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La Société mathématique du Canada permet aux lecteurs de reproduire des articles de la présente publication à des
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MATHEMATTIC
No. 62

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by April 15, 2025.

MA306. The power seven lottery awards prize money in powers of 7. For
example, prize categories are 1 = 70, 7 = 71, 49 = 72, 343 = 73, etc. In this
lottery there are several awards that amount to 777777 and there are no more
than 6 awards for each prize category. How many awards are there?

MA307. Eight circles of radius 1 have centers on a larger common circle
and adjacent circles are tangent. Find the area of the common circle. See the
illustration below.

MA308. There are 46656 6-digit numbers that can be formed from the digits
1, 2, 3, 4, 5, and 6, with repetition of digits allowed. If these numbers are listed
in order what is the 2018th number in the list?

MA309. Alice walks down to the bottom of an escalator that is moving up.
Alice counts 150 steps. Alice’s friend Bob walks up to the top of the escalator
and counts 75 steps. Alice’s speed of walking (number of steps per unit time) is 3
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times Bob’s walking speed. How many steps are visible on the escalator at a given
time?

MA310. In a town where any pair of people are either friends or strangers to
each other, any two friends do not have common friends, while any two strangers
have exactly two common friends. Prove that in this town everyone has exactly
the same number of friends.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2025.

MA306. La loterie puissance 7 attribue des prix en puissances de 7. Par
exemple, les catégories de prix sont les suivantes : 1 = 70, 7 = 71, 49 = 72,
343 = 73, etc. Dans cette loterie, il y a plusieurs prix qui totalisent 777777 et il
n’y a pas plus de 6 prix pour chaque catégorie de prix. Combien y a-t-il de prix ?

MA307. Huit cercles de rayon 1 ont leur centre inscrit sur un cercle commun
qui est plus grand. Les cercles adjacents sont tangents. Trouvez l’aire du cercle
commun. Voir l’illustration ci-dessous.
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MA308. Il y a 46656 nombres à 6 chiffres qui peuvent être formés à partir des
chiffres 1, 2, 3, 4, 5 et 6 si la répétition des chiffres est autorisée. Si ces nombres
sont classés dans l’ordre, quel est le 2018ème nombre de la liste ?

MA309. Alice descend les marches d’un escalier mécanique qui va dans
une direction ascendante. Alice compte 150 marches. Bob, l’ami d’Alice, monte
les marches de l’escalier mécanique et compte 75 marches. La vitesse de marche
d’Alice (le nombre de marches par unité de temps) est 3 fois supérieure à celle
de Bob. Combien de marches sont visibles sur l’escalier mécanique à un moment
donné ?

MA310. Dans une ville où deux personnes quelconques sont soit amies,
soit étrangères l’une pour l’autre, deux amis quelconques n’ont pas d’amis com-
muns, tandis que deux étrangers quelconques ont exactement deux amis communs.
Prouvez que dans cette ville, tout le monde a exactement le même nombre d’amis.

Copyright © Canadian Mathematical Society, 2025
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2024: 50(7), p. 342-343.

MA281. Proposed by Trinh Quoc Khanh.

Given a triangle ABC, let E,F be the feet of altitudes from B,C. The circle
centered at B with radius BE intersects segments BA,BC at X,Z. The circle
centered at C with radius CF intersects segments CA,CB at Y, T . XZ intersects
Y T at K. Let I, J be the incenters of 4XEF,4Y EF , respectively. Prove that
AK is perpendicular to IJ .

We received no correct submissions to this problem. We present the proposer’s
solution.

A

B C

F

E

YX

T Z

K

J
I

Q

P

Let the intersection point of EJ, FI be P and let AK meets IJ at Q.

Crux Mathematicorum, Vol. 51(2), February 2025
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Claim 1. X,Y,E, F are concyclic.

Since CY = CF , we have

∠FY C =
180◦ − ∠Y CF

2
=

180◦ − (90◦ − ∠BAC)

2
=

90◦ + ∠BAC
2

.

Analogously, we have

∠EXB =
90◦ + ∠BAC

2
=⇒ ∠FY C = ∠EXB =⇒ ∠FY E = ∠EXF,

which implies that X,Y,E, F are concyclic.

Claim 2. AK is the angle bisector of ∠BAC.

From Claim 1, ∠AXY = ∠AEF , but it is known that ∠AEF = ∠ABC. Hence

∠AXY = ∠ABC =⇒ XY ‖ BC =⇒ ∠Y XZ = ∠XZB.

But from the hypothesis, BX = BZ =⇒ ∠XZB = ∠BXZ, so ∠Y XZ = ∠BXZ.
Similarly, ∠XY T = ∠CY T . So K is the A−excenter of 4AXY .

We have FI, EJ , AK are the internal angle bisectors of 4AEF , so they are
concurrent at P .

Now, let’s do some angle chasing:

∠FIE = 90◦ +
∠FXE

2

and

∠EJF = 90◦ +
∠FY E

2
,

so FIJE is a cyclic quadrilateral. Furthermore,

∠QPJ =
∠FAE + ∠FEA

2
and ∠PJQ = ∠PFE =

∠AFE
2

.

This implies that

∠QPJ + ∠PJQ =
∠FAE + ∠FEA+ ∠AFE

2
= 90◦.

Therefore AK ⊥ IJ .

MA282. Proposed by Neculai Stanciu.

Prove that 22n+5 + 9n2 + 3n+ 4 is divisible by 18 for any non-negative integer n.

We received 17 submissions, 7 of which were correct and complete. The problem
was published with a typo from the original proposal; this was later corrected after
input from our readers. As a result, we include in the count of the correct submis-
sions those who submitted counterexamples of the initial problem statement. We

Copyright © Canadian Mathematical Society, 2025
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present the solution to the correct problem statement by the proposer and Vasile
Teodorovici, done independently.

We proceed by induction. For the basis step of n = 0, we have

22(0)+5 + 9(0)2 + 3(0) + 4 = 36,

which is divisible by 18. Next, assume that

22(n)+5 + 9(n)2 + 3(n) + 4

is divisible by 18 for some n and consider the case for n+ 1. We have that

22(n+1)+5+9(n+ 1)2 + 3(n+ 1) + 4

= 22n+7 + 9n2 + 21n+ 16

= 22n+7 + 36n2 + 12n+ 16− 27n2 + 9n

= 22
Ä
22(n)+5 + 9(n)2 + 3(n) + 4

ä
− 9n(3n− 1)

which is divisible by 18 using the induction hypothesis and the fact that n and
3n− 1 have different parities so their product is even.

Therefore by mathematical induction 22n+5 + 9n2 + 3n + 4 is divisible by 18 for
any non-negative integer n.

MA283. The integers from 1 to 9 are listed on a blackboard. If an additional
m eights and k nines are added to the list, the average of all of the numbers in the
list is 7.3. Find the value of k +m.

Originally problem 23 from the 2002 Fermat Contest.

We received 10 submissions, 3 of which were correct and complete. We present
two solutions.

Solution 1, by Meryem Bourget. Let the average of these numbers be x̄. We have

x̄ =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8(m+ 1) + 9(k + 1)

m+ k + 9
= 7.3

That is,

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8m+ 9k = 7.3(m+ k + 9)

We do some basic algebra to finally obtainÅ
9 · 10

2

ã
+ 8m+ 9k = 7.3 · 9 + 7.3(m+ k)

0.7m+ 1.7k = 20.7

or more simply,
17k + 7m = 207. (1)

Crux Mathematicorum, Vol. 51(2), February 2025
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The last equation is a linear Diophantine equation in two unknowns k,m ∈ Z.
Such an equation can be solved using the division algorithm as described below.
First, since the gcd(17, 7) = 1, equation (1) has infinitely many solutions in Z –
we are only interested in the positive solution, i.e. when k,m ∈ N. We apply the
division algorithm successively to obtain

17 = 2 · 7 + 3

7 = 2 · 3 + 1

3 = 1 · 3 + 0

By reversing our steps, we deduce

1 = 7− 2 · 3 = 7− 2(17− 2 · 7) = 5 · 7− 2 · 17.

We now multiply both sides of last equation by 207 to finally obtain

207 = 17(−2 · 207) + 7(5 · 207)

= 17(−414) + 7(1035)

Therefore, the general solution of (1) is

k = −414 + 7n

m = 1035− 17n,

where n ∈ Z. The only possible choice of n that makes both k and m positive is
n = 60. Hence, we obtain

k = −414 + 7(60) = 6 and m = 1035− 17(60) = 15,

and therefore k +m = 21.

Solution 2, by Adam Mawani. Since we are solving for k + m, we can introduce
the variable n = k + m. Since the sum of the integers 1 through 9 is 45, we can
determine that:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8(m+ 1) + 9(k + 1)

m+ k + 9
= 7.3

⇔ 45 + 8m+ 9k

9 + k +m
= 7.3

⇔ 45 + 8m+ 9k = 7.3(9 + k +m)

⇔ 45 + 8m+ 9k = 65.7 + 7.3k + 7.3m

⇔ 0.7m+ 1.7k = 20.7

⇔ 7m+ 17k = 207

⇔ 7n+ 10k = 207,

where n = k +m.

Copyright © Canadian Mathematical Society, 2025
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Since multiples of 10 end in 0, 7n must end in 7, meaning n must end in 1. Since
k is positive, n ∈ {1, 11, 21} since these are the only numbers ending in 1 that are
below 207/7 ≈ 29.6.

If n = 1, then k = 20, which is impossible because n = k+m, where both k and m
are positive integers. If n = 11, then k = 13, which is again impossible since n < k.
However, if n = 21 then k = 6, which is possible. Therefore, n = k +m = 21.

Editor’s Comments. For problems MA282 and MA283, many solvers provided
incomplete solutions, skipping intermediate steps and relying on the reader to
justify the assertions. We encourage solvers to include solutions showing all the
necessary steps.

