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MathemAttic /401

MATHEMATTIC
No. 48

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by November 30, 2023.

MA236. Let S be a set of real numbers that is closed under multiplication.
Let T and U be disjoint subsets of S whose union is S. Given that the product of
any three (not necessarily distinct) elements of T is in T and that the product of
any three elements of U is in U , show that at least one of the two subsets T and
U is closed under multiplication.

MA237. Determine the number of integral solutions of |x| · |y| · |z| = 12.

MA238. Proposed by Aravind Mahadevan.
In a right-angled triangle, if the median to the hypotenuse is the geometric mean
of the sides forming the right angle, find the measures of the acute angles of the
triangle.

MA239. Proposed by Nguyen Viet Hung.
Find all integers x, y and prime p satisfying the equation

x4 + (x− 1)(x2 − 2x+ 2) = py.

MA240. Proposed by Pranav Milind Sawant.
Let a and b be two positive rational numbers such that 3

√
a+ 3
√
b is also a rational

number. Prove that 3
√
a and 3

√
b are both rational numbers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2023.

MA236. Soit S un ensemble de nombres réels, fermé par rapport à la
multiplication, et soient T et U des sous ensembles disjoints de S dont la réunion est
S. De plus, on suppose que le produit de trois éléments de T (pas nécessairement
distincts) se trouve toujours dans T , et de même pour U . Démontrez qu’au moins
un des ensembles T et U est fermé par rapport à la multiplication.

MA237. Déterminez le nombre de solutions entières à |x| · |y| · |z| = 12.

MA238. Soumis par Aravind Mahadevan.

Dans un triangle rectangle, si la mesure de la médiane s’abaissant à l’hypoténuse
est la moyenne géométrique des mesures des côtés formant l’angle droit, alors
trouvez la mesure des angles aigus du triangle.

MA239. Soumis par Nguyen Viet Hung.

Trouvez tous les entiers x et y ainsi que tous les nombres premiers p satisfaisant
l’équation suivante :

x4 + (x− 1)(x2 − 2x+ 2) = py.

MA240. Soumis par Pranav Milind Sawant.

Soient a et b deux nombres rationnels positifs tels que 3
√
a+ 3
√
b soit aussi un nombre

rationnel. Prouvez que 3
√
a et 3

√
b sont tous les deux des nombres rationnels.
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(3), p. 119–121.

MA211. Starting at coordinates (0, 0), a line 1000 units long is drawn as
indicated. This line then branches into two separate lines (which form a 90◦ angle,
as shown). Each of these lines is 60% the length of the previous segment. The
process continues. Find the (x, y) coordinates of the indicated point.

90◦

90◦

(x, y)

1000

(0, 0)

Originally question 9 from the 2018 Kansas City Area Teachers of Mathematics
High School Math Contest.

We received 3 submissions of which 2 were correct and complete. We present the
solution by Daniel Văcaru.

We denote by O,A,B,C the points on the road to C (x, y). We obtain that
A (0, 1000) . The length of AB is 60

100 ·1000 = 600. Consider the line y = yB , which
is perpendicular to the line x = 0. We have

(xB − xA)
2

+ (yB − yA)
2

= 6002 ⇔ (xB − 0)2 + (yB − 1000)
2

= 6002.

Furthermore, if D is the intersection point of y = yB and x = 0, AD = DB is the
solution to the equation

AD2 +DB2 = AB2 ⇔ 2AD2 = 6002

⇔ AD2 = 600 · 300

⇔ AD2 = 9 · 2 · 1002

⇔ AD = BD = 300
√

2.

Copyright © Canadian Mathematical Society, 2023
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It follows that

yB = 1000 + 300
√

2 = 100
Ä
10 + 3

√
2
ä
.

We obtain xB = −300
√

2. We have B
Ä
−300

√
2, 100

Ä
10 + 3

√
2
ää
. The length of

BC is 60
100 · 600 = 360. It follows that C

Ä
−300

√
2, 1360 + 300

√
2
ä
.

