
Official Solutions for CJMO 2024

J1. Centuries ago, the pirate Captain Blackboard buried a vast amount of treasure in a single

cell of a 2 × 4 grid-structured island. You and your crew have reached the island and have

brought special treasure detectors to find the cell with the treasure. For each detector, you can

set it up to scan a specific subgrid [a, b]×[c, d] with 1 ≤ a ≤ b ≤ 2 and 1 ≤ c ≤ d ≤ 4. Running

the detector will tell you whether the treasure is in the region or not, though it cannot say

where in the region the treasure was detected. You plan on setting up Q detectors, which may

only be run simultaneously after all Q detectors are ready. What is the minimum Q required

to guarantee your crew can determine the location of Blackboard’s legendary treasure?

Solution. We shall prove that Q = 3.

Let us first observe that Q ≤ 3, that is, it is possible to complete the task with three detectors

on the grid having 2 rows and 4 columns, as follows. The first detector scans the four cells

in the first row; a second detector scans all four cells in the first two columns; and the third

detector scans all four cells in the second and third columns. The following diagram shows

which detectors cover each cell:

12 123 1 3 1

2 23 3

Notice that no two cells would give the same response from all three detectors, so these three

detectors suffice to distinguish the eight possible locations. This proves that Q ≤ 3.

To see that Q ≥ 3, observe that there are only 2×2 possible responses from any arrangement

of two detectors. These four possible responses are not enough to distinguish eight possible

locations. Therefore three detectors are needed.

Copyright © 2024, Canadian Mathematical Society. All rights reserved. Page 1



J2. Let n be a positive integer. Let

In =
n∑

i=1

n∑
j=1

n∑
k=1

min

(
1

i
,
1

j
,
1

k

)

and Hn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
. Determine In −Hn in terms of n.

Solution. Fix a positive integer ℓ with 1 ≤ ℓ ≤ n. Then min
(

1
i
, 1
j
, 1
k

)
= 1

ℓ
precisely when

one of i, j, k = ℓ and the others are at most ℓ. By inclusion-exclusion, the number of (i, j, k)

that achieve this is 3ℓ2 − 3ℓ+ 1. Consequently,

In =
n∑

ℓ=1

(3ℓ2 − 3ℓ+ 1) · 1
ℓ
=

n∑
ℓ=1

3ℓ−
n∑

ℓ=1

3 +
n∑

ℓ=1

1

ℓ
= 3 · n(n+ 1)

2
− 3n+Hn

so

In −Hn =
3n(n+ 1)

2
− 3n =

3n(n− 1)

2
.
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J3. Let ABC be a triangle with incenter I. Suppose the reflection of AB across CI and the

reflection of AC across BI intersect at a point X. Prove that XI is perpendicular to BC.

(The incenter is the point where the three angle bisectors meet.)

Solution. Suppose the reflection of AC across BI intersects BC at E. Define F similarly for

the reflection of AB across CI. Also suppose CI intersects AB at M and BI intersects AC

at N . Since CA and CF = BC are reflections across CI, and so are MA and MF = XM ,

we have that A and F are reflections across CI. Similarly A and E are reflections across BI.

Thus ∠XFC = ∠BAC = ∠XEB if ∠BAC is acute (and ∠XFC = ∠XEB = π − ∠BAC,

when ∠BAC is obtuse), so XF = XE. Moreover we also find that IF = IA = IE by the

aforementioned reflection properties, so thus XI is the perpendicular bisector of EF and is

hence perpendicular to BC.
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J4. Jane writes down 2024 natural numbers around the perimeter of a circle. She wants the

2024 products of adjacent pairs of numbers to be exactly the set {1!, 2!, . . . , 2024!}. Can she

accomplish this?

Solution 1. Given any prime p and positive integer x, let vp(x) denote the highest power of

p dividing x. We claim that Jane cannot write 2024 such numbers as that would imply that

1! · 2! · · · 2024! is the square of the product of the 2024 numbers. Let p be a prime and k be

a natural number such that k < p, kp ≤ 2024, and (k + 1)p > 2024. Then note that

vp(1! · 2! · · · 2024!) = (2024− p+ 1) + (2024− 2p+ 1) + . . .+ (2024− kp+ 1).

In particular, let p be in (2024
4
, 2024

2
). By Bertrand’s Postulate, such a prime p exists (and p

must also be odd). Further, the corresponding k is either 2 or 3. Either way, vp(1! ·2! · · · 2024!)
is odd from the above formula, and so 1! · 2! · · · 2024! cannot be a perfect square.

Solution 2. As in the first solution, we prove 1! · 2! · · · 2024! is not a perfect square. To do

this, note that we can rewrite the product as (1!)2 · 2 · (3!)2 · 4 · · · (2023!)2 · 2024 which is

2 · 4 · · · 2024 · (1! · 3! · · · 2023!)2 = 1012! · (21012 · 1! · 3! · · · 2023!)2

so it is sufficient to verify 1012! is not a perfect square. This can be verified by either noticing

the prime 1009 only appears as a factor of 1012! once, or by evaluating v2(1012!) = 1005.
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J5. Let N be the number of positive integers with 10 digits d9d8 · · · d1d0 in base 10 (where

0 ≤ di ≤ 9 for all i and d9 > 0) such that the polynomial

d9x
9 + d8x

8 + · · ·+ d1x+ d0

is irreducible in Q. Prove that N is even.

(A polynomial is irreducible in Q if it cannot be factored into two non-constant polynomials

with rational coefficients.)

Solution. Let f(x) = d9x
9 + d8x

8 + · · ·+ d1x+ d0. If d0 = 0, then f(x) is divisible by x and

thus reducible, so we may ignore all such polynomials. The remaining polynomials all have

nonzero leading and constant coefficients.

For any polynomial p(x) of degree n with nonzero leading and constant coefficients, say

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, define p(x) to be the reversed polynomial a0x
n +

a1x
n−1 + · · · + an−1x + an. Observe that p(x) also has degree n and furthermore, p(x) =

xn
(
a0 + a1

(
1
x

)
+ · · ·+ an−1

(
1
x

)n−1
+ an

(
1
x

)n)
= xnp

(
1
x

)
.

Consider pairing each f(x) with f(x) whenever f(x) ̸= f(x). If f(x) is reducible, it can

be factored as f(x) = g(x)h(x) where deg g, deg h ≥ 1. Because the leading and constant

coefficients of f(x) are nonzero, so are the leading and constant coefficients of g(x) and

h(x). Hence g(x) and h(x) are well defined with deg g = deg g ≥ 1 and deg h = deg h ≥ 1.

Furthermore,

f(x) = x9f

(
1

x

)
= x9g

(
1

x

)
h

(
1

x

)
=

(
xdeg gg

(
1

x

))(
xdeg hh

(
1

x

))
= g(x)h(x).

Thus f(x) = g(x)h(x) is a factorization of f(x) into two non-constant polynomials, so f(x)

is also reducible. Therefore f(x) is irreducible if and only if f(x) is irreducible, so considering

each pair, there are an even number of irreducible polynomials with f(x) ̸= f(x).

Finally, note that if f(x) = f(x), then di = d9−i for each i. In such a case, we have f(−1) =

(d0− d9)+ (d2− d7)+ (d4− d5)+ (d6− d3)+ (d8− d1) = 0, so by the Factor Theorem, (x+1)

is a factor of f(x). Therefore these remaining polynomials are all reducible.
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