 1 = m = m1 = 1
3
r.

Therefore, r = 3 and s = 5 so that a = 53 and b = 55.

(b) If y = 1, then
kY

i=1

pmi

i · 4 = 12

kY
i=1

pmi

i = 3,

so that the only odd prime dividing a and b is 3. We again obtain r = 3
and s = 5 so that a = 33 and b = 2 · 35.

Case 2. If x = 1, then

kY
i=1

pmi

i · 22+2y = 27 + 23y,

and we must have y = 2. Thus,

kY
i=1

pmi

i = 3.

We obtain a = 2 · 33 and b = 22 · 35.
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Case 3. If x = 2, then

kY
i=1

pmi

i · 24+2y = 212 + 23y,

and y = 4, so that
kY

i=1

pmi

i = 2,

a contradiction.

Case 4. Now suppose x > 2.

(a) If 2x + 2y = 5x + 2 ≤ 3y, then y = 3
2
x + 1, so that 5x+ 2 ≤ 9

2
x + 3,

implying that x ≤ 2, a contradiction.

(b) If 2x+2y = 3y ≤ 5x+2, then y = 2x, and 6x ≤ 5x+2, again yielding
the contradiction x ≤ 2.

Hence 5x+2 = 3y ≤ 2x+2y. Thus, y = 5
3
x+ 2

3
, so that x ≡ 2 mod 3.

Write x = 3z + 2. Then y = 5z + 4, and

kY
i=1

pmi

i · 216z+12 = 215z+12 + 215z+12

kY
i=1

pmi

i · · · 2z = 2.

This implies that z = 1, and no odd primes divide a or b. Also, x = 5 and
y = 9. Thus, a = 25 and b = 29.

In summary, (a, b) ∈ {(125, 3125), (27, 486), (54, 972), (32, 512)}.

10. A set of cards with positive integers on them is given, and the sum of these
integers is 2007. For any integer k = 1, 2, . . . , 2006, there is only one way to
choose some of these cards so that the sum of the numbers on them is k. How
many such sets of cards are there?

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA.

To be able to obtain a sum of 1, there must be at least one card with the
number 1. One possibility is that there are 2007 cards, all of which are 1’s. If
there are exactly m cards with a 1, with m < 2007, then all of the sums from
1 through m and no others can be obtained with these m cards. Accordingly,
the next highest card must be m + 1. Together with the m 1’s, each sum less
than or equal to 2m + 1 can then be obtained. Therefore, the next card must
be 2m + 2 = 2(m + 1). Continuing in this way, the subsequent cards must be
4(m + 1), 8(m + 1), 16(m + 1), and so on. The sum of the integers on the
cards is then

m + (m + 1)(1 + 2 + 4 + · · ·+ 2n) = m + (m + 1)(2n+1 − 1).
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If m < 2007, we must therefore have

−1 + (m + 1)2n+1 = 2007

(m + 1)2n+1 = 2008

(m + 1)2n+1 = 23 · 251.

Thus, n ∈ {0, 1, 2}.

• If n = 0, then m = 1003.

• If n = 1, then m = 501.

• If n = 2, then m = 250.

There are thus four suitable sets of cards:

• 2007 cards, all of which are 1’s;

• 1003 cards which are 1’s and a 1004;

• 501 cards which are 1’s, a 502, and a 1004;

• 250 cards which are 1’s, a 251, a 502, and a 1004.

Next we give readers’ solutions to problems of the 17thJapanese
Mathematical Olympiad, Final Round, given at [2010: 378].

3. Let Γ be the circumcircle of triangle ABC. Let ΓA be the circle tangent to
AB, AC and tangent internally to Γ, and let ΓB and ΓC be defined similarly.
Let ΓA, ΓB, ΓC be tangent to Γ at A′, B′, C′, respectively. Prove that the lines
AA′, BB′, CC′ are concurrent.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; and Ricardo
Barroso Campos, University of Seville, Seville, Spain. We give the solution of
Amengual Covas.
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A

B C

bisector of ∠BAC

A∗

A1

D

E

A′

Γ

ΓA

Let the excircle opposite A touch the side BC at A1, and let B1 and C1

be defined similarly.

Let D, E and A∗ be the symmetric points of C, B and A1 respectively
with respect to the bisector of ∠BAC.

Then

(a) the excircle opposite A touches DE at A∗; and

(b) the lines AA1 and AA∗ are isogonal at A.

We invert the diagram in the circle with center at A and radius
√
AB · AC.

The circumcircle Γ becomes the straight line through D and E; the circle ΓA

inverts into the excircle opposite A. Tangencies are preserved, so that A′ and A∗

are inverse points, implying that A, A′ and A∗ are collinear. That is, AA1 and
AA′ are isogonal lines.

Analogously, BB1 and BB′ are isogonal at B, and CC1 and CC′ are
isogonal at C.

Since AA1, BB1 and CC1 concur (at the Nagel point of 4ABC), the
isogonal lines AA′, BB′ and CC′ also concur, as desired.

Next, we look at the readers’ solutions to problems given in the November
2010 issue, the last issue that featured Olympiad problem sets and an invitation
to submit solutions. We begin with the Croatian Mathematical Competition 2007,
National Competition, given at [2010: 435–436].
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3rd Grade

1. Let n be a positive integer such that n + 1 is divisible by 24.

(a) Prove that n has an even number of divisors (including 1 and n itself).

(b) Prove that the sum of all divisors of n is divisible by 24.

(Simplified from Putnam Competition 1969)

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Oliver Geupel, Brühl, NRW, Germany; David E. Manes, SUNY at Oneonta,
Oneonta, NY, USA; Edward T.H. Wang, Wilfrid Laurier University, Waterloo,
ON; Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA; and Titu
Zvonaru, Cománeşti, Romania. We give the solution and comment by Wang.

(a) We show that the conclusion actually holds under the weaker assumption
that n + 1 is divisible by 4. Clearly n 6= 1. Let n = pα1

1 pα2

2 . . . pαk

k be
the prime powers decomposition of n where αi’s are natural numbers and
pi’s are primes, i = 1, 2, . . . , k. Let τ(n) denote the number of (positive)

divisors of n. It is well known that τ(n) =
Qk

i=1(1 + αi). Suppose τ(n)
is odd. Then each 1+αi is odd so αi must be even for all i = 1, 2, . . . , k.
Thus, n is a perfect square. Let n = m2 where m is a natural number.
Clearly n is odd so m is also odd. Hence m2 ≡ 1 (mod 4). Therefore,
n + 1 = m2 + 1 ≡ 2 (mod 4) contradicting the fact that n + 1 ≡ 0
(mod 4).

(b) This is exactly the same as problem B1 of the 1969 Putnam Math
Competition. A full solution can be found on p. 63 of The William
Lowell Putnam Math Competition, Problems and Solutions; edited by
Gerald L. Alexanderson et al. The proof given there actually establishes
the stronger fact that d + (n/d) is divisible by 24 for all divisors d of n.
The conclusion then follows immediately from part (a).

2. In the triangle ABC, with ∠BAC = 120◦, the bisectors of the angles
∠BAC, ∠ABC and ∠BCA intersect the opposite sides in the points D, E,
and F , respectively. Prove that the circle with diameter EF passes through D.
(British Mathematical Olympiad 2005)

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Oliver Geupel, Brühl, NRW, Germany; and Titu Zvonaru, Cománeşti, Romania.
We give the solutions of Zvonaru.

First Solution.

The bisector of ∠BAD meets
the side BD at the point T . Since

∠TAC = ∠TAD + ∠DAC

= 30◦ + 60◦ = 90◦,

A

B C
T D

E
F
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we deduce thatAC is the external bisector of ∠BAD. BecauseBE is the bisector
of ∠ABD, it follows that DE is an external bisector of ∠ADB, that is DE is a
bisector of ∠ADC.

Similarly we obtain that DF is a bisector of ∠ADB; it follows that
∠EDF = 1

2
(∠ADC + ∠ADB) = 90◦, hence the circle with diameter EF

passes through D.

Second Solution. As usual we write a = BC, b = CA, c = AB. By the
Bisector’s Theorem we obtain DC = ab

b+c
.

It is known that the bisector AD =
2bc cos A

2

b+c
= bc

b+c
.

We have, again using the Bisector’s Theorem

AD

DC
=

c

a
=

AE

EC

and, by the converse of the Bisector’s Theorem, it follows that DE is the bisector
of ∠ADC. Similarly, DF is the bisector of ∠ADB, hence ∠EDF = 90◦.

3. In triangleABC the distances of vertexA from the centre of the circumscribed
circle and the orthocentre are equal. Determine the angle α = ∠BAC. (USA
proposal for IMO 1989)

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA;
Oliver Geupel, Brühl, NRW, Germany; and Konstantine Zelator, University of
Pittsburgh, Pittsburgh, PA, USA. We give the solution by Curtis.

Let a = BC, b = CA, c = AB, and let O and H be the circumcenter
and orthocenter, respectively. Let C′ be the point at which line HC intersects
side AB. By the extended Law of Sines, the circumradius is given by

AO =
b

2 sinB
.

On the other hand, AC′ = ±b cosA, so that AH = ±b cosA
sinB

. Thus,

b

2 sinB
= ±b cosA

sinB
.

Thus, cosA = ±1
2
, so that α = 60◦, 120◦.

Next we give the solution of Geupel.

Denote the circumcentre and the orthocentre by O and H , respectively. We
prove that the condition AO = AH is equivalent to α = 60◦, 120◦.

Let a, b, c, h, and o be the coordinates of A, B, C, H , and O in the plane
of complex numbers. Without loss of generality let o = 0, c = 1, and b = eiϑ

where 0 < ϑ ≤ π.
We have h = a+b+c = a+b+1. The condition AO = AH is therefore

successively equivalent to
|a| = |h − a|,
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1 = |b + 1|,

1 =
�
1 + eiϑ

� �
1 + e−iϑ

�
,

cosϑ = −1

2
,

∠BOC = 120◦, 240◦,

and finally,

α =
1

2
∠BOC = 60◦, 120◦.