MA212. On a distant planet, railway tracks are built using one solid railway
bar. A railway is built between two towns 20 km apart on a big flat section of the
planet. Unfortunately the bar was made one metre too long and the constructor
decided to lift it in the middle to try to make the ends fit. Approximately how
high does he have to lift it in the middle?

Originally from the Mathematics Competitions, Vol. 34, #1 (2021), A brief his-
tory of the South African Mathematics Olympiad, “Surely that can’t be” problems,
example 1.

We received 2 submissions, both of which were complete and correct. We present
the solution by πratεs of change.

A triangle can be constructed from the information given, where 2x is equal to
20,001 meters and the base is equal to 20,000 meters. That is,

where x+ x = 20001. Next, the triangle can be divided into two to create a right
triangle with a side x, a side of 10,000, and a side z, where x is equal to 10,000.5
and z is the unknown to be calculated. That is,

Next, the Pythagorean theorem can be used to determine the approximate value
of z. That is,

z2+100002 = 10000.52 ⇔ z2 = 10000.52−100002 ⇔ z =
√

10000.52 − 100002.

Next, the radical can be simplified through the difference of two squares. That is,

z =
»

(10000.5− 10000) · (10000.5 + 10000) ⇔ z =
√

0.5 · 20000.5 ⇔ z = 0.5
√

40001.

Crux Mathematicorum, Vol. 49(8), October 2023
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The square root of 40,001 is not a perfect square, so the value can be approximated
to the nearest perfect square, the square root of 40,000, which is 200. The numbers
are so large that the difference in approximation is negligible. That is,

z ≈ 0.5
√

40000 ⇔ z ≈ 0.5 · 200 ⇔ z ≈ 100.

Hence, the constructor must lift the bar approximately 100 meters in the middle
for the bar to fit on both ends.

MA213. A shopkeeper orders marbles made up of 19 identical packets of a
larger amount and 3 identical packets of a smaller amount. A total of 224 marbles
arrive loosely tossed in a container. How would you repackage the marbles properly
to satisfy the shopkeeper’s order? Justify your answer and show that it is unique.

Originally from the J.I.R. McKnight Mathematics Scholarship Paper, Scarborough
Board of Education, Question 5, 1982.

We received 5 submissions, of which 4 were correct and complete. We present the
solution by Aravind Mahadevan.

Let the 19 larger packets contain x marbles in each and let the 3 smaller packets
contain y marbles in each. Then

19x+ 3y = 224 (1)

The integer value combinations of x and y that satisfy (1) are

• x = 2 and y = 62

• x = 5 and y = 43

• x = 8 and y = 24

• x = 11 and y = 5

But we are given that x > y. Therefore, x = 11 and y = 5 is the only possible
solution. So we need to repackage the marbles so that there are 19 identical packets
containing 11 marbles each and 3 identical packets containing 5 marbles each.

MA214. Proposed by Neculai Stanciu.

Determine all pairs (x, y) of real numbers which satisfy√
x2 + 2x+ 1 +

√
x2 − 4x+ 4 +

√
y2 − 6y + 9 +

√
x2 − 2xy + y2 = 4.

We received 5 submissions, of which only 1 was correct and complete as solvers
either missed some cases or did not fully explain why some cases could be excluded.
We present the solution by Ivan Hadinata, lightly edited.

Note that the given equation can be rewritten as follows:

|x+ 1|+ |x− 2|+ |y − 3|+ |x− y| = 4. (1)

Copyright © Canadian Mathematical Society, 2023



406/ MathemAttic

From (1) and the triangle inequality, we can deduce

4 ≥ |x+ 1 + x− 2 + y − 3 + x− y| = |3x− 4|, (2)

and also
4 ≥ |x+ 1|+ |x− 2− y + 3− x+ y| = |x+ 1|+ 1. (3)

Inequality (2) holds for 0 ≤ x ≤ 8
3 and (3) holds for −4 ≤ x ≤ 2; combining the

two yields 0 ≤ x ≤ 2. Hence x+ 1 > 0 and x− 2 ≤ 0, so equation (1) becomes

|y − 3|+ |x− y| = 1.