MA284. The lengths of all six edges of a tetrahedron are integers. The
lengths of five of the edges are 14, 20, 40, 52, and 70. How many possible lengths
for the sixth edge are there?

Originally problem 25 from the 2002 Fermat Contest.

There were 2 correct and 4 incomplete solutions submitted, along with 1 incorrect
solution. We present 2 solutions.

Let (u, v, w) denote a triangle with sidelengths u < v < w. Note that w < u+ v.

Solution 1, by Vasile Teodorovici.

There are two triangles whose sidelengths are among the five given numbers and
two triangles with the unknown sidelength x. The only possible triangles with
known sidelengths are (14, 40, 52), (20, 52, 70), (20, 40, 52) and (40, 52, 70).

If (14, 40, 52) is one triangle, a second with one of these edges has sidelengths 20
and 70. The only possibility is that it is (20, 52, 70).

If (20, 52, 70) is one triangle, the only possibility for a triangle with sidelengths 14
and 40 is (14, 40, 52).

One of two possibilities for the remaining pair of triangular faces is (14, 20, x)
and (40, 70, x), with 6 < x < 34 and 30 < x < 110, or x = 31, 32, 33. The
second possibility for the pair is (14, 70, x) and (20, 40, x) with 56 < x < 84 and
20 < x < 60, or x = 57, 58, 59.

If (20, 40, 52) is one triangle, then the sidelengths 14 and 70 cannot be combined
with any of these sidelengths to constitute a triangle.

If (40, 52, 70) is one triangle, then since 14+20 is less than any of these sidelengths,
the situation is again impossible.

Hence there are six possibilities for x, namely 31, 32, 33, 57, 58, 59.

Crux Mathematicorum, Vol. 51(2), February 2025
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Solution 2, by Catherine Jian.

Let ABCD be the tetrahedon, and suppose that CD = x. AB cannot be equal
to 14 or 20, since these two must be side lengths of either triangle ABC or ABD,
which is impossible because 14 + 20 is less than the other lengths given. Nor can
AB be equal to 70, since one of triangles ABC and ABD must have the other
two side lengths from among 14, 20, 40, any pair of which add to less than 70.
Therefore AB = 52.

As in the previous solution, the only possible choices for triangles ABC and
ABD are (14, 40, 52) and (20, 52, 70) with, for example, (AC,AD) = (14, 20) or
(AC,AD) = (14, 70). The result follows.

Editor’s Comments. The given solutions work if we interpret the problem as
determining possible maps of tetrahedra, i.e., planar representations where one
triangular face ABC has three others ABD, BCD, CAD splayed about it. Then
it is just a matter of making sure that the sides of the triangles satisfy the triangular
inequality. However, a worrier might ask whether these splayed triangles can be
folded up to form a tetrahedron. This cannot be taken for granted, as this simple
example due to Karl Wirth and André Dreiding indicates. Suppose that five sides
have length 4 and the remaining length 7. Then there are two possible faces ABC
and ABD with sides (4, 4, 4) and two ACD and BCD with sides (4, 4, 7). If
ABC and ABD are laid flat on opposite sides of AB, then CD = 4

√
3 =
√

48 < 7,
making it impossible to fold the triangles into a tetrahedron.

In their paper, Edge length distances determining tetrahedrons (Elem. Math. 64
(2009), 160-170 https://ems.press/content/serial-article-files/45383?nt=1, Wirth
and Dreiding consider this question in detail. In particular, they show that given
six distances, you can form a nondegenerate tetrahedron provided you can find
four triples in which each pair appears exactly twice, the triangle inequality is
satisfied and the Cayley-Menger determinant is positive. This determinant gives
rise to the volume of the tetrahedron.

For the tetrahedra in the problem, we find that each of the values of x gives rise to a
legitimate solid. The values of x and the corresponding volumes are (31, 469.303),
(32, 551.000), (33, 483.086), (57, 233.157), (58, 551.236), (59, 219.077).

MA285. In parallelogram ABCD, AB = a and BC = b, a > b. Angles
A, B, C, D are bisected. The intersection points of these angle bisectors are the
vertices of quadrilateral PQRS. Prove that PR = a− b.

Adapted from problem 8b from the 2000 Euclid Contest.

There were 7 correct solutions. We present the solution by Catherine Jian and
Rovsen Pirkuliyev, done independently.

Copyright © Canadian Mathematical Society, 2025
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A B

CD

S Q

P

R

EF

G H

In the diagram above, let AE, BF , CG, DH be the respective bisectors of angles
A, B, C, D. Since ∠DAE = ∠DEA and ∠BGC = ∠BCG, triangles DAE and
CBG are isosceles. Therefore DS right bisects AE and BP right bisects CG.
Therefore PQRS is a rectangle.

Since AE‖GC, ASQG is a parallelogram, and so

PR = SQ = AG = AB −BG = AB −BC = a− b,

as desired.

Editor’s Comments. An alternative approach after the recognition that PQRS is
a rectangle is to note that

PS = RQ = RC −QC = a cos θ − b cos θ = (a− b) cos θ

and SR = PQ = (a− b) cos(90◦ − θ) = (a− b) sin θ, where θ = ∠DCR = ∠BCQ,
and thence find the length of PR.

Crux Mathematicorum, Vol. 51(2), February 2025
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TEACHING PROBLEMS
No. 29

John McLoughlin

Considering Three Problems for Consideration

The preceding issue of Teaching Problems featured Three Problems for Consider-
ation (see Crux 50(10), p. 499 – 500). Those problems are restated here with
the intention of elaborating upon merits, extensions, or ideas underlying their in-
clusion as teaching problems. A common thread is accessibility as each of these
problems could be used at a middle school level.

A Special Ten-Digit Number

0’s 1’s 2’s 3’s 4’s 5’s 6’s 7’s 8’s 9’s

— — — — — — — — — —

The challenge is to find a special ten-digit number. The first digit gives the number
of 0’s in the number, the second digit the number of 1’s, the third digit the number
of 2’s and so on. (For example, a number beginning with 2 must have exactly two
0’s in it.)

One Dollar on Average

Three items are available to purchase. They cost 50 cents, 2 dollars and 3 dollars
respectively. Your challenge is to purchase at least one of each item such that the
average price of the items you purchase is exactly 1 dollar.

Pairwise Sums

A list of six positive integers p, q, r, s, t, u satisfies p < q < r < s < t < u. There are
exactly 15 pairs of numbers that can be formed by choosing two different numbers
from this list. The sums of these 15 pairs of numbers are:

25, 30, 38, 41, 49, 52, 54, 63, 68, 76, 79, 90, 95, 103, 117

Determine the value of (r + s).

Discussion of the Problems

The problems are discussed here in reverse order. An elaboration upon a brief
commentary of the second problem will follow in a subsequent issue. The first and
third problems are discussed in detail here.

Copyright © Canadian Mathematical Society, 2025
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Pairwise Sums

The idea of determining the value of a sum or an expression without determining
the values of the individual variables seems to be a point of discomfort for many.
This particular Gauss Contest question is a thoughtful elaboration of this idea
with six variables as it invites insightful thinking along with the usual methods for
attacking such a problem. The insight is required as unlike the typical example of
such a problem, the answer itself already appears in the list of sums. It is unclear
as to which of those values is the desired sum. If one tries to guess, it is likely that
the solver will realize it is clearly not the first value of 25 as that must be (p+ q),
the sum of the smallest two integers, and likewise not 117 as it must represent
(t+ u). Aha! (We’ll come back to this point.)

Consider for a moment the classic example that was likely my first introduction
to the idea of not solving for the variables yet finding the sum:

Given a + b = 20, b + c = 29 and c + d = 41, determine the value of
(a+ d).

Summing the three equations simplifies to a+ 2(b+ c) + d = 90 and substituting
29 as the sum of b and c leads to the solution of the problem. That is (a+d) = 32.

Familiarity with this simpler problem is likely to be found amongst many of those
who solved the Pairwise Sums question. However, given that the students writing
the contest would have been in Grade 8 it is plausible that an attack that began
with summing the 15 given values would have been fruitful if followed by that
Aha! sort of thinking. That is, the total of the values being 980 would represent
five times the sum of the six variables, as each variable would be in five pairings.
The solution follows as 980/5 = 196. Removal of the smallest and largest sums
leaves the sum of the middle two values giving (r + s) = 196− (25 + 117) = 54.

The Pairwise Sums problem can be accessible while also yielding an opportunity to
incorporate reasoning and move beyond solving for specific values. Any problems
that push against immediate tendencies or common comforts potentially develop
problem solving abilities. Though it is accessible at a middle school level, my ex-
perience suggests it is valuable in teaching secondary math teachers and students.
The experience with the question meets up against instincts to begin solving for
r and s to get the sum. This alone is valuable.

Before closing discussion on this problem, let us revert to the simpler problem. It is
interesting to ask students to pick a value and call it a. Suppose a student selects 6.
It would follow then that b must be 14 to give the required sum of 20. Proceeding
further would give c = 15 and d = 26. Note that (a+d) would be 6 + 26, or 32, as
found above. Curiously this will be the case regardless of the initial value selected
for a. This is a learning moment for many. It calls forth a method of tighter
mathematical rigour that ensures this must be the case. Suppose we generalize
with expressions in terms of a. The values of the four variables could be expressed
as (a, b, c, d) = (a, 20−a, 9+a, 32−a). Again, we find that a+d = a+(32−a) = 32.

Crux Mathematicorum, Vol. 51(2), February 2025
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One Dollar on Average

This problem is commonly approached using trial and error. Observe that the
smallest possible number of items to be ordered includes at least one 2 dollar and
at least one 3 dollar item. Thus, the total is at least 5 dollars making it sensible
to add several of the cheaper 50 cent items to bring the average item price down
to one dollar. It is quickly noted that six of the 50 cent items bring the overall
average to the desired amount of one dollar.