The proof is complete.

4th Grade

3. In a 5×n table, where n is a positive integer, each 1×1 cell is painted either
in red or in blue. Find the smallest possible n such that, for any painting of the
table, one can always choose three rows and three columns for which the 9 cells
in their intersection have all the same colour.

Solved by Chip Curtis, Missouri Southern State University, Joplin, MO, USA; and
Titu Zvonaru, Cománeşti, Romania. We give the solution by Curtis.

Each column has at least three reds or at least three blues. For k =
1, 2, . . . , n, form the quadruple

(y1(k), y2(k), y3(k), c(k)),

where the yi(k) are positive integers such that

1 ≤ y1(k) < y2(k) < y3(k) ≤ 5, (1)

And the cells (k, y1(k)), (k, y2(k)), (k, y3(k)) each have colour c(k). There
are at most

�5
3

� · 2 = 20 such quadruples. Thus, with n = 41, at least three
columns must have the same quadruple. Choose three such columns with their
corresponding y-values.

To see that no smaller n will work, assume n ≤ 40, and, in each column,
colour either exactly three cells red or exactly three cells blue in such a way that
each of the possible quadruples described above appears at most twice. Then no
selection of three rows and three columns provides an intersection with all cells of
the same colour.

That completes the Corner for this number.
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BOOK REVIEWS

Amar Sodhi

Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks
by Persi Diaconis and Ron Graham, with a foreword by Martin Gardner
Princeton University Press, 2012
ISBN 978-0-691-15164-9, 244 + xii pp., hardcover, US$29.95
Reviewed by S. Swaminathan, Dalhousie University, Halifax, N. S.

Magic tricks are fascinating to young and old alike. Many simple magic
tricks that work by themselves are based on mathematical principles. Consider
the following trick: the magician hands four playing cards to a spectator, turns
his back and gives instructions to the spectator to perform actions on the cards
in different ways such as turning a card face down, transferring cards from top to
bottom either singly or collectively, and doing these actions any number of times
in any order. When the spectator has finished performing the actions, he (she)
is requested to perform one final set of transfers and then asked to mention how
many cards are facing the opposite way from the others. The answer turns out to
be only one card that faces the opposite way. The magician tells correctly what
that particular card is! This amazing trick is explained fully with rich illustrations
in the first chapter of the wonderful book under review.

The authors are eminent mathematicians; Ron Graham of Bell Labs and
UC, San Diego is an expert on combinatorial mathematics, and Persi Diaconis is a
professor of statistics at Stanford University. Both of them are skilled performers
of magic; Ron is a juggler and Persi is a skilled card magician. They have been
mixing entertainment with mathematics for most of their lives besides teaching,
publishing papers with deep results and conjecturing new results.

The book consists of ten chapters with the following titles: Mathematics
in the Air, In Cycles, Is This Stuff Actually Good for Anything?, Universal
Cycles, From Gilbreath Principle to the Mandelbrot Set, Neat Shuffles, The Oldest
Mathematical Entertainment?, Magic in the Book of Changes, What Goes Up
must Come Down, Stars of Mathematical Magic (and Some of the Best Tricks in
the Book), Going Further, On Secrets, Notes, Index.

Easy, step by step instructions are provided for each trick, explaining clearly
how the effect is set up and offering tips on what to say and do during the
performance. Each card trick introduces a new mathematical idea, and varying the
tricks takes the readers to the very threshold of current mathematical knowledge.
However, sophisticated math terminology is avoided. For example, the underlying
theme of the trick mentioned in the first paragraph of this review is that a large
permutation group (’group’ in the mathematical sense) leaves an interesting set
of invariants under the group fixed while the cards are getting mixed, which
contributes to the startling final effect. Other card tricks link to mathematical
secrets of combinatorics, graph theory, number theory, topology, the Riemann
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Hypothesis, and even Fermat’s Last Theorem. The book contains a wealth of
conjuring lore, including some closely guarded secrets of legendary magicians.
It discusses the mathematics of juggling, and shows how I Ching, an ancient
Chinese fortune-telling book, connects to the history of probability and tricks both
old and new. Stories underlying some tricks of eccentric and brilliant
inventors of mathematical magic are discussed. Copious colourful illustrations
and pictures are provided to illustrate the text.

Readers are sure to enjoy this brilliant book. Their interest in magic will
get kindled if it is not already there. They will get introduced to little-known
mathematical theorems. The book will certainly become a classic.

Unsolved Crux Problem

As remarked in the problem section, no problem is ever closed. We always
accept new solutions and generalizations to past problems. Recently, Chris Fisher
published a list of unsolved problems from Crux [2010 : 545, 547]. Below is a
sample of one of these unsolved problems:

154. [1976 : 110, 159, 197, 225-226; 1977 : 20-22, 108-109, 191-193] Proposed
by Kenneth S. Williams, Carleton University, Ottawa, ON.

Let pn denote the nth prime, so that p1 = 2, p2 = 3, p3 = 5, p4 = 7,
etc. Prove or disprove that the following method finds pn+1 given p1, p2, . . .,
pn.

In a row list the integers from 1 to pn − 1. Corresponding to each r
(1 ≤ r ≤ pn − 1) in this list, say r = pa1

1 · · · pan−1

n−1 , put pa1

2 · · · pan−1
n in a

second row. Let ` be the smallest odd integer not appearing in the second row.
The claim is that ` = pn+1.

Example. Given p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13.

1 2 3 4 5 6 7 8 9 10 11 12
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 3 5 9 7 15 11 27 25 21 13 45

We observe that ` = 17 = p7.
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RECURRING CRUX
CONFIGURATIONS 3

J. Chris Fisher

Triangles whose angles satisfy 2B = C + A

Because the angles of a triangle ABC sum to 180◦, they are in arithmetic
progression if and only if the intermediate angle measures 60◦. I found nearly two
dozen problems in CRUX with MAYHEM that deal with triangles having a
60◦ angle; there was considerable overlap, so for this month’s column instead of
listing those problems, I will simply list and discuss the properties that readers
have discovered, and provide references to where proofs can be found. As usual,
A,B, and C will represent either the vertices of a triangle or the measure of its
angles, depending on the context; a, b, and c represent either the opposite sides
or their lengths; s = (a + b + c)/2 is the semiperimeter, while H, I, O, and G
are the orthocentre, incentre, circumcentre, and centroid, respectively. We shall
use 2B = C + A and B = 60◦ interchangeably.

The first eight properties came, in part, from Problem 724 [1982 : 78; 1983
: 92-94] (proposed by Hayo Ahlburg) and the comments found there.

Property 1. ∠B = 60◦ if and only if sin(A − B) = sinA − sinC.

The simple proof of only if is on page 92; for the if part note that sinC =
sin(A+B) and expand that and sin(A−B) to get an equation that reduces to
cosB = 1

2
.

Property 2. ∠B = 60◦ if and only if a2 − b2 = c(a− c).

Property 2 [1983 : 93] is just the cosine law. It forms the basis of an olympiad
problem proposal of Murray Klamkin that was never used: One of the angles of a
triangle is 60◦ if and only if the square of the side opposite that angle equals the
sum of the cubes of the sides divided by the perimeter; that is,

∠B = 60◦ if and only if b2 =
a3 + b3 + c3

a + b + c
.

A more substantial use of Property 2 came in [3] to obtain a characterization of
integer-sided triangles having an angle of 60◦: Let p and q be (i) relatively prime
integers with (ii) one of them odd, the other even, and (iii) p not a multiple of 3;
use p and q to define the integers x = |p2 − 3q2| and y = 2pq. If x > y we set
b = p2 +3q2, a = x+y and c = 2y, x−y (there are two values of c for each a
and b because the quadratic equation of Property 2 will have two integer zeros); if
x < y we use the same b but set a = 2y and c = y±x. Then in either case with
either value of c, ABC is a triangle with ∠B = 60◦ and side lengths a > b > c
that are relatively prime integers; conversely, for any such triangle there exists a
pair of integers p and q that produce that triangle using the given recipe. For
example, p = 1, q = 2 determines x = 11, y = 4 and triangles with sides 15,
13, 8 as well as 15, 13, 7; for p = 2, q = 1, the parameters are x = 1, y = 4, and
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the resulting triangles have sides 8,7, 5, and 8, 7, 3. Similar results and further
references can be found in [4].

Property 3. If ∠B = 60◦ then the points A,C,O, I,H lie on a circle that also
contains the excentre Ib opposite vertex B; its radius equals the circumradius
of ∆ABC and its centre O′ is where the angle bisector BI again meets the
circumcircle.

The solution to Problem M1046 from the 1987 U.S.S.R. journal Kvant [1988
: 165; 1990 : 103] follows easily: If ∠B = 60◦ then one of the bisectors of the
angle between the altitudes from A and C passes through O. One should take care
with the converse of Property 3, which is the topic of problem 1521 [1990 : 74; 1991
: 126-127] (proposed by J.T. Groenman). If either A, I, O, C or A,H, I, C are
concyclic, then it follows that ∠B = 60◦ and all five points are concyclic. Such
is not the case, however, with A,H,O, C concyclic because then ∠B = 120◦ is
also possible (which can be seen by changing the roles of the points B with H
and O with O′). This property is clearly equivalent to the following result, which
is the subject of Problem 998 [1984 : 319; 1986 : 65] (proposed by Andrew P.
Guinand):

If one angle of a triangle is either 60◦ or 120◦, then the image of the ortho-
centre under inversion with respect to the circumcircle lies on the side (possibly
extended) opposite that angle.

A

B

C

A′

C′ O
I

HN

O′

Ib

60◦

Figure 1: The angles of ∆ABC satisfy 2B = C + A.

Property 4. The circle of Property 3, with radius R and centre O′, intersects
the lines BA and BC at points A′ and C′ for which AA′ = CC′ = |c − a|.
(Proof is on page [1983 : 93].)