For the purpose of this issue, that is all that will be stated. However, this problem
among other related problems will be revisited in future. Extending the discussion
at that time will add to the significance of this sort of problem for teaching and
learning purposes.

A Special Ten-Digit Number

This problem was introduced to me by Ed Barbeau. What follows here is consider-
ation of the problem from my perspective of working with the problem. Interested
readers can see Ed’s book [1] for a detailed discussion.

Why do I like this problem? It’s playful. On the one hand, numbers with curious
properties intrigue me. On the other, it surprised me to find such a number and
then not find another. That is, there is the sense of accomplishment in finding the
number and then further work established the uniqueness of 6 210 001 000 as that
number possessing the required properties.

Playing with the problem initially helps greatly with understanding the task at
hand. Suppose the number begins with say a 2. Then that tells us that there are
only two appearances of 0 in the number. However, we also know that the third
digit must be at least 1 (as it tells how many times the number 2 appears). So
now we have a start of 2 1 but the blank space must tell us the number of 1’s
and so it must be 1. Oops, now it would become 2 as there is already another 1,
and we quickly see that this is not as automatic a problem as it may appear using
strictly trial and error. Stop and think. What else do we know?

A helpful insight comes with the recognition that the digits in the ten-digit number
must total 10 as the digits are telling us the number of appearances of respective
digits. Hence, they must total the number of digits in the length of the number.
Going back to our example above, beginning with a 2 would leave a total of 8
for the remaining digits with only two 0’s. Think about that. This would require
seven nonzero digits summing to 8. This would only be possible with six 1’s and
one 2. Now the number of 1’s would have to be large and further each of the 1’s
would require the appearance of the corresponding digit. This means that possibly
the digit 7 say would appear once and 4 would appear once and on. But if we had
the digit 1 telling us that the number contains a 7, for example, then it follows
that there must be 7 appearances of some other digit. Soon we realize this is
impossible and go back to the drawing board.

It is far from evident at the outset that we really need two things to happen.

Copyright © Canadian Mathematical Society, 2025
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Algebraically we could imagine (a, b, c, d, e, f, g, h, i, j) representing the number of
appearances of the digits 0 through 9 respectively. We require both of the following
equations to hold.

a+ b+ c+ d+ e+ f + g + h+ i+ j = 10

0a+ 1b+ 2c+ 3d+ 4e+ 5f + 6g + 7h+ 8i+ 9j = 10

The second equation suggests that a is quite large. Also, we can note that at most
one of g, h, i, and j can be positive and cannot exceed 1. It turns out that the
only solution to this set of equations is given by

(a, b, c, d, e, f, g, h, i, j) = (6, 2, 1, 0, 0, 0, 1, 0, 0, 0).

Removing the commas in this set gives the special ten-digit number, namely,
6210001000.

The fact that this problem can be played with in elementary school and explored
to a level of conclusiveness in secondary school math adds to its value as a teach-
ing problem. In general, problems that invite messing around while encouraging
development of insightful conjectures or observations are among those that attract
me as a teacher of mathematics. The mucking around along with the desire to
conclusively prove a result are elements of being a mathematician that ought to
be more commonplace in the mathematical experiences of students.

References
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Competition Highlights
The Canada Jay Mathematical Competition

by Nicolae Strungaru

The Canada Jay Mathematical Competition was launched in 2020 under the lead-
ership of Shawn Godin. It started under the name Canadian Mathematical Gray
Jay Competition (CMGC), and was renamed to Canada Jay Mathematical Com-
petition(CJMC) in 2022. The competition is open to all students in grades K-8
and is aimed at grades 5-8.

The competition is 90 minutes long, and consists of 15 multiple choice questions,
split into three equal parts (A,B,C). Starting from 2024, each question in part A
and part B is worth 5 points, while each question in part C is worth 6 points. A
point is awarded for each unanswered question, while 0 points are awarded for the
wrong answer. The maximum possible score is 80 points.

The first competition took place in October 2020 and had over 2,200 students
from Canada and China. This year, there were over 3,500 participants, including
640 participants from 10 countries outside Canada. 75 students obtained a perfect
score, and the median score was 36/80.

We complete this column by presenting two questions from this year’s contest,
with their solutions. We start by presenting Problem B05 with two solutions.

Problem B05

Grandma is sewing a traditional Indigenous design typically found on blankets
and elsewhere, called a starblanket design, on a tapestry. The pattern is made up
of 200 rhombi (see next page).

For each edge, no matter if it is on the outside of the star or between two rhombi,
Grandma uses exactly 10cm of thread. How much thread did she use in total?

A. 34 m B. 40 m C. 44 m D. 48 m e. 80 m
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Solution

In total, the 200 rhombi have 800 edges.

The outside of the star has 16 sides, each consisting of 5 edges. Therefore, there
are 80 edges on the outside. For those edges, grandma used 800 cm of thread, or
8m.

Each of the remaining 720 edges is common to two rhombi. Therefore, grandma
only sews 360 edges of 10 cm, or 36 m on the inside edges.

In total, she used 44 m of thread.

Second Solution

The starblanket can be made by sewing eight copies of the following shape, and
rotating counterclockwise by 45◦ when moving from one shape to the next.

This shape has six horizontal threads and five vertical threads, each of exactly half
meter. Therefore, the length of thread is

8× .5× 11 = 4× 11 = 44m .

Answer: (C)
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The interested reader can find some more fun problems about the starblanket
design in Crux Mathematicorum, Vol. 47(1), January 2021 at pages 18-24.

Next, we present Problem C03 with its solution.

Problem C03

A store sells bottles of juice. The bottles come packed in boxes of either 4, 9 or
15 bottles per box and the store only sells full boxes. Sarah is having a party and
she needs exactly 50 bottles (as she doesn’t want leftovers). What is the smallest
number of boxes Sarah needs to buy to get exactly 50 bottles?

A. 4 B. 5 C. 6 D. 7 E. 10

Solution

Note first that buying 4 or more boxes of 15 bottles exceeds 50 bottles. This means
that Sarah needs to buy 0, 1, 2 or 3 boxes of 15 bottles.

Case 1: She buys 3 boxes of 15 bottles. Then, she needs to buy an extra 5 bottles,
which is not possible.

Case 2: She buys 2 boxes of 15 bottles. Then, she needs to buy an extra 20
bottles. She can buy at most 2 boxes of 9 bottles, and checking the cases she buys
0, 1, 2 boxes of 9 bottles we see that 0 boxes of 9 bottles and 5 boxes of 4 bottles
is the only possibility.

In this case, she buys 2 + 0 + 5 = 7 boxes.

Case 3: She buys 1 box of 15 bottles. Then, she needs to buy an extra 35 bottles.
It follows that she can buy at most 3 boxes of 9 bottles. Also, since she needs an
odd number of bottles, the number of boxes of 9 bottles must be odd, so 1 or 3.

The only possibility is 3 boxes of 9 bottles and 2 boxes of 4 bottles.

In this case, she buys 1 + 3 + 2 = 6 boxes.

Case 4: She buys 0 boxes of 15 bottles. Since each box has at most 9 bottles, and
she needs to buy 50 bottles, she needs 6 or more boxes.

Regardless, the smallest number of boxes is 6.

Answer: (C)
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OLYMPIAD CORNER
No. 430

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by April 15, 2025.

OC716. Show that for every integer n ≥ 6, there exists a convex hexagon
which can be dissected into exactly n congruent triangles.

OC717. Let a1, a2, . . . , an be positive real numbers, and let Sk be the sum of
the products of a1, a2, . . . , an taken k at a time. Show that

SkSn−k ≥
Ç
n

k

å2

a1a2 . . . an,

for k = 1, 2, . . . , n− 1.

OC718. In a triangle ABC, the median and the angle bisector at A meet
the side BC at M and N respectively. The perpendicular at N to NA meets MA
in Q and BA in P , and the perpendicular at P to BA meets AN produced in O.
Prove that QO is perpendicular to BC.

OC719. Let p be a prime number and n1, n2, . . . , np ∈ N∗, at least two
of which are distinct. Denote by d the greatest common divisor of the numbers
n1, n2, . . . , np. Prove that the polynomial

f =
Xn1 +Xn2 + · · ·+Xnp − p

Xd − 1

is irreducible in Q[X].

OC720. A cube is sub-divided into 27 rectangular prisms by planes parallel
to its faces. If exactly two of these prisms are cubes, prove that the two have equal
sides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2025.

OC716. Montrez que pour tout entier n ≥ 6, il existe un hexagone convexe
qui peut être scindé en exactement n triangles congruents.

OC717. Soient a1, a2, . . . , an des nombres réels positifs, et soit Sk la somme
des produits de a1, a2, . . . , an pris k à la fois. Montrez que

SkSn−k ≥
Ç
n

k

å2

a1a2 . . . an,

pour k = 1, 2, . . . , n− 1.

OC718. Dans un triangle ABC, la médiane et la bissectrice de l’angle A
rencontrent le côté BC respectivement en M et N . La perpendiculaire à NA en
N rencontre MA en Q et BA en P , et la perpendiculaire à BA en P rencontre
AN en O. Montrez que QO est perpendiculaire à BC.

OC719. Soit p un nombre premier et n1, n2, . . . , np ∈ N∗, dont au moins
deux sont distincts. On note d le plus grand diviseur commun des nombres
n1, n2, . . . , np. Montrez que le polynôme

f =
Xn1 +Xn2 + · · ·+Xnp − p

Xd − 1

est irréductible dans Q[X].

OC720. Un cube est divisé en 27 prismes rectangulaires par des plans par-
allèles à ses faces. Si exactement deux de ces prismes sont des cubes, montrez que
ces deux prismes ont des côtés égaux.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2024: 50(7), p. 356–357.

OC691. Prove that a number written only by zeros and ones, with the
number of ones being at least two, cannot be a perfect square.

Originally Saint Petersburg Mathematical Olympiad 1962 - Qualifying Round,
Problem 4.

We received 2 submissions. We include the comment by Oliver Geupel.

It is a well-known open problem whether the assertion in the problem statement
is true or false. We refer to Crux Problem 909∗ proposed by Stan Wagon, USA
[1984:20; 1985: 94-95; 2012: 144]: For which positive integers n is it true that,
whenever an integer’s decimal expansion contains only zeros and ones, with exactly
n ones, then the integer is not a perfect square?

Editor’s Comment.

The difficulty in this problem arises from the cases where the number ends in 01.

The idea is this: we can assume by contradiction that

N =
n∑
i=0

ai 10i, ai ∈ {0, 1}, and
n∑
i=0

ai ≥ 2,

and that N is a perfect square, say N = m2.

Since every digit of N is either 0 or 1, the last two digits of N can only be one of
00, 01, 10, or 11. However, it is well known that a perfect square is congruent to
0 or 1 modulo 4. Since

10 ≡ 2 (mod 4) and 11 ≡ 3 (mod 4) ,

the only possibilities for the last two digits of a square are 00 or 01.

If N ends in 00, then 100 | N , so we can write

N = 100N1,

where N1 is also a perfect square. Moreover, the decimal digits of N1 are also only
0’s and 1’s, and the number of 1’s in N1 is the same as in N (namely, at least
two). Repeating this process if necessary, we may assume that our square N does
not end in 00, so that in fact N ends in 01.

Since N ends in 01, we have m2 ≡ 1 (mod 100). A routine check shows that if
m2 ≡ 1 (mod 100), then m ≡ 1, 49, 51, 99 (mod 100). Since none of 1, 49, 51, 99
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satisfies the condition, we assume m ≥ 100, that is m = 100k + r, where k, r are
positive integers with r ∈ {1, 49, 51, 99}. Now,

m2 = (100k + r)2 = 104k2 + 200kr + r2.

For large k one can intuitively guess that there are other digits different from 0
and 1 in the decimal representation of m2, but no rigorous proof has been found
yet.

OC692. Prove that for any positive integer n, the number

n(2n+ 1)(3n+ 1) · . . . · (1966n+ 1)

is divisible by every prime number less than 1966.

Originally Saint Petersburg Mathematical Olympiad 1966 - Grade 7, Problem 3.

We received 9 correct solutions. We present the solution by UCLan Cyprus Prob-
lem Solving Group.

Let p < 1966 be a prime. If p | n, then the result is immediate. Otherwise,
n, 2n, 3n, . . . , pn are all distinct modulo p. Indeed, if in ≡ jn (mod p), then
p | (j − i)n and since p - n, then p | j − i. But for j 6= i with i, j ∈ {1, 2, . . . , p}
this is impossible. So n, 2n, . . . , pn form a complete residue system modulo p and
therefore there is kn such that kn ≡ −1 (mod p). Then p | kn + 1 and since
k ≤ p < 1996 the result follows.

OC693. On the side AC of triangle ABC, point E is chosen. Bisector AL
intersects segment BE at point X. It turns out that AX = XE and AL = BX.
What is the ratio of angles A and B of the triangle?

Originally Leonhard Euler Competition 2023 - 2nd Round, Day 1, Problem 4.

We received 9 solutions and we present 2 of them.

Solution 1, by Theo Koupelis.

Triangle AXE is isosceles, because AX = XE, and thus

∠XEA = ∠XAE = ∠XAB = ∠A/2.

Thus, BA is tangent to the circle (AXE) at point A. Therefore,

AB2 = BX ·BE = BX · (BX +XE) = AL · (AL+AX).

Let point D be on the ray AL such that LD = AX and thus

AD = AL+ LD = AL+AX.

Then BX = AL = XD, and thus

AX/XE = XD/BX = 1
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and BD ‖ AE. Also, AB2 = AL · AD, and therefore AB is tangent to the circle
(BLD). Thus,

∠LAC = ∠LDB = ∠LBA,

or ∠A = 2∠B.

Solution 2, by UCLan Cyprus Problem Solving Group.

By two applications of the Sine Law we have

sinB

sin(A/2)
=
AL

BL
=
BX

BL
=

sin(∠BLX)

sin(∠(BXL)
.

Since AX = XE, then ∠AEX = ∠EAX = A/2 and so ∠BXL = 180◦ − A.
Furthermore ∠BXL = 180◦ − (B +A/2). Thus

sinB

sin(A/2)
=

sin(B +A/2)

sin(A)
.

Thus

sin(A) sin(B) = sin(A/2) sin(B +A/2)

which gives

cos(A−B)− cos(A+B)

2
=

cos(B)− cos(A+B)

2
.

We deduce that cos(B) = cos(A − B) which, since A − B ∈ (−π, π), occurs only
if A − B ∈ {−B,B}. Since A 6= 0◦, then A = 2B, i.e. the required ratio is equal
to 2.

OC694. Inside the parallelogram ABCD, a point E is marked, lying on the
bisector of angle A, and a point F is marked, lying on the bisector of angle C. It
is known that the midpoint of the segment BF lies on the segment AE. Prove
that the midpoint of the segment DE lies on the line CF .

Originally Leonhard Euler Competition 2023 - 2nd Round, Day 2, Problem 7.

We received 6 solutions and we present 2 of them.

Solution 1, by Oliver Geupel.

Let G be the point of intersection of the lines AE and BC, and let H be the point
of intersection of the lines CF and AD. Let I be the midpoint of the segment
BF . Let J be the point of intersection of the lines CF and DE.
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A B

G

CD

E

F

H

I

J

The lines AG and CH are parallel since ∠BAG = ∠DCH. Hence,

BG

GC
=
BI

IF
= 1.

By symmetry it follows that

DH

HA
=
BG

GC
= 1.

Thus,
DJ

JE
=
DH

HA
= 1,

that is, the line CF meets the segment DE at its midpoint.

Solution 2, by UCLan Cyprus Problem Solving Group.

Let M,N be the intersections of AE and CF with BC and AD respectively. Since

∠MAD =
∠BAC

2
=

∠DCB
2

= ∠NCB,

then AM and CN are parallel.

Let F ′ be the midpoint of BF and E′ the midpoint of DE. Then

1

2
=
BF ′

BF
=
BM

BC
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and therefore M is the midpoint of BC.

The triangles BAM and DCN are congruent (all angles equal and BA = CD).
Therefore DN = BM = BC/2 = AD/2. Thus N is the midpoint of AD and
therefore

DE′

DE
=
DN

DA
=

1

2
.

It follows that E′ is the midpoint DE and therefore it indeed lies on CF .

OC695. Let us call two numbers almost equal if they are equal or differ from
each other by at most 1. A checkered rectangle with side lengths equal to natural
numbers a and b is such that it is impossible to cut out a rectangle along the grid
lines whose area is almost equal to half the area of the original rectangle. What
is the smallest value that the number |a− b| can take?

Originally Leonhard Euler Competition 2023 - 2nd Round, Day 2, Problem 8.

We received 4 correct solutions. We present the solution by Oliver Geupel.

It is impossible to cut a rectangle with area 22 or 23 out of a 9-by-5 rectangle along
the grid lines. Hence, the smallest value of |a − b| is at most 4. We show that
the smallest value is in fact equal to 4. The proof is by contradiction. Suppose
|a− b| ≤ 3. If a or b is an even number, say, a is even, then it is possible to cut out
a rectangle with side lengths a/2 and b, which contradicts the hypothesis of the
problem. Hence a and b are odd, so that |a− b| is equal to either 0 or 2. Consider
first the case a = b. If a = b = 1, we can cut out a 1-by-1 rectangle. If a = b ≥ 2,
then we can cut out an (a− 1)-by-(a+ 1)/2 rectangle, where it holds

a2/2− (a− 1)(a+ 1)/2 = 1/2,

a contradiction. It remains to consider the case |a− b| = 2. We may assume that
b = a+ 2. Since

(a+ 1)2/2− a(a+ 2)/2 = 1/2,

an (a + 1)/2-by-(a + 1) rectangle can be cut out, a contradiction. The proof is
complete.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by April 15, 2025.

5011. Proposed by Fedor Petrov and Max A. Alekseyev.

Let a, b, c be the zeros of a cubic polynomial, and let α, β be the zeroes of its
derivative. Prove that

(a− b)4 + (a− c)4 + (b− c)4

(α− β)4

is a constant that does not depend on the polynomial.

5012. Proposed by Tran Quang Hung and Nguyen Minh Ha.

Given a right triangle ABC with ∠A being the right angle. Construct a rectangle
MNPQ such that M and N lie on AB and AC, respectively, while P and Q lie on
BC. Let E be the intersection of MQ and BN , and F be the intersection of NP
and CM . Prove that AE = AF if and only if AB = AC or MNPQ is a square.

5013. Proposed by Mihaela Berindeanu, modified by the Editorial Board.

Let AM be the median from the vertex A of a triangle ABC to the midpoint M
of BC, and let P be the point of that median (extended, if necessary beyond A)
for which PM = BM = CM , while Q is the projection of the orthocenter of the
triangle on that median. Prove that

AP

PM
=

PQ

QM
.

5014. Proposed by Michel Bataille.

Let n be an integer with n ≥ 2 and A ∈Mn(C) of rank r ≥ 1.

a) Show that A = XY for some pair (X,Y ) ∈ Mn,r(C) ×Mr,n(C) such that
rank(X) = rank(Y ) = r.

b) If A2 = A, prove that the product Y X is independent of the pair (X,Y ).
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5015. Proposed by Mohammad Bakkar.

Let C,P be the sets of circles and points in the plane, respectively. Find all
functions f : C → P such that for all nonconcentric circles ω1, ω2 from C, we have
f(ω1), f(ω2),Mω1,ω2

are collinear, where Mω1,ω2
is the intersection of the radical

axis of the two circles with the line that passes through their centers.