Property 5. In any triangle, if N is the centre of its nine-point circle (and,
therefore, the midpoint of OH), and P is the projection of the incentre I onto
the Euler line OGNH , then P lies between G and H ; furthermore, P = N if
and only if one angle of the triangle has measure 60◦.

This is Problem 260 [1977 : 155; 1978 : 58-60] (Proposed by W.J. Blundon).
A variant of this property became Problem 5 on the 2007 Indian Team Selection
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Test [2010 : 278; 2011 : 370-371]: For triangles that are not equilateral, the
common tangent to the incircle and the nine-point circle is parallel to the Euler
line if and only if the angles of the triangle are in arithmetic progression. This, of
course, is because in all triangles that common tangent is perpendicular to IN .

Property 6. If ∠B = 60◦ then N lies on the bisector of that angle; conversely,
if the nine-point centre of a triangle lies on the interior bisector of ∠CBA, then
the vertex B lies on the perpendicular bisector of AC or ∠B = 60◦.

This is Problem 2855 [2003 : 316; 2004 : 308-309] (Proposed by Antreas P.
Hatzipolakis and Paul Yiu); the claim that BN bisects ∠B when ∠B = 60◦ is
also proved as a part of Problem 724 [1983 : 94].

Property 7. If B is the intermediate angle of ∆ABC, then ∠B = 60◦ if and
only if OI = IH , if and only if OIb = IbH .

The equivalence of ∠B = 60◦ and OI = IH is proved as part of Problem
260 (Property 5 above). It was proved yet again as part of Problem 1521 (see
Property 3 above). This result also appeared as Problem 739 [1982 : 107; 1983
: 153-154, 210-211] (proposed by G.C. Giri), where there is another proof and
references to textbooks where it appears as an exercise. There is also a reference
to a stronger result [2]:

If the angles of triangle ABC are labeled so that A ≤ B ≤ C then

∠B > 60◦ ⇒ 0 <
HI

IO
< 1,

∠B = 60◦ ⇒ HI = IO,

∠B < 60◦ ⇒ 1 <
HI

IO
< 2.

The proof of the result for OIb = IbH can be found in [1].

Property 8. ∠B = 60◦ if and only if s =
√
3(R + r).

The proof is another part of the solution to Problem 260 [1978 : 58-60].

Property 9. ∠B = 60◦ if and only if the bisectorBO′ of ∠B is perpendicular to
the Euler line OH ; when these properties hold, then N is the common midpoint
of BO′ and OH . (Recall that O′ was defined in Property 3 to be where the
angle bisector again intersects the circumcircle. Note that in any triangle, BH
and OO′ are both perpendicular to AC.)

The claims follow from the proof in Problem 1521 (see Property 3). Three
more proofs can be found in [5]. An immediate consequence is Problem 3 of Round
2 of the 2006-2007 British Mathematical Olympiad [2010: 154; 2011: 165]:

If the Euler line OH meets BA at P and BC at Q, then ∠B = 60◦ implies
that OQ = HP .

See [2011: 165] for an independent proof (although the problem and proof
found there were unnecessarily restricted to acute-angled triangles). Another
immediate consequence of Problem 1521 is Problem 1673 [1991 : 237; 1992 :
218-219] (proposed by D.J. Smeenk):
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Given ∆ABC let P be an arbitrary point of the line BA and Q be on BC,
neither point coinciding with a vertex. If ∠B = 60◦ then the Euler lines of
∆ABC and ∆PBQ are parallel; moreover, if the two Euler lines coincide then
the circumcircle PQR contains O′.

Jordi Dou added a proof that the sides PQ of those triangles whose Euler
lines coincide with that of the given triangle are tangent to the parabola with focus
O′ and directrix OH .

Property 10. ∠B = 60◦ or 120◦ if and only if BH = BO.

This is case (i) of Problem 1518 [1990 : 44; 1991 : 122] (proposed by K.R.S.
Sastry). Compare Property 9; Problem 1232(b) in [5] says that BO′||OH if and
only if ∠B = 120◦.

Property 11. ∠B = 60◦ or 120◦ if and only if its internal bisector divides an
altitude in the ratio 1 : 2.

This is Problem 2526 [2000 : 177; 2001 : 271-273] (proposed by K.R.S.
Sastry).

We devote the remainder of this compilation to properties that were
discovered over the past 20 years by Toshio Seimiya. What a pity that we failed
to invite him to write this article for us! For most of these properties we denote
by D and E the points where the interior bisectors of angles A and C meet the
opposite sides. Properties 12 through 16 are quite closely related.

A

B

C

D

E
O

P

Q

I

HN

O′

60◦

Figure 2: Seimiya’s properties 12, 13, 14, and 15.

Property 12. If ∠B = 60◦ then the points D and E are two vertices of an
equilateral triangle whose third vertex lies on AC and whose incentre is I.

In other words, the bisectors of angles A and C meet the opposite sides
at the centres of two circles with common radius DE that intersect on AC.
This is Seimiya’s counterexample to the incorrect claim made by the proposer
of Problem 1446(c) [1989 : 148; 1990 : 217-219] (namely, that the existence of
this inscribed equilateral triangle implied that the original triangle ABC was
necessarily equilateral).

Property 13. Define P to be the point where the line perpendicular to DE
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meets AC, and Q to be where it meets DE. Then IP = 2IQ if and only if
∠B = 60◦. (Problem 2011 [1995 : 52; 1996 : 80])

Property 14. Define P to be the point where the bisector of ∠AIC meets AC,
and Q to be where it meets DE. Then IP = 2IQ if and only if ∠B = 60◦.
(Problem 2939 [2004 : 229, 232; 2005 : 243-244])

Property 15. ∠ADE = 30◦ if and only if ∠B = 60◦ or ∠C = 120◦. (Problem
2263 [1997 : 364; 1998 : 432-433])

Property 16. Call F the point where DE intersects AC. If ∆ABC has
BC > BA and ∠DFC = 1

2
(∠DAC − ∠ECA), then ∠B = 60◦. (Problem

2314 [1998 : 107; 1999 : 117])

Property 17. Given ∆ABC define P and Q to be points on the same side of
AC as B, with P the point on BC for which PC = BA, and Q the point
on BA for which QA = BC. Then ∠B = 60◦ if and only if O lies on PQ.
(Problem 1692 [1991 : 301; 1992 : 284-285])

Property 18. An acute-angled triangle ABC is given, and equilateral triangles
ABP and BCQ are drawn outwardly on the sides AB and BC. Suppose that
AQ and CP meet BC and AB at R and T , respectively, and that AQ and CP
intersect at S. If the area of the quadrilateral BRST is equal to the area of the
triangle ASC, then ∠B = 60◦. (Problem 2304 [1998 : 46; 1999 : 56-57])

In addition to his many problems, Semiya also wrote an article for CRUX
with MAYHEM entitled “On Some Examples of Geometric Fallacies” [29:6
(October 2003) 393-396]. He began with a theorem and proposed two attempted
converses, both of which came with very convincing arguments; he then pointed
out the subtle but critical errors in the arguments, and provided counterexamples
to show that those converses were indeed false. It is the theorem that is relevant
here:
Theorem. Let ABC be a triangle with ∠B = 60◦. Let D be the point on BC
produced beyondC such thatCD = CA, and letE be the point onBA produced
beyondA such thatCA = AE. Then∠DCA = 2∠AED, ∠CAE = 2∠EDC,
and ∠EDA = 30◦.
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 November 2012.

An asterisk (?) after a number indicates that a problem was proposed without a solution.

Each problem is given in English and French, the official languages of Canada. In

issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8, French

will precede English. In the solutions’ section, the problem will be stated in the language

of the primary featured solution.

The editor thanks Jean-Marc Terrier of the University of Montreal for translations

of the problems.

3676. Proposed by Michel Bataille, Rouen, France.

Let a, b, and c be the sides of a triangle with semiperimeter s, inradius r
and circumradius R. Let r′ and R′ be the inradius and circumradius of a triangle

with sides
È
a(s − a),

È
b(s − b), and

È
c(s − c). Prove that

Rr′ ≥ R′r .

3677. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let n be a positive integer. Prove that

n−1X
k=1

(−1)k sinn(kπ/n) =
(1 + (−1)n)n

2n
· cos nπ

2
.

3678. Proposed by Michel Bataille, Rouen, France.

Let Γ1, Γ2 be two intersecting circles and U one of their common points.
Show that there exists infinitely many pairs of lines passing throughU and meeting
Γ1 and Γ2 in four concyclic points. Give a construction of such pairs.

3679. Proposed by Hung Pham Kim, student, Stanford University, Palo Alto,
CA, USA.

Let a, b, and c be nonnegative real numbers such that a+b+c = 3. Prove
that

(a2b + c)(b2c + a)(c2a + b) ≤ 4(ab + bc + ca− abc) .

3680. Proposed by Michel Bataille, Rouen, France.

In a system of axes (Ox,Oy, Oz), let U(1, 1, 1), S(a, b, c) and
H(ha, hb, hc) where a, b, c are the sides of a triangle ABC and ha, hb, hc are
the corresponding altitudes. Given that the lines OU and SH intersect at M
such that |HM | = 1

3
|HS|, find the angles of ∆ABC.
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3681. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam.

Let D,E, and F be the points where the incircle of ∆ABC touches the
sides. Let Z be the Gergonne point (where AD,BE, and CF concur), and let
M be the midpoint of BC. Define T to be the tangency point of the incircle with
the circle through B and C that is tangent to it, and let the common tangent line
at that point intersect AC at S. Prove that AB, SZ, and ME are concurrent.

3682. Proposed by Pham Van Thuan, Hanoi University of Science, Hanoi,
Vietnam.

Let a, b, c, and d be nonnegative real numbers such that a2+b2+c2+d2 =
1. Prove that

1

1 − ab
+

1

1 − bc
+

1

1 − cd
+

1

1 − da
+

1

1 − bd
+

1

1 − ac
≤ 8 .