5016. Proposed by Yagub Aliyev.

Let n > 2 and polynomial pn(t) be defined by

(t− 1)2pn(t) = ((n− 1)− (n− 2)t)(1− ntn−1 + (n− 1)tn).

Prove that pn(t) has exactly one maximum point in interval [0,+∞).

5017. Proposed by Michel Bataille.

Let x, y, and z be non-negative real numbers such that x+ y + z = 1. Prove that

(1− x)(1− y)(1− z) ≥ 8
√

3

9

√
xyz.

5018. Proposed by Nguyen Viet Hung.

Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

a2b

2a+ b
+

b2c

2b+ c
+

c2a

2c+ a
+

2

9
M ≥ 1,

where M = max{(a− b)2, (b− c)2, (c− a)2}.

5019. Proposed by Vasile Cirtoaje.

Let a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0 such that a1a2 + a2a3 + · · ·+ a9a1 = 9. Prove that

a1 + a2 + · · ·+ a6 ≥ 6.

5020. Proposed by Mihaela Berindeanu.

Let a, b, c be three numbers greater than zero with the propriety abc = 1. Show
that

ln a

1 + a+ ab
+

ln b

1 + b+ bc
+

ln c

1 + c+ ca
≤ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2025.

5011. Soumis par Fedor Petrov et Max A. Alekseyev.

Soient a, b et c les zéros d’un polynôme cubique et soient α et β les zéros de sa
dérivée. Montrez que

(a− b)4 + (a− c)4 + (b− c)4

(α− β)4

est une constante qui ne dépend pas du polynôme.

5012. Soumis par Tran Quang Hung et Nguyen Minh Ha.

Étant donné un triangle rectangle ABC dont ∠A est l’angle droit. Construisons
un rectangle MNPQ tel que M et N se trouvent respectivement sur AB et AC,
tandis que P et Q se trouvent sur BC. Soit E l’intersection de MQ et BN , et
soit F l’intersection de NP et CM . Prouvez que AE = AF si et seulement si
AB = AC ou MNPQ est un carré.

5013. Soumis par Mihaela Berindeanu, modifié par le comité de rédaction.

Soit AM la médiane entre le sommet A d’un triangle ABC et le milieu M de
BC, et soit P le point de cette médiane (prolongée, si nécessaire, au-delà de A)
pour lequel PM = BM = CM , tandis que Q est la projection de l’orthocentre du
triangle sur cette médiane. Montrez que

AP

PM
=

PQ

QM
.

5014. Soumis par Michel Bataille.

Soit n un entier vérifiant n ≥ 2 et A ∈Mn(C) de rang r ≥ 1.

a) Montrez que A = XY pour un certain couple (X,Y ) ∈Mn,r(C)×Mr,n(C)
tel que rang(X) = rang(Y ) = r.

b) Si A2 = A, montrez que le produit Y X est indépendant du couple (X,Y ).

Copyright © Canadian Mathematical Society, 2025

https://publications.cms.math.ca/cruxbox/


84/ Problems

5015. Soumis par Mohammad Bakkar.

Soient C et P, les ensembles des cercles et des points dans le plan, respectivement.
Trouvez toutes les fonctions f : C → P telles que pour tous les cercles non concen-
triques ω1, ω2 de C, on a que f(ω1), f(ω2) et Mω1,ω2

sont colinéaires, où Mω1,ω2

désigne l’intersection de l’axe radical des deux cercles avec la droite qui passe par
leurs centres.

5016. Soumis par Yagub Aliyev.

Étant donné n > 2, soit pn(t) le polynôme défini par

(t− 1)2pn(t) = ((n− 1)− (n− 2)t)(1− ntn−1 + (n− 1)tn).

Montrez que pn(t) a exactement un point maximum dans l’intervalle [0,+∞).

5017. Soumis par Michel Bataille.

Soient x, y et z des nombres réels non négatifs tels que x+y+ z = 1. Montrez que

(1− x)(1− y)(1− z) ≥ 8
√

3

9

√
xyz.

5018. Soumis par Nguyen Viet Hung.

Soient a, b et c des nombres réels positifs tels que a+ b+ c = 3. Montrez que

a2b

2a+ b
+

b2c

2b+ c
+

c2a

2c+ a
+

2

9
M ≥ 1,

où M = max{(a− b)2, (b− c)2, (c− a)2}.

5019. Soumis par Vasile Cirtoaje.

Soient a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0 tels que a1a2 + a2a3 + · · ·+ a9a1 = 9. Montrez que

a1 + a2 + · · ·+ a6 ≥ 6.

5020. Soumis par Mihaela Berindeanu.

Soient a, b et c trois nombres plus grand que zéro avec la propriété que abc = 1.
Montrez que

ln a

1 + a+ ab
+

ln b

1 + b+ bc
+

ln c

1 + c+ ca
≤ 0.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2024: 50(7), p. 367–370.

4961. Proposed by Michel Bataille.

Let ABC be a triangle with ∠BAC = 90◦ and BC = 3AB. Let O and G be the
circumcenter and the centroid of ∆ABC and let I be the incenter of ∆OAB. Prove
that OI and BG intersect on the circumcircle of ∆AGI and that IO =

√
3 IA.

All 18 of the submissions that we received were correct, and we will feature two of
the approaches that were used.

Solution 1 combines ideas from the solutions of Martin Dimitrov, Chikara Tsug-
awa, and the group from Logroño that consists of M. Bello, M. Benito, Ó. Ciaurri
and E. Fernández.

Without loss of generality we will take AB = 2, so that BC = 3AB = 6. The
circumcenter O of ∆ABC is the midpoint of the hypotenuse BC; consequently,
∆OAB is isosceles with AO = BO = 3. Moreover, since AO is a median of the
given triangle ABC, we have AG = 2

3AO = 2, so that AG = AB and ∆ABG is
also isosceles. Denote by P the intersection of OI and BG.

Step 1. P lies on the circumcircle of ∆AGI. In the isosceles triangle BOA, the
bisector OI of the angle at O is perpendicular to the base AB. Similarly, in the
isosceles triangle AGB, the bisector AI of the angle at A is perpendicular to the
base BG. Because corresponding sides of the angles BPI and IAB (marked θ
in the accompanying diagram) are perpendicular, they are equal. But AI bisects
∠GAB, so that also ∠GAI = ∠IAB = θ. Since the internal angle ∠GAI at
A of the quadrilateral AIPG equals the external angle ∠BPI at the opposite
vertex P , the quadrilateral is cyclic, as desired. [Comment. Tsugawa observes
that in an arbitrary right triangle ABC with circumcenter O on the hypotenuse
BC, centroid G, I the incenter of triangle OAB, and P = OI ∩ BG, then the
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circle (AIP ) intersects the ray
−→
AG at the point X for which AB = AX. When

BC = 3AB as in our problem, that point is G.]

Step 2. IO =
√

3 · IA. Denote the midpoint of AB by M . As before, M is the
foot of the bisector OI of the angle at O of ∆OAB. In the right triangle AOM ,

OM =
√
OA2 −AM2 =

√
32 − 12 = 2

√
2.

Since AI is the bisector of ∆OAM , I divides MO in the ratio 1 : 3 so that

MI =

√
2

2
and IO =

3
√

2

2
.

Finally, in the right triangle IAM , IA =
√
AM2 +MI2 =

»
1 + 1

2 =
√
3√
2
, whence

IO =
√

3 · IA, as claimed.

Solution 2, by the Eagle Problem Solvers of Georgia Southern University.

Position A at the origin, B at (0, 1) and C at (2
√

2, 0), so that BC = 3. [Observe
that the scale used here is half of that used in Solution 1.] Because the chord
BC subtends a right angle ∠BAC, BC must be a diameter of the circumcircle

of ∆ABC, while its midpoint O is the circumcenter; thus, O =
Ä√

2, 12

ä
. Notice

that OA = OB = 3
2 , so that ∆OAB is isosceles with a perimeter of 4. Since the

coordinates of the incenter I are the weighted averages of the coordinates of the
vertices, then

I =
3

8
(0, 0) +

3

8
(0, 1) +

1

4
(
√

2,
1

2
) =

Ç√
2

4
,

1

2

å
,

and OI is the horizontal line y = 1
2 . We compute

IA =

…
1

8
+

1

4
=

√
3
√

2

4
and IO =

√
2−
√

2

4
=

3
√

2

4
=
√

3 IA.

Meanwhile, the coordinates of the centroid G are the averages of the coordinates

of the vertices A,B, and C, so G =
Ä
2
√
2

3 , 13

ä
. Thus, the line BG has slope −1√

2

and equation y = − x√
2

+ 1. The point P of intersection of OI and BG is thereforeÄ√
2
2 ,

1
2

ä
. According to Ptolemy’s theorem, the points A, I, P , and G are concyclic

(in that order) if and only if AI · PG+ IP ·AG = AP · IG. We compute

AI ·PG+ IP ·AG =

√
6

4
·
√

3

6
+

√
2

4
·1 =

√
2

8
+

√
2

4
=

3
√

2

8
=

√
3

2
·
√

6

4
= AP · IG.

Thus, by Ptolemy’s theorem, P lies on the circumcircle of ∆AGI.

Editor’s comments. As suggested by the diagram and proved tacitly in the second
solution, the incircle of ∆OAB also contains P (the point common to the the lines
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OI and BG, as well as the circumcircle of triangle AGI). Surprisingly, although
several readers essentially provided a proof and a suggestive diagram, only Didier
Pinchon explicitly stated the result. Equally surprisingly, nobody commented that
the center of the circle (AIPG) lies on the leg AC of the given triangle.

4962. Proposed by Leonard Giugiuc and Richdad Phuc.

Prove that if ABC is an acute angled triangle, then

cosA

cos(B − C)
+

cosB

cos(C −A)
+

cosC

cos(A−B)
≤ 2(cos2A+ cos2B + cos2 C).