3683. Proposed by Michel Bataille, Rouen, France.

Let n be an integer with n ≥ 2 and z a complex number with |z| ≤ 1.
Prove that

nX
k=1

kzn−k 6= 0 .

3684. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam.

Given two circles that are internally tangent at T , let the chord BC of the
outer circle be tangent to the inner circle at D. Let the second tangents from B
and C touch the inner circle at F and E respectively, and define J = EF ∩DT
and Z = BE ∩ CF . Prove that

(a) JZ intersects BC at its midpoint, and

(b) TD bisects ∠BTC.

Comment. This result allows for a solution to a special case of the Problem of
Apollonius: Construct a circle through two given points that is tangent to a given
circle which, itself, is tangent to the line joining the given points.

3685. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let f : [0, 1] → (0,∞) be a bounded function which is continuous at 0.
Find the value of

lim
n→∞

�
n

q
f
�
1
1

�
+ n

q
f
�
1
2

�
+ · · · + n

q
f
�

1
n

�
n

Ǳn

.
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3686. Proposed by Michel Bataille, Rouen, France.

Let a, b, and c be real numbers such that abc = 1. Show that�
a − 1

a
+ b − 1

b
+ c− 1

c

�2

≤ 2

�
a +

1

a

��
b +

1

b

��
c +

1

c

�
.

3687. Proposed by Albert Stadler, Herrliberg, Switzerland.

Let n be a nonnegative integer. Prove that

∞X
k=0

kn

k!

�
k + 1 − 1

k!

Z ∞

1
e−ttk+1dt

�
=

nX
k=0

S(n, k)

k + 2
,

where kn is taken to be 1 for k = n = 0 and S(n, k) are the Stirling numbers
of the second kind that are defined by the recursion

S(n,m) = S(n − 1,m− 1) +mS(n − 1,m), S(n, 0) = δ0,n, S(n, n) = 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3676. Proposé par Michel Bataille, Rouen, France.

Soit a, b et c les côtés d’un triangle de demi-périmètre s et dont les cercles
inscrit et circonscrit sont de rayons respectifs r et R. Soit d’autre part les rayons r′

et R′ des cercles inscrit et circonscrit d’un triangle sont les côtés sont
È
a(s − a),È

b(s − b)et
È
c(s − c). Montrer que

Rr′ ≥ R′r .

3677. Proposé par Ovidiu Furdui, Campia Turzii, Cluj, Roumanie.

Soit n un entier positif. Montrer que

n−1X
k=1

(−1)k sinn(kπ/n) =
(1 + (−1)n)n

2n
· cos nπ

2
.

3678. Proposé par Michel Bataille, Rouen, France.

Soit U un des deux points d’intersection de deux cercles Γ1 et Γ2. Montrer
qu’il existe une infinité de paires de droites passant par U et coupant Γ1 et Γ2 en
quatre points cocycliques. Donner une construction de telles paires.

3679. Proposé par Pham Kim Hung, étudiant, Université de Stanford, Palo
Alto, CA, É-U.

Soit a, b et c trois nombres réels non négatifs tels que a + b + c = 3.
Montrer que

(a2b + c)(b2c + a)(c2a + b) ≤ 4(ab + bc + ca− abc) .
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3680. Proposé par Michel Bataille, Rouen, France.

Dans un système d’axes (Ox,Oy,Oz), soit U(1, 1, 1), S(a, b, c) et
H(ha, hb, hc) où a, b, c sont les côtés d’un triangle ABC et ha, hb, hc en sont
les hauteurs correspondantes. En supposant que les droites OU et SH se coupent
en M de telle sorte que |HM | = 1

3
|HS|, trouver les angles de ∆ABC.

3681. Proposé par Nguyen Thanh Binh, Hanöı, Vietnam.

Soit D,E et F les points de contact du cercle inscrit du triangle ABC
avec ses côtés. Soit Z le point de Gergonne (intersection de AD,BE et CF ), et
soit M le point milieu de BC. Notons T le point de tangence du cercle inscrit
avec le cercle qui lui est tangent et qui passe par B et C, et soit S le point
d’intersection de la tangente commune en T avec AC. Montrer que AB, SZ et
ME sont concourantes.

3682. Proposé par Pham Van Thuan, Université de Science des Hanöı, Hanöı,
Vietnam.

Soit a, b, c et d quatre nombres réels non négatifs tels que a2+b2+c2+d2 =
1. Montrer que

1

1 − ab
+

1

1 − bc
+

1

1 − cd
+

1

1 − da
+

1

1 − bd
+

1

1 − ac
≤ 8 .

3683. Proposé par Michel Bataille, Rouen, France.

Soit n un entier avec n ≥ 2 et z un nombre complexe tel que |z| ≤ 1.
Montrer que

nX
k=1

kzn−k 6= 0 .

3684. Proposé par Nguyen Thanh Binh, Hanöı, Vietnam.

On donne deux cercles intérieurement tangents en T et une corde BC du
cercle extérieur tangente au cercle intérieur en D. Soit respectivement F et E les
points de contact des secondes tangentes issues de B et C avec le cercle intérieur,
et soit J = EF ∩ DT et Z = BE ∩ CF . Montrer que

(a) JZ coupe BC en son point milieu, et

(b) TD est la bissectrice de ∠BTC.

Commentaire. Ce résultat permet de résoudre un cas spécial du problème d’Apol-
lonius : Construire un cercle passant par deux points donnés qui soit tangent à un
cercle donné qui, lui, est tangent à la droite joignant les deux points.
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3685. Proposé par Ovidiu Furdui, Campia Turzii, Cluj, Roumanie.

Soit f : [0, 1] → (0,∞) une fonction bornée, continue en 0. Trouver la
valeur de

lim
n→∞

�
n

q
f
�
1
1

�
+ n

q
f
�
1
2

�
+ · · · + n

q
f
�

1
n

�
n

Ǳn

.

3686. Proposé par Michel Bataille, Rouen, France.

Soit a, b et c trois nombres réels tels que abc = 1. Montrer que�
a − 1

a
+ b − 1

b
+ c− 1

c

�2

≤ 2

�
a +

1

a

��
b +

1

b

��
c +

1

c

�
.

3687. Proposé par Albert Stadler, Herrliberg, Suisse.

Soit n un entier non négatif. Montrer que

∞X
k=0

kn

k!

�
k + 1 − 1

k!

Z ∞

1
e−ttk+1dt

�
=

nX
k=0

S(n, k)

k + 2
,

où l’on pose kn = 1 pour k = n = 0 et où S(n, k) sont les nombres de Striling
du second ordre, définis par la récursion

S(n,m) = S(n − 1,m− 1) +mS(n − 1,m), S(n, 0) = δ0,n, S(n, n) = 1 .
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SOLUTIONS

A filing error took place and as a result a few solvers were not
acknowledged in the past few issues. The editors would like to recognize the
following correct solutions: George Apostolopoulos, Messolonghi, Greece (3754);
Šefket Arslanagi ć, University of Sarajevo, Sarajevo, Bosnia and Herzegovina (3566,
3570, 3572, 3574); Michel Bataille, Rouen, France (3566, 3570, 3572); John
Hawkins and David R. Stone, Georgia Southern University, Statesboro, GA, USA
(3558); Oliver Geupel, Brühl, NRW, Germany (3564); Dragoljub Milošević,
Gornji Milanovac, Serbia (3457); Paolo Perfetti, Dipartimento di Matematica,
Università degli studi di Tor Vergata Roma, Rome, Italy (3564); Henry Ricardo,
Tappan, NY, USA (3558); Joel Schlosberg, Bayside, NY, USA (3556, 3563,
3566); Digby Smith, Mount Royal University, Calgary, AB (3571); and Titu
Zvonaru, Cománeşti, Romania (3572). If any other errors or omissions occur,
please send an email to crux-editors@cms.math.ca.

No problem is ever permanently closed. The editor is always pleased to
consider for publication new solutions or new insights on past problems.

3568. [2010 : 396, 398] Proposed by Albert Stadler, Herrliberg, Switzerland.

Let n be a nonnegative integer and let ak be the coefficient of zk in the
McLaurin expansion of (z − 1)n ln(1 − z). Prove that

an = 1+
1

2
+

1

3
+ · · ·+ 1

n
and ak =

−1

(n + 1)
� k
n+1

� , k > n .

I. Solution by George Apostolopoulos, Messolonghi, Greece.

It is well known that (z − 1)n =

nX
i=0

(−1)n−i

�
n

i

�
z
i and

ln(1 − z) = −

∞X
i=1

zi

i
, thus

(z − 1)n ln(1 − z) =

 
nX

i=0

(−1)n−i

�
n

i

�
zi

! 
−

∞X
i=1

zi

i

!
. (1)

From (1) we deduce that

an =

n−1X
i=0

(−1)n−i

�
n

i

��
− 1

n − i

�
=

nX
j=1

(−1)j+1

�n
j

�
j

.
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Let g(n) = an =

nX
i=1

(−1)i+1

�
n

i

�
i

. Recall that

�
n

i

�
=

�
n − 1

i

�
+

�
n − 1

i − 1

�
so

g(n) =
nX

i=1

(−1)i+1

�n−1
i

�
i

+
nX

i=1

(−1)i+1

�n−1
i−1

�
i

. (2)

Now, since

�
n

i

�
= 0 for i > n or i < 0, then

nX
i=1

(−1)i+1

�n−1
i

�
i

=

n−1X
i=1

(−1)i+1

�n−1
i

�
i

= g(n − 1). (3)

It is easy to verify that

�
n − 1

i − 1

�
·
1

i
=

�
n

i

�
·
1

n
, hence

nX
i=1

(−1)i+1

�n−1
i−1

�
i

=
nX

i=1

(−1)i+1

�n
i

�
n

= − 1

n

nX
i=1

(−1)i
�
n

i

�
= − 1

n

�
(1 − 1)n − (−1)0

�
n

0

��
=

1

n
. (4)

Thus (2), (3) and (4) yield g(n) = g(n − 1) +
1

n
. Since g(1) = (−1)2

�
1

1

�
1

= 1,

we deduce that g(n) =

nX
i=1

1

i
, that is, an =

nX
i=1

1

i
.

From (1) we deduce that for k > n

ak =
nX

i=0

(−1)n−i

�
n

i

��
− 1

k − i

�
.

Let f(n, k) =

nX
i=0

(−1)n−i

�
n

i

�
k − i

, then

f(n, k) =
nX

i=0

(−1)n−i

�n−1
i

�
k − i

+
nX

i=0

(−1)n−i

�n−1
i−1

�
k − i

= −
n−1X
i=0

(−1)n−1−i

�n−1
i

�
k − i

+

n−1X
j=0

(−1)n−1−j

�n−1
j

�
k − 1 − j

= f(n − 1, k − 1) − f(n − 1, k).

Now f(0, k) =
1

k
=

1

(0 + 1)
�

k

0+1

� for all positive integer values of k, and if

f(n − 1, k) =
1

n
�
k

n

� holds for all k > n − 1, then f(n, k) = f(n − 1, k − 1)

−f(n − 1, k) for all k − 1 > n − 1, i.e. k > n. Thus
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f(n, k) =
1

n
�k−1

n

� − 1

n
�k
n

� =
1

(n + 1)
� k
n+1

�
for k > n so ak =

−1

(n + 1)
�

k

n+1

� for k > n.

II. Solution by Oliver Geupel, Brühl, NRW, Germany.

Considering (z − 1)n ln(1 − z) =

 
nX

j=0

(−1)n−j

�
n

j

�
z
j

! 
−

∞X
j=1

1

j
z
j

!
, we

have to prove that

nX
j=1

(−1)j+1

j

�
n

j

�
= 1 +

1

2
+

1

3
+ · · · + 1

n
(1)

and
nX

j=0

(−1)j

k − n + j

�
n

j

�
=

1

(n + 1)
� k
n+1

� , k > n. (2)

For a proof of identity (1) we refer to [1]. We only prove (2).

We have xk−n−1
nX

j=0

(−1)j
�
n

j

�
xj = xk−n−1(1 − x)n; hence

nX
j=0

(−1)j

k − n + j

�
n

j

�
=

Z 1

0

xk−n−1(1 − x)ndx.

Integration by parts for nonnegative m, n yieldsZ 1

0
xm(1 − x)ndx =

�
(1 − x)nxm+1

m + 1

�1
0

+
n

m + 1

Z 1

0
xm+1(1 − x)n−1dx

=
n

m + 1

Z 1

0
xm+1(1 − x)n−1dx.

By repeated application of this formula, we obtainZ 1

0

xk−n−1(1 − x)ndx =
n(n − 1) · · · 1

(k − n)(k − n + 1) · · · (k − 1)

Z 1

0

xk−1dx

=
n(n − 1) · · · 1

(k − n)(k − n + 1) · · · (k − 1)
· 1
k

=
1

(n + 1)
� k
n+1

� ,
which completes the proof.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri
Southern State University, Joplin, MO, USA; JOEL SCHLOSBERG, Bayside, NY, USA; and
the proposer.
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example 5.1.4, p.160.

3573. [2010 : 397, 399] Proposed by A.A. Dzhumadil’daeva, Almaty Republic
Physics and Mathematics School, Almaty, Kazakhstan.

Let (2n+1)!! = 1 ·3 · · · (2n+1) be the double factorial, so (for example)
7!! = 105. Make the convention that 0!! = (−1)!! = 1. Prove that for any
nonnegative integer n,X

i+j+k=n
i,j,k≥0

�
n

i, j, k

�
(2i− 1)!!(2j − 1)!!(2k − 1)!! = (2n + 1)!! .

Solution by Oliver Geupel, Brühl, NRW, Germany.

From the identity

(2m − 1)!! = 1 · 3 · · · (2m − 1) =
(2m)!

2mm!
=

m!

2m

�
2m

m

�
we deduce the formal power series

(1 − 4z)−
1
2 =

X
m

�−1
2

m

�
(−4)mzm

=
X
m

(−4)m

m!

�
−1

2

��
−3

2

�
· · ·
�
−2m − 1

2

�
zm

=
X
m

2m(2m − 1)!!

m!
zm =

X
m

�
2m

m

�
zm.

Hence, the number
X

i+j+k=n
i,j,k≥0

�
2i

i

��
2j

j

��
2k

k

�
is the coefficient of zn in the series

(1 − 4z)−
3
2 =

X
n

�−3
2

n

�
(−4)nzn

=
X
n

(−4)n

n!

�
−3

2

� �
−5

2

�
· · ·
�
−2n + 1

2

�
zn

=
X
n

2n(2n + 1)!!

n!
zn =

X
n

n + 1

2

�
2n + 2

n + 1

�
zn.
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We concludeX
i+j+k=n
i,j,k≥0

�
n

i, j, k

�
(2i− 1)!!(2j − 1)!!(2k − 1)!!

=
X

i+j+k=n
i,j,k≥0

�
n

i, j, k

�
n!

i!j!k!
· i!

2i

�
2i

i

�
· j!

2j

�
2j

j

�
· k!

2k

�
2k

k

�
=

n!

2n

X
i+j+k=n
i,j,k≥0

�
2i

i

��
2j

j

��
2k

k

�
=

(n + 1)!

2n+1

�
2n + 2

n + 1

�
= (2n + 1)!!

which completes the proof.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; MICHEL
BATAILLE, Rouen, France; JOEL SCHLOSBERG, Bayside, NY, USA; SKIDMORE
COLLEGE PROBLEM SOLVING GROUP, Skidmore College, Saratoga Springs, NY, USA;
ALBERT STADLER, Herrliberg, Switzerland; and the proposer.

3576. [2010 : 459, 461] Proposed by Mehmet Şahin, Ankara, Turkey.

Let ABC be a triangle with interior points D, E, F such that ∠FAB =
∠EAC, ∠FBA = ∠DBC, ∠DCB = ∠ECA, AF = AE, BF = BD, and
CD = CE. If R is the circumradius of ABC, r is the circumradius of EDF ,

and s is the semiperimeter of ABC, prove that the area of triangle EDF is
sr2

2R
.

Solution by John G. Heuver, Grande Prairie, AB.

Let Ia, Ib, and Ic be the excentres of ∆ABC. The definition of points
E and F implies that the lines AE and AF are symmetric by reflection in the
internal bisectorAIa of ∠BAC; that is, AIa is the perpendicular bisector of EF .
But AIa is also perpendicular to IbIc (which is the external bisector of ∠BAC),
whence EF ||IbIc. Analogous statements hold for FD and DE. We deduce
first that the sides of ∆DEF are parallel to the corresponding sides of ∆IaIbIc,
so that the two triangles are similar, and second that I is the circumcentre of
∆DEF . Furthermore, ∠EDF = ∠IbIaIc = 1

2
(∠B + ∠C), and, because I

is the circumcentre of ∆DEF , ∠EIF = 2∠EDF = ∠B + ∠C. Because the
circumradius of ∆DEF is given to be r, similar reasoning for the angles at E
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and F allows us to deduce that

Area(DEF ) = Area(EIF ) + Area(FID) + Area(DIE)

=
1

2
r2 (sin(B + C) + sin(C + A) + sin(A + B))

=
1

2
r2(sinA + sinB + sinC) =

1

2
r2

�
a

2R
+

b

2R
+

c

2R

�
=

r2

2

� s

R

�
.

Also solved by ARKADY ALT, San Jose, CA, USA; MIGUEL AMENGUAL COVAS,
Cala Figuera, Mallorca, Spain; MICHEL BATAILLE, Rouen, France; PRITHWIJIT DE, Homi
Bhabha Centre for Science Education, Mumbai, India; JOEL SCHLOSBERG, Bayside, NY,
USA; MIHAÏ STOËNESCU, Bischwiller, France; PETER Y. WOO, Biola University, La
Mirada, CA, USA; and the proposer.

Our featured solution proves only that if ∆DEF were to exist, its area would equal the
predicted value. Bataille and Schlosberg both addressed the question of existence: our featured
solution makes clear that reflection in AIa takes E to F , in BIb takes F to D, and in CIc
takes D back to E. Because the product of three reflections is an opposite isometry, while I

and E are points that are fixed by this product, this isometry must be a reflection in IE. Define
` to be the line that makes a directed angle with CIc equal to the directed angle from AIa to
BIb. We conclude that it is both necessary and sufficient that E be a point of ` inside ∆ABC

different from I, for which its reflections in AIa and CIc, namely F and D, also lie inside
that triangle.

3577. [2010 : 459,461]Proposed by Mehmet Şahin, Ankara, Turkey.

Let H be the orthocentre of the acute triangle ABC with A′ on the ray
HA and such that A′A = BC. Define B′, C′ similarly. Prove that

Area(A′B′C′) = 4Area(ABC) +
a2 + b2 + c2

2
.

Solution by Joel Schlosberg, Bayside, NY, USA.

Editor’s comment. The statement of the problem is somewhat flawed. What
Schlosberg proves here is the theorem,

Let H be the orthocentre of the arbitrary triangle ABC; define A′ to
be the unique point satisfying AA′ = BC that lies on the half-line
which starts at A and extends along the line HA in the direction that
misses the line BC. Define B′, C′ similarly. Then Area(A′B′C′) =

4Area(ABC) + a2+b2+c2

2
.

We have modified Schlosberg’s proof to make use of directed angles. Recall
that ∠XY Z as a directed angle denotes that angle (whose measure ranges from
0◦ to 180◦) through which the line XY must be rotated about Y in the positive
direction in order to coincide with Y Z.
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Because corresponding sides of ∠BHC and ∠CAB are perpendicular,
while ∠ABH and ∠HCA are complements of ∠CAB in right triangles, we
have

∠BHC = ∠CAB = 90◦ − ∠ABH = 90◦ − ∠HCA.