There were 4 correct and two incomplete solutions. We present 2 solutions.

Solution 1, by the proposers. Since

cos(B − C) = cosA+ cos(B + C) + cos(B − C) = cosA+ 2 cosB cosC,

then
cosA

cos(B − C)
=

cos2A

cos2A+ 2 cosA cosB cosC
=

1

1 + x
,

where x = (2 cosB cosC)/ cosA. Similarly

cosB

cos(C −A)
=

1

1 + y
and

cosC

cos(A−B)
=

1

1 + z
,

where

y =
2 cosC cosA

cosB
and z =

2 cosA cosB

cosC
.

The inequality to be established is

2

Å
1

x+ 1
+

1

y + 1
+

1

z + 1

ã
≤ xy + yz + zx.

Now

cos2A+ cos2B + cos2 C + 2 cosA cosB cosC

= cos2(B + C) + cos2B + cos2 C + 2 cosA cosB cosC

= cos2B cos2 C − 2 sinB sinC cosB cosC + (1− cos2B)(1− cos2 C)

+ cos2B + cos2 C + 2 cosA cosB cosC

= 1 + 2 cos2B cos2 C + 2 cosB cosC(− sinB sinC + cosA)

= 1 + 2 cosB cosC(cosB cosC − sinB sinC − cos(B + C))

= 1.

Since cos2A = yz/4, cos2B = zx/4 and cos2 C = xy/4, we find that

xy + yz + zx+ xyz = 4.
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Let p = x + y + z, q = xy + yz + zx and r = xyz, so that q + r = 4. By
the arithmetic-geometric means inequality, q ≥ 3r2/3, so that 4 ≥ r2/3(3 + r1/3),
whence 0 ≤ r ≤ 1. We have that 3 ≤ 4− r = q ≤ 4. Observe that

q2 − 3pr = x2y2 + y2z2 + z2x2 + 2pr − 3pr

= 1
2 ((xy − yz)2 + (yz − zx)2 + (zx− xy)2) ≥ 0,

so that q2 ≥ 3pr.

In terms of p, q, r, the desired inequality is

2

Å
q + 2p+ 3

5 + p

ã
≤ q,

or pr = p(4−q) ≤ 3q−6. This is now clear. Since 0 ≥ (q−3)(q−6) = q2−3(3q−6),
it follows that

pr ≤ q2

3
≤ 3q − 6.

Equality occurs if and only if the triangle is equilateral.

Solution 2, by Sicheng Du.

Let x = cotB cotC, y = cotA cotC, z = cotA cotB and also p = x + y + z,
q = xy + yz + zx and r = xyz. Since the triangle is acute, all these quantities are
positive.

We begin with some preliminary observations.

0 = sin(A+B + C) = sin(A+B) cosC + cos(A+B) sinC

= sinA cosB cosC + cosA sinB cosC + cosA cosB sinC − sinA sinB sinC

= sinA sinB sinC(cotB cotC + cotA cotC + cotA cotB − 1).

Then p = x+ y + z = 1.

We verify that q > r. With K = (cotA cotB cotC)(sinA sinB sinC)−1, we have

q − r = xy + yz + zx− xyz = cotA cotB cotC(cotA+ cotB + cotC − cotA cotB cotC)

= K(cosA sinB sinC + sinA cosB sinC + sinA sinB cosC − cosA cosB cosC)

= K(− cosA cos(B + C) + sinA sin(B + C)) = K(cos2A+ sin2A) = K > 0.

As in Solution 1, we can show that q2 ≥ 3pr = 3r. Finally,

1− 3q = (x+ y + z)2 − 3(xy + yz + zx) = 1
2 [(x− y)2 + (y − z)2 + (z − x)2] ≥ 0.

We have that
cosA

cos(B − C)
=
− cos(B + C)

cos(B − C)
=

1− x
1 + x
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and

cos2A =
cot2A

1 + cot2A
=

yz

x+ yz
=

yz(y + z)

(x+ y)(x+ z)(y + z)
.

The inequality to be established is

1− x
1 + x

+
1− y
1 + y

+
1− z
1 + z

≤ 2 · xy(x+ y) + yz(y + z) + zx(x+ z)

(x+ y)(y + z)(z + x)
.

The left side of this inequality is equal to

3 + p− q − 3r

1 + p+ q + r
=

4− q − 3r

2 + q + r

and the right side is equal to

2 · xy(1− z) + yz(1− x) + zx(1− y)

(1− z)(1− x)(1− y)
=

2q − 6r

q − r
.

Since

(2q − 6r)(2 + q + r)− (4− q − 3r)(q − r) = 3q2 − 8r − 2qr − 9r2

≥ 3q2 − (8q2/3)− (2q3/3)− q4

= 1
3q

2(1 + q)(1− 3q)

≥ 0,

the desired inequality follows.

Comments by the editor. Michel Bataille considered a triangle with sides d, e, f ,
angles D = 180◦−2A, E = 180◦−2B, F = 180◦−2C, inradius r and circumradius
R. Then

cosA

cos(B − C)
=

2 sin(D/2) cos(D/2)

2 cos(D/2) cos((F − E)/2
=

sinD

sinE + sinF
=

d

e+ f

and

2(cos2A+ cos2B + cos2 C) = 2(sin2(D/2) + sin2(E/2) + sin2(F/2))

= 3− (cosD + cosE + cosF )

= 2− r

R
.

The required inequality is equivalent to

d

e+ f
+

e

f + d
+

f

d+ e
≤ 2− r

R
.

This was posed earlier in Crux as Problem 4212, with the solution appearing in
Crux 44:2 (February, 2018), 74.
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4963. Proposed by Arsalan Wares.

Two congruent semicircular arcs touch at the midpoint of diagonal BD of square
ABCD as shown. The diameters of the congruent semicircular arcs are perpen-
dicular to diagonal BD. The arcs have terminal points on the sides of square
ABCD. Points X and Y are the centers of the arcs. Point P is a terminal point,
as shown. Point Q is the point of intersection of PY and one of the arcs, as shown.
Determine the exact value of PQ/QY .

We received 29 submissions, all of which were correct. We present 7 solutions.

Solution 1, by Michali Adamaszek.

PXY is a right triangle with PX : XY = 1 : 2 and PXQ is isosceles. Let M
be the midpoint of PQ, which is also the base of the altitude from vertex X in
triangle PXY . One easily checks that in a right triangle with legs a, b the base
of altitude divides the hypotenuse in ratio a2 : b2, in this case PM : MY = 1 : 4,
therefore PQ is 2/5 of the hypotenuse and PQ : QY = 2 : 3

Solution 2, by Brian D. Beasley.

In right triangle PXY , let r = PX and θ = ∠XPY . Since XY = 2r, we obtain

cos θ =
1√
5

and sin θ =
2√
5

.

This in turn implies

cos(2θ) =

Å
1√
5

ã2
−
Å

2√
5

ã2
= −3

5
and sin(2θ) = 2

Å
2√
5

ãÅ
1√
5

ã
=

4

5
.

Next, in triangle PXQ, since PX = QX, we have ∠PQX = θ and therefore
∠PXQ = π − 2θ. Then the Law of Cosines yields

PQ2 = 2r2 − 2r2 cos(π − 2θ) = r2[2 + 2 cos(2θ)].

Similarly, in triangle Y XQ, we have ∠QXY = 2θ − π
2 and hence

QY 2 = r2 + 4r2 − 4r2 cos
(

2θ − π

2

)
= r2[5− 4 sin(2θ)].

Thus
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PQ

QY
=

 
2 + 2 cos(2θ)

5− 4 sin(2θ)
=

 
2 + 2(−3/5)

5− 4(4/5)
=

2

3
.

Solution 3, by Brian Bradie.

We have:

∠PXQ = π − 2 tan−1 2 = 2
(π

2
− tan−1 2

)
= 2 tan−1

1

2

= tan−1
1
2 + 1

2

1− 1
2 ·

1
2

= tan−1
4

3
.

It then follows from the Law of Cosines that

PQ2 = r2 + r2 − 2r2 cos∠PXQ = 2r2
Å

1− 3

5

ã
=

4r2

5
,

so

PQ =
2r
√

5

5
.

Next,

QY = r
√

5− 2r
√

5

5
=

3r
√

5

5
,

and
PQ

QY
=

2

3
.

Solution 4, by UCLan Cyprus Problem Solving Group.

Use coordinates A = (0, 0), B = (4, 0), C = (4, 4) and D = (0, 4).

Then we have X = (t, 4 − t) for some t ∈ (0, 2). Since PX is perpendicular to
BD, its gradient is 1 and so its equation is y = x + c. Since X belongs to it we
get c = 4− 2t. Since the yP = 4, then P = (2t, 4). We have PX2 = 2t2.

Letting M be the midpoint of BD, we have M = (2, 2) and so PM2 = 2(2− t)2.
Since PX2 = PM2 we get t = 1. Thus X = (1, 3) and P = (2, 4). Similarly we
have Y = (3, 1). The equation of the circle centred at X of radius XM is

(x− 1)2 + (y − 3)2 = 2

and the equation of PY is y = −3x+ 10. So at Q = (x, y) we have

2 = (x− 1)2 + (−3x+ 7)2 = 10x2 − 44x+ 50

giving x = 2 or x = 12/5. [We know that x = 2 is one solution since P belongs
on both the circle and the line. Since the product of the solutions (by Vieta) is
48/10, then the other solution is x = 12/5.]
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Therefore Q = (12/5, 14/5). Then

PQ2

QY 2
=

(2/5)2 + (6/5)2

(3/5)2 + (9/5)2
=

4 + 36

9 + 81
=

4

9
.

Thus PQ/QY = 2/3.

Solution 5, by M. Bello, M. Benito, Ó. Ciaurri and E. Fernández.