It follows that

Area(HB′C′) =
1

2
HB′ · HC′ sin∠BHC

=
1

2
(HB + b)(HC + c) sin∠BHC

=
1

2
HB · HC sin∠BHC +

1

2
cHB cos∠ABH

+
1

2
bHC cos∠HCA +

1

2
bc sin∠CAB

= Area(HBC) +
1

2

−→
BA · −−→BH +

1

2

−→
CA · −−→CH + Area(ABC).

Similarly,

Area(HC′A′) = Area(HCA) +
1

2

−−→
CB · −−→CH +

1

2

−→
AB · −−→AH + Area(ABC),

and

Area(HA′B′) = Area(HAB) +
1

2

−→
AC · −−→AH +

1

2

−−→
BC · −−→BH + Area(ABC).

Consequently,

Area(A′B′C′) = Area(HB′C′) + Area(HC′A′) + Area(HA′B′)

= Area(HBC) + Area(HCA) + Area(HAB) + 3Area(ABC)

+
1

2

−−→
BC · (−−→BH +

−−→
HC) +

1

2

−→
CA · (−−→CH +

−−→
HA)

+
1

2

−→
AB · (−−→AH +

−−→
HB)

= 4Area(ABC) +
1

2

−−→
BC · −−→BC +

1

2

−→
CA · −→CA +

1

2

−→
AB · −→AB

= 4Area(ABC) +
a2 + b2 + c2

2
.

Also solved by ARKADY ALT, San Jose, CA, USA; MIGUEL AMENGUAL COVAS,
Cala Figuera, Mallorca, Spain; ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo,
Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, France; PRITHWIJIT DE, Homi
Bhabha Centre for Science Education, Mumbai, India; JOHN G. HEUVER, Grande Prairie,
AB; ALBERT STADLER, Herrliberg, Switzerland; MIHAÏ STOËNESCU, Bischwiller, France;
ERCOLE SUPPA, Teramo, Italy; PETER Y. WOO, Biola University, La Mirada, CA, USA;
TITU ZVONARU, Cománeşti, Romania; and the proposer.

The proposer’s submitted problem applied to all triangles, but since its statement was
somewhat ambiguous the editor restricted it to acute triangles. Unfortunately, even the published
statement of 3577 is ambiguous. We hope we got it right this time.
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3578. [2010 : 459,462] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Let a > 0 and b > 1 be real numbers and let f : [0, 1] → R be a
continuous function. Find

lim
n→∞

na/b

Z 1

0

f(x)

1 + naxb
dx .

Solution by Mohammed Aassila, Strasbourg, France (expanded slightly by the
editor).

We show that the required limit is
πf(0)

b sin
�
π
b

� .
Let L denote the given limit. Using the substitution y = n

a
b x, we have

n
a
b

Z 1

0

f(x)

1 + naxb
dx =

Z 1

0

f(x)

1 +
�
n

a
b x
�b · na

b dx =

Z n
a
b

0

f
�
n−a

b y
�

1 + yb
dy.

Hence, L = f(0)
R∞
0

1
1+ybdy.

Let u = yb so y = u
1
b and dy = 1

b
u

1
b
−1du. Then we have

L =
f(0)

b

Z ∞

0

u
1
b

u(1 + u)
du. (1)

Let Γ(x) =
R∞
0 e−ttx−1dt, x > 0 and B(x, y) =

R 1
0 tx−1(1 − t)y−1dt,

x > 0, y > 0 denote the Gamma function and the Beta function, respectively.
The following formulae are well known [1]:

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
and Γ(x)Γ(1 − x) =

π

sin(πx)
. (2)

Let u =
t

1 − t
. Then du =

1

1 − t2
dt and u(1 + u) =

t

(1 − t)2
. Hence,

from (1), (2) and the obvious fact that Γ(1) = 1, we have

L =
f(0)

b

Z 1

0
t

1
b
−1(1 − t)−

1
b dt =

f(0)

b
B

�
1

b
, 1 − 1

b

�
=

f(0)

b
·
Γ
�
1
b

�
Γ
�
1 − 1

b

�
Γ(1)

=
f(0)

b
· π

sin
�
π
b

�
which completes the proof.

Also solved by MICHEL BATAILLE, Rouen, France; MANUEL BENITO, ÓSCAR
CIAURRI, EMILIO FERNANDEZ, and LUZ RONCAL, Logroño, Spain; KEE-WAI LAU,
Hong Kong, China; PAOLO PERFETTI, Dipartimento di Matematica, Università degli studi
di Tor Vergata Roma, Rome, Italy; ALBERT STADLER, Herrliberg, Switzerland; and the
proposer.

There were three incomplete solutions all of which gave f(0)
R

∞

0

dt

1+tb
or its equivalent

form, as the final answer.
Stadler remarked that it suffices to assume that f(x) is a bounded integrable function

which is continuous from the right at 0.
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3579. [2010 : 459,462] Proposed by Peter Y. Woo, Biola University, La Mirada,
CA, USA.

Let α =
π

13
and

x1 = tan(4α) + 4 sin(α) = − tan(α) + 4 sin(3α) ,

x2 = tan(α) + 4 sin(α) = − tan(4α) + 4 sin(3α) ,

x3 = tan(6α) − 4 sin(6α) = tan(2α) + 4 sin(5α) .

Prove that the length x1 can be constructed with compass and straightedge and
determine whether or not the same is true for x2 and x3.

Solution by Stan Wagon, Macalester College, St. Paul, MN, USA.

Applying trigonometric expansion with the help ofMathematica, we find that

x1 =
È
13 − 2

√
13 which is clearly constructible since it contains only square

roots. [Ed.: The proposer remarked that x1 =
È
13 − 2

√
13 can be proved from

the solution to problem # 3305.]

On the other hand, using trigonometric expansion and an algorithm to
deduce the minimal polynomial satisfied by an algebraic number, we learn that
each of x2 and x3 is a root of the irreducible polynomial x12−78x10+1963x8−
20020x6 + 81991x4 − 138398x2 + 81133. Since it is a classical result that an
algebraic number is constructible if and only if the degree of its minimal polynomial
is a power of 2, we conclude that x2 and x3 are not constructible.

The proposer gave a partial answer by showing that x1 is constructible. No other solutions
were received.

3580. [2010: 460, 462] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Let k > 0 and m ≥ 0 be real numbers, and let {a} = a− bac denote the
fractional part of a. CalculateZ 1

0

�
1

xk
− 1

(1 − x)k

�
xm(1 − x)m dx .

Solution by Michel Bataille, Rouen, France.
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Let I denote the integral. The substitution u = 1 − x yields

I =

Z 0

1

�
1

(1 − u)k
− 1

uk

�
um(1 − u)m(−du)

=

Z 1

0

�
1

(1 − x)k
− 1

xk

�
xm(1 − x)mdx .

Thus

2I =

Z 1

0
[{φ(x)} + {−φ(x)}]xm(1 − x)mdx ,

where φ(x) := 1
(1−x)k

− 1
xk .

Since φ(x) is continuous, strictly increasing on (0, 1), and limx→0+ φ(x) =
−∞ ; limx→1− φ(x) = +∞, it follows that φ is a bijection from (0, 1) onto R.
Thus, for each integer p ∈ Z, the equation φ(x) = p has exactly one solution
ap ∈ (0, 1).

It is easy to see that

{a} + {−a} =

8<: 0 if a ∈ Z

1 if a /∈ Z

Thus

[{φ(x)} + {−φ(x)}] xm(1 − x)m = xm(1 − x)m

outside the countable set {ap|p ∈ Z}.
Hence

I =
1

2

Z 1

0

[{φ(x)} + {−φ(x)}]xm(1 − x)mdx

=
1

2

Z 1

0
xm(1 − x)mdx =

(Γ(m + 1))2

2Γ(2m + 2)
=

(m!)2

2(2m + 1)!
.

Also solved by PAOLO PERFETTI, Dipartimento di Matematica, Università degli studi
di Tor Vergata Roma, Rome, Italy; ALBERT STADLER, Herrliberg, Switzerland; and the
proposer.

3582. [2010 : 460, 462] Proposed by Panagiote Ligouras, Leonardo da Vinci
High School, Noci, Italy.

Let Γ1, Γ2 be circles of radius r with centres A, B (respectively), let
{C, D} = Γ1 ∩ Γ2, and suppose that ∠BCA = 90◦. A line through C
intersects Γ1 and Γ2 again at E and F , respectively. The circle Γ with centre O
and radius R passes through points E and F . A second line passes through C, is
perpendicular to the segment EF , and intersects the circle Γ in G and H . Prove
that CH2 + CG2 = 4(R2 − r2).
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Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let M be the midpoint of EC, N the midpoint of CF , a = AM , and b =
BN . Because corresponding sides of ∆AMC and ∆CNB are perpendicular,
while BC = AC = r, the triangles are congruent. In particular, a = CN =
NF and b = MC = EM , so that EF = 2(b + a) and

r2 = a2 + b2.

Furthermore, if P is the midpoint of EF , then EP = b + a so that
MP = a and PC = b − a.

Next, let Q be the midpoint of GH and h = PO (= CQ). Then OQ =
PC = b − a, whence

QH2 = R2 − (b − a)2.

Moreover,

CH2 + CG2 = (h + QH)2 + (h − QH)2 = 2
�
QH2 + h2

�
.

But R2 = OE2 = h2 + (b + a)2, hence

h2 = R2 − (b + a)2.

Assembling the pieces, we conclude that

CH2 + CG2 = 2
��
R2 − (b − a)2

�
+
�
R2 − (b + a)2

��
= 2

�
2R2 − 2

�
b2 + a2

��
= 4R2 − 4r2,

as claimed.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri South-
ern State University, Joplin, MO, USA; JOEL SCHLOSBERG, Bayside, NY, USA; and the
proposer.