Let M denotes the midpoint of the diagonal BD. Suppose wlog that AB = 2, and
so DM =

√
2. Let P ′ be the other terminal point of the semicircle with center X.

We have ∠PMP ′ = π/2 and ∠XPM = π/4, so MP is perpendicular to CD, and
P is the midpoint of CD. Then, XD = XP = XM =

√
2/2. In the same way

YM =
√

2/2.

The power of point Y with respect the circle with center X gives

PY ·QY = YM · Y D =

√
2

2
· 3
√

2

2
=

3

2
.

But PY =
√
PX2 +XY 2 =

√
5/2, so

QY =
3/2√
5/2

=
3√
10
.

On the other hand,

PQ = PY −QY =

…
5

2
− 3√

10
=

…
2

5

and, consequently,
PQ

QY
=

√
2/
√

5

3/
√

10
=

2

3
.

Solution 6, by Ángel Plaza.

Note that triangle PXB is right with right angle at X and XY = 2PX, angle
∠XY P = arctan 1

2 , angle ∠Y PX = π
2 − arctan 1

2 . Since ∠PQX = ∠XY P , then

∠PXQ = π − 2∠QPX = 2 arctan
1

2
and ∠QXY =

π

2
− 2 arctan

1

2
.

Now in order to determine the exact value of PQ/QY , it is enough to apply the
cosine law to triangles QPX and Y PX. Let PX = a, and XY = 2a, then

PQ2 = 2a2 − 2a2 cos

Å
2 arctan

1

2

ã
= a2

4

5

and

QY 2 = 5a2 − 4a2 sin

Å
2 arctan

1

2

ã
= a2

9

5
.

Therefore, PQ/QY = 2/3.
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Solution 7, by Theo Koupelis.

Let K be the midpoint of BD. We have AC ⊥ BD and the diagonals AC,BD
bisect the right angles at the verices of the square. Because the arcs are congruent
and PX ⊥ BD, we have ∠DPX = ∠DCA = 45◦, and thus

DX = PX = XK = KY = Y B := x.

From the right triangle PXY we get PY =
√

5x. Using the power of point Y with
respect to circle (X,x) we get

Y Q · Y P = Y X2 −XP 2 or Y Q ·
√

5x = 4x2 − x2,

and thus Y Q = 3
√

5x/5. Therefore,

PQ = Y P − Y Q = 2
√

5x/5

and PQ/QY = 2/3.

4964. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Find all continuous functions f : R→ R such that

f(−x) = 1−
∫ x

0

e−tf(x− t)dt, ∀x ∈ R.

We received 18 submissions, 14 of which found f(x) = x+ 1 correctly, but only 8
showed it actually works. We present the solution by Michel Bataille.

We show that the function f0 defined by f0(x) = x+ 1 is the unique solution.

First, note that for any continuous function f , we have∫ x

0

e−tf(x− t) dt =

∫ x

0

eu−xf(u) du = e−xF (x)

where F is the differentiable function defined by F (x) =
∫ x
0
euf(u) du (so that

F ′(x) = exf(x)). In particular, we obtain

F0(x) :=

∫ x

0

euf0(u) du =

∫ x

0

(u+ 1)eu du = ueu
∣∣∣x
0

= xex

so that 1− e−xF0(x) = 1− x = f0(−x) for all x, proving that f0 is a solution.

Conversely, let f be any solution. Then we have f(x) = 1 − exF (−x) for all x;
hence f is differentiable on R (as F is) and

f ′(x) = −exF (−x) + exF ′(−x) = f(x)− 1 + f(−x).

Therefore f ′ is differentiable and, for all x,

f ′′(x) = f ′(x)− f ′(−x) = 0.
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It follows that f ′ is constant. Since f(0) = 1 = f ′(0), we see that f ′(x) = 1 and
f(x) = x+ 1 for all x. This completes the proof.

Editor’s Comments. Every correct submission used the substitution u = x− t and
the factorization eu−x = e−xeu to eliminate the dependence of the integrand on x.
Ultimately this led most solvers to conclude that f ′′ = 0. Letting f(x) = ax + b
shows that the original integral equation is equivalent to the global vanishing of

g(x) := (2b− a− 1) + (a− b)e−x.

Since 1 and the exponential are linearly independent (as functions on R), g is
constantly zero if and only if

2b− a− 1 = 0 and a− b = 0

i.e., if and only if a = b = 1.

Kernels other than θ(t) = e−t are possible. P. Perfetti took θ(t) = ke−t and
showed that

f(x) =
k√

k2 − 1
sin
√
k2 − 1x+

k

k + 1
cos
√
k2 − 1x+

1

k + 1

for k 6= 1. E. J. Ionaşcu pointed out that if θ(t) = −cos t then

f(x) = 1 +
cosφx− cosφ−1x√

5
− sinφx+ sinφ−1x√

5

where φ is the golden mean. Is there a general formula for f in terms of θ?

4965. Proposed by Ángel Plaza.

Prove that the following identities hold:

a)
∞∑
n=1

(−1)n−1

n

Å
1

n
− 1

n+ 2
+

1

n+ 4
− · · ·

ã
=

7π2

96
− ln2 2

8
,

b)
∞∑
n=1

1

n

Å
1

n
− 1

n+ 2
+

1

n+ 4
− · · ·

ã
=

ln2 2

8
+

11π2

96
,

We received 18 submissions, of which 16 were correct. We present the solution by
Gordon Russ.

For each positive integer n, let

cn =
1

n
− 1

n+ 2
+

1

n+ 4
− 1

n+ 6
+ · · · .

Crux Mathematicorum, Vol. 51(2), February 2025



Solutions /95

Our goal is to find the sums of the series
∞∑
n=1

(−1)n+1cn/n and
∞∑
n=1

cn/n. We first

look at the even and odd terms of the sequence {cn} separately by defining

an = 2c2n =
1

n
− 1

n+ 1
+

1

n+ 2
− 1

n+ 3
+ · · · ;

bn = c2n−1 =
1

2n− 1
− 1

2n+ 1
+

1

2n+ 3
− 1

2n+ 5
+ · · · .

Recalling two familiar sums, we note that a1 = ln 2 and b1 = π/4. It is easy to
verify that

0 < an ≤
1

n
and 0 < bn ≤

1

2n− 1

for each positive integer n. It follows that the series
∞∑
n=1

a2n and
∞∑
n=1

b2n both

converge; we denote these sums by A and B, respectively. Using the fact that
an + an+1 = 1/n for each n, we find that

π2

6
=
∞∑
n=1

1

n2
=
∞∑
n=1

(an + an+1)2 =
∞∑
n=1

(a2n + 2anan+1 + a2n+1)

= A+
∞∑
n=1

2an

( 1

n
− an

)
+A− a21 = 2

∞∑
n=1

an
n
− a21;

and thus
∞∑
n=1

an
n

=
π2

12
+
a21
2

=
π2

12
+

(ln 2)2

2
.

Similarly, using the fact that bn + bn+1 = 1/(2n− 1) for each n, we obtain

π2

8
=
∞∑
n=1

1

(2n− 1)2
=
∞∑
n=1

(bn + bn+1)2 =
∞∑
n=1

(b2n + 2bnbn+1 + b2n+1)

= B +
∞∑
n=1

2bn

( 1

2n− 1
− bn

)
+B − b21 = 2

∞∑
n=1

bn
2n− 1

− b21;

and thus
∞∑
n=1

bn
2n− 1

=
π2

16
+
b21
2

=
3π2

32
.

Given the values for these two sums, we obtain
∞∑
n=1

cn
n

=
∞∑
n=1

c2n−1
2n− 1

+
∞∑
n=1

c2n
2n

=
∞∑
n=1

bn
2n− 1

+
∞∑
n=1

an
4n

=
3π2

32
+
(π2

48
+

(ln 2)2

8

)
=

11π2

96
+

(ln 2)2

8
,
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and
∞∑
n=1

(−1)n+1cn
n

=
∞∑
n=1

c2n−1
2n− 1

−
∞∑
n=1

c2n
2n

=
∞∑
n=1

bn
2n− 1

−
∞∑
n=1

an
4n

=
3π2

32
−
(π2

48
+

(ln 2)2

8

)
=

7π2

96
− (ln 2)2

8
.

This completes the proof.

Editor’s Comments. We chose the featured solution for its simplicity. Some solvers
showed that

(a) =

∫ 1

0

ln(1 + x)

x(1 + x2)
dx and (b) = −

∫ 1

0

ln(1− x)

x(1 + x2)
dx

and then evaluated the integrals.

4966. Proposed by Vasile Córtoaje.

For given n ≥ 2, find the largest integer k such that(a1 + a2 + · · ·+ an
n

)2
≥ a21 + a22 + · · ·+ a2k

k

for all nonnegative numbers a1, a2, . . . , an satisfying a1 ≤ a2 ≤ · · · ≤ an.

We received 6 submissions and 5 of them were correct. We present the following
solution by the majority of solvers.

Note that if a1 = 0 and a2 = a3 = . . . = an = 1, then we get

(n− 1)2

n2
≥ k − 1

k
=⇒ k ≤ n2

2n− 1
=
n

2
+

n

2(2n− 1)
<
n+ 1

2
.

It follows that the largest k satisfying the given inequality and condition is at most
bn/2c. We show that we can indeed take k = bn/2c.