A

B

C

E

FG

H

M

N

O

P

Q

a

a

rb

b
r

h

A

B

C

E

F

G

H

M

N

O

P

Q

a
a

b

r

rh

Only Bataille observed that there arise two cases: C can lie between E and F (as in the
first diagram), or not between them (as in the second diagram). If we use directed line segments
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along the lines EF and GH (so that XY = −Y X for points X and Y both on one of these
lines or on a line parallel to one of them), then Woo’s notation has been modified by the editor
so that his argument deals with both cases simultaneously. Otherwise, one must observe that
when C is not between E and F (and therefore not between G and H) and the diagram is
labeled so that b ≥ a, then PE = b − a and PC = b + a, and the featured argument goes
through without difficulty.

3583. [2010: 460, 463] Proposed by Paolo Perfetti, Dipartimento di Matematica,
Università degli studi di Tor Vergata Roma, Rome, Italy.

Let α and β be nonnegative real numbers and define

an =
�
n + ln(n + 1)

� nY
k=1

α + k + ln k

β + (k + 1) + ln(k + 1)
,

pn =
�
α + n + 1 + ln(n + 1)

� nY
k=1

α + k + ln k

β + (k + 1) + ln(k + 1)
.

Find those nonnegative real numbers α and β for which
∞P

n=1

an converges, and

determine the relation between α and β that ensures that

∞X
n=1

�
an − pn ln

�
1 +

1

n + 1

��
= (α + 1)(α + 2 + ln 2) − (α + 1)2

2
.

Solution by the proposer.

We claim that the series converges if and only if β > α + 1.
Let’s start by observing that

α + n + 1 + ln(n + 1)

β + n + 2 + ln(n + 2)
= 1 +

α − β − 1 + ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

and

n + 1 + ln(n + 2)

n + ln(n + 1)
= 1 +

1 + ln
�
1 + 1

n+1

�
n + ln(n + 1)

.

Hence

an+1

an

=
α + n + 1 + ln(n + 1)

β + n + 2 + ln(n + 2)

n + 1 + ln(n + 2)

n + ln(n + 1)

=

 
1 +

α − β − 1 + ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

!
·
 
1 +

1 + ln
�
1 + 1

n+1

�
n + ln(n + 1)

!
= 1 +

α − β − 1 + ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

+
1 + ln

�
1 + 1

n+1

�
n + ln(n + 1)

+
α − β − 1 + ln

�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

·
1 + ln

�
1 + 1

n+1

�
n + ln(n + 1)

.
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In particular

an+1

an

−
�
1 +

α − β

n

�
=

α − β − 1 + ln
�
1− 1

n+2

�
β + 2 + n + ln(n + 2)

− α − β − 1

n
+

1+ ln
�
1 + 1

n+1

�
n + ln(n + 1)

− 1

n

+
α − β − 1 + ln

�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

·
1 + ln

�
1 + 1

n+1

�
n + ln(n + 1)

= (α − β − 1)

�
1

β + 2 + n + ln(n + 2)
− 1

n

�
+

�
1

n + ln(n + 1)
− 1

n

�
+

α − β − 1 + ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

·
1 + ln

�
1 + 1

n+1

�
n + ln(n + 1)

+
ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

+
ln
�
1 + 1

n+1

�
n + ln(n + 1)

= (α − β − 1)
−β − 2 − ln(n + 2)

n2 + βn + 2n + n ln(n + 2))
− ln(n + 1)

n2 + n ln(n + 1)

+
α − β − 1 + ln

�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

·
1 + ln

�
1 + 1

n+1

�
n + ln(n + 1)

+
ln
�
1 − 1

n+2

�
β + 2 + n + ln(n + 2)

+
ln
�
1 + 1

n+1

�
n + ln(n + 1)

= O

�
ln(n)

n2

�
Thus, we get

an+1

an

= 1 +
α − β

n
+ O

�
ln(n)

n2

�
. (1)

Convergence for β > α + 1.
For all n ≥ 2 set bn = 1

n ln2(n)
. Then

bn+1

bn
=

n ln2(n)

(n + 1) ln2(n + 1)
= 1− (n + 1) ln2(n + 1) − n ln2(n)

(n + 1) ln2(n + 1)

= 1 − (n + 1) ln2(n + 1) − n ln2(n + 1)

(n + 1) ln2(n + 1)
− n ln2(n + 1) − n ln2(n)

(n + 1) ln2(n + 1)

= 1 − 1

(n + 1)
− (n ln(n + 1) − n ln(n)) (ln(n + 1) + ln(n))

(n + 1) ln2(n + 1)

= 1 − 1

(n + 1)
−

ln
�
1 + 1

n

�n
(ln(n + 1) + ln(n))

(n + 1) ln2(n + 1)
,
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so

bn+1

bn
= 1 − 1

n
+

1

n(n + 1)
−

ln
�
1 + 1

n

�n
(ln(n + 1) + ln(n))

(n + 1) ln2(n + 1)

= 1 − 1

n
+

1

n(n + 1)
− 2

(n + 1) ln(n + 1)

−
ln
�
1 + 1

n

�n
(ln(n + 1) + ln(n)) − 2 ln(n + 1)

(n + 1) ln2(n + 1)

= 1 − 1

n
+

1

n(n + 1)
− ln(n) + ln(n + 1)

(n + 1) ln(n + 1)

−
ln

(1+ 1
n)

n

e
(ln(n + 1) + ln(n))

(n + 1) ln2(n + 1)

= 1 − 1

n
− 2

(n + 1) ln(n + 1)
+ O

�
ln(n)

n2

�
. (2)

Since β > α + 1, by combining (1) and (2) we get that there exists some
N so that for all n > N we have

0 <
an+1

an

≤ bn+1

bn
.

Hence, for all n > N we have

an+1

bn+1

<
an

bn
.

It follows that the sequence
an

bn
is eventually decreasing, and hence bounded

from above. Hence, there exists an M so that, for all n we have

0 < an < Mbn .

Since the series
P∞

n=2

1

n ln2 n
is convergent by the integral test, by the

Comparison Test we get that
P

n an is convergent.

Divergence for β ≤ α + 1.

For all n ≥ 2 set cn =
1

n ln2(n)
. Exactly as in (2) one can show that

cn+1

cn
= 1 − 1

n
− 1

(n + 1) ln(n + 1)
+ O

�
ln(n)

n2

�
.

Thus, there exists some N so that, for all n > N we have

an+1

an

≥ cn+1

cn
> 0 .
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Hence, for all n > N we have

an+1

cn+1

>
an

cn
> 0 .

It follows that the sequence
an

cn
is eventually increasing. Hence, there exists an m

so that, for all n we have
an > mcn .

Moreover,m can be chosen as the smallest term of
an

cn
, and hence it can be chosen

so that m > 0.

Since the series
P∞

n=2

1

n lnn
is divergent, by the Comparison Test we get

that
P

n an is also divergent.
This completes the first part of the problem.
For the second part, let’s observe first that

an = (α + n + 1 + ln(n + 1))
nY

k=1

α + k + ln(k)

β + k + 1 + ln(k + 1)

− (α + 1)
nY

k=1

α + k + ln(k)

β + k + 1 + ln(k + 1)
.

Define

qn :=
nY

k=1

α + k + ln(k)

β + k + 1+ ln(k + 1)
.

Then
an = pn − (α + 1)qn .

Since by the definition of qn we have 0 < qn ≤ an, it follows that
P

n pn andP
n qn are absolutely convergent.

Let’s note that

qn+1

qn
=

α + n + 1 + ln(n + 1)

β + n + 2 + ln(n + 2)
. (3)

In particular

β(qn+1 − qn) + (β − α)qn + (n + 2)qn+1 − qn(n + 1)

= qn ln(n + 1) − qn+1 ln(n + 2) . (4)

Since
P

an is convergent, we are in the case β > α + 1. Thus

qn+1

qn
<

β + n + ln(n + 1)

β + n + 2+ ln(n + 2)
< 1 ,

and hence qn is decreasing.
We will employ the following well known lemma:
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Lemma: Let qn be monotonic and positive. If
P

qn is convergent, then

lim
n

nqn = 0 .

Let’s denote
P

n qn = U . By summing (4) from 1 to N we get

β(qN+1 − q1) + (β − α)
NX

n=1

qn + (N + 2)qN+1 − 2q1(n + 1)

= q1 ln(2) − qN+1 ln(N + 2) .

Using the above Lemma and letting N → ∞ we get:

−βq1 + (β − α)U − 2q1 = q1 ln(2) .

Since q1 =
α + 1

β + 2 + ln 2
we get

U =
(β + 2 + ln(2))q1

β − α
=

α + 1

β − α
.

Now, let’s observe that

pn+1

pn

=
α + n + 2 + ln(n + 2)

β + n + 2 + ln(n + 2)
,

and hence

β(pn+1 − pn) + (β − α)pn + [(n + 2)pn+1 − (n + 1)pn] − pn

= [pn ln(n + 1) − pn+1 ln(n + 2)] + [pn ln(n + 2) − pn ln(n + 1)]

By summing we get

β(pN+1 − p1) + (β − α)
NX

n=1

pn + [(N + 2)pN+1 − 2p1] −
NX

n=1

pn

= [p1 ln(2) − pN+1 ln(N + 2)] +

"
NX

n=1

pn ln

�
1 +

1

n + 1

�#
Again using the Lemma, and letting N → ∞ we get:

−βp1−2p1+(β−α)
∞X

n=1

pn−
∞X

n=1

pn = p1 ln(2)+
NX

n=1

pn ln

�
1 +

1

n + 1

�
.

Since

p1 = (α + 2 + ln(2))
α + 1

β + 2+ ln(2)
,
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we get

(β−α)
∞X

n=1

pn−
∞X

n=1

pn−
NX

n=1

pn ln

�
1 +

1

n + 1

�
= (α+2+ln(2))(α+1) ,

and hence

∞X
n=1

pn =
1

β − α − 1

NX
n=1

pn ln

�
1 +

1

n + 1

�
+

(α + 2 + ln(2))(α + 1)

β − α − 1
.

This shows that

∞X
n=1

�
an − pn ln

�
1 +

1

n + 1

��
=

∞X
n=1

pn −
∞X

n=1

(α + 1)qn −
∞X

n=1

pn ln

�
1 +

1

n + 1

�
=

(α + 2 + ln(2))(α + 1)

β − α − 1
+

β − α − 2

β − α − 1

∞X
n=1

pn ln

�
1 +

1

n + 1

�
− (α + 1)2

β − α
.

Thus, if β = α + 2, the second formula holds.

No other solution was received.

3584. [2010: 460, 463] Proposed by Šefket Arslanagić, University of Sarajevo,
Sarajevo, Bosnia and Herzegovina.

Let ABC be a triangle with inradius r, side lengths a, b, c and medians

ma, mb, mc. Prove that
c

m2
am

2
b

+
a

m2
bm

2
c

+
b

m2
cm

2
a

≤ 3
√
3

27r3
.

Solution by Michel Bataille, Rouen, France.

We first observe that

m2
a =

2b2 + 2c2 − a2

4
≥ b2 + 2bc+ c2 − a2

4

=
(b + c)2 − a2

4
= p(p − a) ,

where p = a+b+c
2

is the semiperimeter of the triangle ABC. Similarly we get

m2
b ≥ p(p − b) ; m2

c ≥ p(p − c) .
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Thus, we get

c

m2
am

2
b

+
a

m2
bm

2
c

+
b

m2
am

2
c

≤ c

p2(p − a)(p − b)
+

a

p2(p − b)(p − c)

+
b

p2(p − a)(p − c)

=
c(p − c) + a(p − a) + b(p − b)

p2(p − a)(p− b)(p − c)

Let S denote the area of the triangle ABC. Since p(p−a)(p−b)(p−c) =
S2 = r2p2 and

a(p − a) + b(p − b) + c(p − c) =
2[abc+ (p − a)(p− b)(p − c)]

p
,

to complete the proof we need to show that

abc + (p − a)(p − b)(p − c) ≤
√
3p4

27r
(1)

By applying the AM-GM inequality to both terms on the left side we get

abc+ (p − a)(p− b)(p − c) ≤
�
a + b + c

3

�3

+

�
(p − a) + (p − b) + (p − c)

3

�3

=
8p3

27
+

p3

27
=

p3

3

Also

r2p2 = p(p − a)(p − b)(p − c) ≤ p

�
(p − a)(p − b)(p − c)

3

�3

≤ p4

27
,

and hence

3
√
3r ≤ p .

Thus

abc+ (p − a)(p − b)(p − c) ≤ p3

3
=

p4

3p
≤ p4

9
√
3r

,

which proves (1).

Also solved by ARKADY ALT, San Jose, CA, USA; KEE-WAI LAU, Hong Kong, China;
DRAGOLJUB MILOŠEVIĆ, Gornji Milanovac, Serbia; and the proposer.
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3585. [2011 : 461,463] Proposed by Arkady Alt, San Jose, CA, USA.

Let Tn(x) be the Chebyshev polynomial of the first kind defined by the
recurrence Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1 and the initial conditions
T0(x) = 1 and T1(x) = x. Find all positive integers n such that

Tn(x) ≤ (2n−2 + 1)xn − 2n−2xn−1 , x ∈ [1,∞) .

Solution by Albert Stadler, Herrliberg, Switzerland.

The given recurrence defining Tn(x) implies that it is a polynomial of degree
n, whose leading coefficient is 2n−1 for all n ≥ 1. If the required inequality is to
hold for all x ≥ 1 at a particular positive integer n, then necessarily the leading
coefficient of Tn(x) must be at most 2n−2 + 1. Thus 2n−1 ≤ 2n−2 + 1, which
implies that 2n−2 ≤ 1, which is true only when n = 1 or n = 2.

With n = 1, the inequality demands that x ≤ 3
2
x− 1

2
, which clearly holds

for all x ≥ 1. However, with n = 2, the inequality demands that 2x2 − 1 ≤
2x2−x, which clearly fails for all x > 1. Thus n = 1 is the only positive integer
with the required property.

Also solved by MICHEL BATAILLE, Rouen, France.

3586. [2010 : 461,463] Proposed by Shai Covo, Kiryat-Ono, Israel.

For each positive integer n, an is the number of positive divisors of n of the
form 4m+ 1 minus the number of positive divisors of n of the form 4m+ 3 (so

a4 = 1, a5 = 2, and a6 = 0). Evaluate the sum
∞P

n=1

(−1)n+1an

n
.

Solution by the proposer.

We show that ∞X
n=1

(−1)n+1an

n
=

π ln 2

4
. (1)

To prove (1) we first establish the following lemma:
Lemma: Let xk = (−1)k+1k and yk = (−1)k+1(2k − 1), for each integer
k ≥ 1. Then

lim
n→∞

X
|xiyj |≤n

1

xi

1

yj

=

 ∞X
k=1

1

xk

! ∞X
k=1

1

yk

!
=

π ln 2

4
.

Proof: For any fixed n let m = b√nc. ThenX
|xiyj |≤n

1

xi

1

yj

=
nX

i=1

�
1

xi

X
|xiyj |≤n

1

yj

�
=

mX
i=1

bi +
nX

i=m+1

bi

where bi =
1

xi

X
|xiyj |≤n

1

yj

.
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For each fixed i = 1, 2, · · · ,m, letX
|xiyj |≤n

1

yj

=
π

4
+ Ei.

Using the fact that ������π4 −
kX

j=1

(−1)j+1 1

2j − 1

������ ≤ 1

2k + 1

we have

|Ei| ≤
1

2k + 1
and (2k + 1)i > n.

Thus, ����� mX
i=1

bi −
π

4

mX
i=1

1

xi

����� ≤ mX
i=1

����Ei

xi

���� < m

n
.

It follows that

lim
n→∞

mX
i=1

bi =
π

4

∞X
i=1

1

xi

=
π

4
ln 2.

Hence, it suffices to show that

lim
n→∞

nX
i=m+1

bi = 0. (2)

We consider the sums |bm+1 + bm+2|, |bm+3 + bm+4|, · · · . (Note that
|bn| = 1

n
→ 0 as n → ∞.)

Now define
w(i) = max

|xiyj |≤n
|yj|

and consider an arbitrary but fixed i ∈ {m + 1,m + 2, · · · } where i ≤ n − 1.
If w(i) = w(i + 1), then

|bi + bi+1| =

������ X
|xiyj |≤n

1

yj

������ ����1i − 1

i + 1

���� ≤ 1

i(i+ 1)
. (3)

Ifw(i) 6= w(i+1) then w(i+1) ≤ w(i)−2 since clearlyw(i+1) ≤ w(i)
and both are odd integers. We now show that

w(i + 1) ≥ w(i) − 2. (4)

Note first that

iw(i) ≤ n ⇒ (m + 1)w(i) ≤ n ⇒
�
b
√
nc+ 1

�
w(i) ≤ n

⇒
√
nw(i) < n ⇒ w(i) <

√
n

⇒ w(i) ≤ b
√
nc = m ⇒ w(i) ≤ i − 1 < 2(i+ 1)
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so (i + 1)(w(i) − 2) = iw(i) + w(i) − 2(i+ 1) < n.

Returning now to the proof of (4) which clearly holds if w(i) = 1 since
w(i + 1) ≥ 1. If w(i) ≥ 3, then w(i) − 2 > 0 and is odd. Since w(i) − 2 is
of the form |yj| for some j and since w(i + 1) = max|xi+1yj |≤n |yj|, we have
(i+1)w(i+1) ≥ (i+1)|yj| = (i+1)(w(i)−2) from whichw(i+1) ≥ w(i)−2
follows, establishing (4).

Therefore, w(i + 1) = w(i) − 2. Using (3) we obtain

|bi + bi+1| ≤
1

i(i + 1)
+

1

|xiw(i)|
=

1

i(i + 1)
+

1

iw(i)

=
1

i(i + 1)
+

1

(i + 1)w(i)

�
1 +

1

i

�
(5)

If (i + 1)w(i) ≤ n, then |xi+1|w(i) ≤ n would imply that |xi+1||yj| ≤ n for
all yj such that |xi||yj| ≤ n so w(i) < w(i + 1), a contradiction.

Hence,

(i + 1)w(i) > n. (6)

From (5) and (6) we obtain

|bi + bi+1| <
1

i(i + 1)
+

2

n
. (7)

However, noting that w(m + 1) ≤ m so the number of indices i for which
w(i + 1) = w(i) − 2 is bounded above by m.

Since both
1

(m + 1)(m + 2)
+

1

(m + 3)(m + 4)
+ · · · and

m

n
tend to 0 as

n → ∞ we conclude that lim
n→∞

nX
i=m+1

bi = 0 establishing (2) and completing

the proof.

Also solved by ALBERT STADLER, Herrliberg, Switzerland; who gave a 3-page proof
based on the Dirichlet L-function associated with the non-trivial character (mod 4), and
analytic continuation of some complex function defined by Dirichlet series.
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3587?. [2010 : 461,463] Proposed by Ignotus, Colegio Manablanca, Facata-
tivá, Colombia.

Define the prime graph of a set of positive integers as the graph obtained by
letting the numbers be the vertices, two of which are joined by an edge if and only
if their sum is prime.

(a) Prove that given any tree T on n vertices, there is a set of positive integers
whose prime graph is isomorphic to T .

(b) For each positive integer n, determine t(n), the smallest number such that
for any tree T on n vertices, there is a set of n positive integers each not
greater than t(n) whose prime graph is isomorphic to T .

No solutions have been received so this problem remains open.
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