First consider the case n is even. Write n = 2m, we need to show(a1 + a2 + · · ·+ a2m
2m

)2
≥ a21 + a22 + · · ·+ a2m

m
. (1)

Equivalently, we need to show

m · (a1 + a2 + · · ·+ a2m)2 ≥ 4m2(a21 + a22 + · · ·+ a2m)

⇐⇒
2m∑
j=1

a2j +
∑

1≤j<`≤2m

2aja` ≥ 4m · (a21 + a22 + · · ·+ a2m).
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From the given condition a1 ≤ a2 ≤ · · · ≤ an we get
∑2m
j=1 a

2
j ≥ 2

∑m
j=1 a

2
j , and

thus it suffices to show that∑
1≤j<`≤2m

aja` ≥ (2m− 1)(a21 + a22 + · · ·+ a2m). (2)

But using the given condition we get

a1(a2 + a3 + · · ·+ a2m) ≥ (2m− 1)a21,

a2(a3 + a4 + · · ·+ a2m) + a2m−1a2m ≥ (2m− 1)a22,

a3(a4 + a5 + · · ·+ a2m) + a2m−2(a2m−1 + a2m) ≥ (2m− 1)a23,

. . . . . .

am(am+1 + am+2 + · · ·+ a2m) + am+1(am+2 + · · ·+ a2m) ≥ (2m− 1)a2m.

Adding the above we get inequality (2), as required.

Finally, we consider the case that n is odd. Write n = 2m+ 1. Then we haveÅ
a1 + a2 + · · ·+ a2m+1

2m+ 1

ã2
≥
(a1 + a2 + · · ·+ a2m

2m

)2
≥ a21 + a22 + · · ·+ a2m

m

by inequality (1) and the assumption a1 ≤ a2 ≤ · · · ≤ a2m ≤ a2m+1, as required.

4967. Proposed by Marian Ursărescu.

Consider triangle ABC, where the a, b, c are lengths of the sides BC,AC,AB,

respectively. Suppose that a =
b+ c

2
, r is the inradius and R is the circumradius.

Prove that:

sin2 A

2
≥ r

2R
.

We received 23 correct solutions for this problem. Many solvers pointed out that
under the conditions of the problem strict equality holds true. We present 2 solu-
tions.

Solution 1, by Michal Adamaszek.

Since R =
a

2 sinA
and tan

A

2
=

r
b+c−a

2

=
2r

a
we have

r

2R
=

1

2
sinA tan

A

2
= sin2 A

2
.

Solution 2, by Sicheng Du.

Let I and O be the incenter and circumcenter of 4ABC. Extend AI intersecting
the circumcircle at D, then D is the midpoint of arc BC. Let OD intersect BC
at F , then BF = FC, and OF ⊥ BC.
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Let the incircle be tangent to AB at E, then IE ⊥ AB, and AE =
b+ c− a

2
.

Since b+ c = 2a, then AE = a
2 = FC. Moreover,

∠BAD = ∠BCD and ∠AEI =
π

2
= ∠CFD.

So 4AEI ∼= 4CFD, then DC = IA. By the incenter lemma, DC = DI, so
IA = DI.

Hence, AI ⊥ IO. By Euler’s theorem, IO2 = R2− 2Rr, then by the Pythagorean
theorem, AI2 = AO2 − IO2 = 2Rr. Therefore,

sin2 A

2
= sin2 ∠EAI =

EI2

AI2
=

r2

2Rr
=

r

2R
.

Editor’s Comments. Chikara Tsugawa found that for any triangle

sin2 A

2
=

r

2R
· a

b+ c− a
,

from which a more general result follows:

• Suppose that 2a > b+ c. Then, b+ c− a < a. Hence, a
b+c−a > 1. Therefore,

sin2 A

2
=

r

2R
· a

b+ c− a
>

r

2R

• Suppose that 2a = b+ c. Then, b+ c− a = a. Hence, a
b+c−a = 1. Therefore,

sin2 A

2
=

r

2R
· a

b+ c− a
=

r

2R

• Suppose that 2a < b+ c. Then, b+ c− a > a. Hence, a
b+c−a < 1.Therefore,

sin2 A

2
=

r

2R
· a

b+ c− a
<

r

2R
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4968. Proposed by Dacian-Dumitru Robu.

Find all monotonic functions f : Z→ Z satisfying

(x+ y)f(xf(y − 1) + yf(x− 1)) = f(2xy)f(x+ y − 1)

for all x, y ∈ Z.

We received 18 submissions and 13 of them were correct. We present the following
solution by the majority of solvers.

We will show that either f is identically 0 or f(x) = x + 1 for every x ∈ Z. It is
easy to check that both of these functions satisfy the conditions.

For y = −x, we get f(−2x2)f(−1) = 0. So f(−1) = 0 or f(−2x2) = 0 for
every x ∈ Z. In the second case we have f(0) = f(−2) = 0 and by monotonicity
f(−1) = 0. So in both cases, we have f(−1) = 0. For y = 0 we now get

xf(0) = f(0)f(x− 1).

If f(0) 6= 0, we deduce that f(x) = x+ 1 for every x ∈ Z and we are done. Next
assume that f(0) = 0.

We first show that f(n) = 0 for every positive integer n. Suppose otherwise that
this is not the case; let k be the minimum positive integer such that f(k) 6= 0.
Then for x = k, y = 1 we get

(k + 1)f(kf(0) + f(k − 1)) = f(2k)f(k).

Since f(k − 1) = f(0) = 0, it follows that f(2k)f(k) = 0 and thus f(2k) = 0.
However, the monotonicity gives f(k) = 0, violating the choice of k.

Finally, we show that f(−n) = 0 for every positive integer n using a similar
approach. Suppose otherwise that this is not the case; let k be the minimum
positive integer such that f(−k) 6= 0. Since f(−1) = 0, we have k ≥ 2. For x = 1
and y = −k we get

(1− k)f(f(−k − 1)) = f(−2k)f(−k).

Next we consider the following two cases:

• Assume f(−k) > 0. Then f(−k− 1) > 0 by monotonicity and thus we have
f(f(−k−1)) = 0. It follows that f(−2k) = 0, contradicting the monotonicity
of f .

• Assume f(−k) < 0. For x = 2k and y = 1− k, we get

(k + 1)f
(
2kf(−k) + (1− k)f(2k − 1)

)
= f(2k(1− k))f(k + 1) = 0.

It follows that f(2kf(−k)) = 0. However, 2kf(−k) ≤ −2k, contradicting
the monotonicity of f .

Thus, we have proved that f is identically zero.
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4969. Proposed by Mihaela Berindeanu.

Let ABCD be a circumscribed quadrilateral to a circle Γ and let Ω1, Ω2 be
the incircles of 4ABC , respectively 4ACD . Finally, let Ω1 ∩ AB = {X},
Ω1 ∩BC = {Y } , Ω2 ∩CD = {Z} and Ω2 ∩AD = {T}. If XY ≡ ZT , show that
Y Z ‖ XT .

We received 12 submissions, all of which were correct, and we feature the solution
by Ivan Hadinata, with some details added by the editor.

Let O be the centre of the incircle Γ. Because O is equidistant from the sides, the
bisectors of ∠A, ∠B, ∠C, ∠D of quadrilateral ABCD pass through O. The key
to what follows is the Euclidean theorem: The two tangents to a circle from an
external point have the same length. The theorem applied to Γ gives us

AB + CD = AD +BC, (1)

and applied to the incircle Ω1 of triangle ACD yields

AC = AT + CZ, AD = AT +DT, and CD = DT + CZ. (2)

The equations in (2) imply that

AT =
1

2
(AC +AD − CD).

Similarly (using triangle ABC and its incircle) we have

AX =
1

2
(AC +AB −BC).

But from equation (1) we have AD − CD = AB −BC, so that

AX = AT.
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Similarly,

CY =
1

2
(AC +BC −AB) =

1

2
(AC + CD −AD) = CZ.

Therefore, the angle bisectors AO, BO, CO, DO are, respectively, the perpendic-
ular bisectors of segments TX, XY , Y Z, ZT . It follows that

XO = Y O = ZO = TO

and, hence, XY ZT is a cyclic quadrilateral inscribed in a circle with centre O and
radius XO.

Everything up to here holds for any quadrilateral that has an incircle. If we
further assume that XY = ZT , we obtain ∠XTY = ∠TY Z (because equal chords
of a circle subtend equal angles), which is equivalent to XT ‖ Y Z (because the
transversal TY makes equal alternate interior angles with the lines XT and Y Z).
This concludes the proof.

Editor’s comments. The above equality AX = AT implies immediately that the
incircles Ω1 and Ω2 are tangent at the same point of AC. Several correspondents
observed that this is a known theorem; see, for example, M. Josefsson, More
characterizations of Tangential Quadrilaterals, Forum Geometricorum, Vol. 11
(2011) 65-82. If, moreover, XY = ZT as in our problem, then the resulting figure
is symmetric about the diagonal AC.

4970. Proposed by George Apostolopoulos.

Let a, b, c be the lengths of the sides of a triangle. Prove thatÅ
a

c
+
b

a
+
c

b

ã2
≥ 2(a+ b+ c)

Å
1

a+ b
+

1

b+ c
+

1

c+ a

ã
.

We received 14 solutions. Many solvers noted that the condition “a, b, c are the
lengths of the sides of a triangle” is not necessary, as the inequality hold for all
positive real numbers a, b, c. The following is the solution by Nguyen Viet Hung.

By the Cauchy-Schwarz inequality we haveÅ
a

c
+
b

a
+
c

b

ã
(ca+ ab+ bc) ≥ (a+ b+ c)2,Å

a

c
+
b

a
+
c

b

ãÅ
1

ca
+

1

ab
+

1

bc

ã
≥
Å

1

c
+

1

a
+

1

b

ã2
.

Multiplying these inequalities and noting that

(ab+ bc+ ca)

Å
1

ab
+

1

bc
+

1

ca

ã
= (a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
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we get Å
a

c
+
b

a
+
c

b

ã2
≥ (a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
.

It remains to show that

1

a
+

1

b
+

1

c
≥ 2

a+ b
+

2

b+ c
+

2

c+ a
.

This is follows from summing up the following inequalities

1

a
+

1

b
≥ 4

a+ b
,

1

b
+

1

c
≥ 4

b+ c
,

1

c
+

1

a
≥ 4

c+ a
.

The proof is completed.
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