Applying the triangle inequality again,

1 = |3− y|+ |y − x| ≥ 3− y + y − x = 3− x, (4)

so x ≥ 2. Therefore it must be the case that x = 2. Note that when x = 2 equality
holds in (4), which happens if and only if both of 3− y and y− 2 are nonnegative,
in the other words 2 ≤ y ≤ 3.

Hence the solutions are (x, y) = (2,m) for all real m ∈ [2, 3]. Note: It is easy to
check that these solutions satisfy (1).

MA215. Proposed by Aravind Mahadevan, Hong Kong.

In ∆ABC, ∠B = 2∠A and ∠C = 4∠A. Prove that 1
a = 1

b + 1
c where, a, b and c

denote the lengths of BC, CA, and AB respectively.

We received 11 correct solutions. The following is the solution by Ricard Peiró
and Manescu-Avram Corneliu (done independently).

It is not difficult to see that A,B,C are three vertices of a regular heptagon.
Consider the regular heptagon A1A2 . . . A7 inscribed in the circumcircle of the
triangle ∆ABC, with vertices

A1 = A, A3 = C, A4 = B, A5 = D.

The quadrilateral ABCD is cyclic and BC = BD = a, AC = CD = b and
AB = AD = c. By Ptolemy’s theorem bc = ac + ab, which gives the required
equality if it is divided by abc.

Remark. We leave as an exercise to check that b2 = a2 + ac and c2 = b2 + ab.

Crux Mathematicorum, Vol. 49(8), October 2023
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TEACHING PROBLEMS
No. 23

Shawn Godin
Exploring a Fryer Contest Problem

Math contests are great places to find problems for your classroom. They are de-
signed to be challenging and are usually quite different from the types of questions
you will find in textbooks. One set of contests in particular is full of problems
that can quite easily be turned into classroom explorations. These contests are
the Fryer, Galois, and Hypatia contests hosted by The Centre for Education in
Mathematics and Computing (CEMC) at the University of Waterloo, aimed at
students in grades 9, 10 and 11, respectively.

I have been on the problems committee for the Fryer, Galois and Hypatia contests
for about fifteen years. Each of the contests consists of four multi-part questions
worth 10 marks each for which students provide written solutions. The parts of
each of the problems are related to each other and in many cases earlier parts are
used to nudge the students towards a particular result. The problems committee
actually refers to some problems as teaching problems when we are presenting an
idea that is outside the curriculum which is, however, within the reach of the
students. Let’s explore problem 3 from the 2022 Fryer contest.

3. If an integer n is written as a product of prime numbers, this product
(known as its prime factorization) can be used to determine the number
of positive factors of n. For example, the prime factorization of
28 = 2× 2× 7 = 22 × 71. The positive factors of 28 are:

28 = 22×71, 14 = 21×71, 7 = 20×71, 4 = 22×70, 2 = 21×70, 1 = 20×70.

Each positive factor includes 2, 1 or 0 twos, 1 or 0 sevens, and no other
prime numbers. Since there are 3 choices for the number of twos, and
2 choices for the number of sevens, there are 3× 2 = 6 positive factors
of 28.

(a) How many positive factors does 675 have?
(b) A positive integer n has the positive factors 9, 11, 15, and 25 and
exactly fourteen other positive factors. Determine the value of n.
(c) Determine the number of positive integers less than 500 that have
the positive factors 2 and 9 and exactly ten other positive factors.

The ideas in the problem are straight from the elementary curriculum: factoring
numbers into primes, counting and multiplication. However, the exploration is
really centred on a function used in number theory and its properties. The divisor
function, d(n), returns the number of positive integer divisors (factors) of a positive
integer n. For example, from the problem d(28) = 6. The example and preamble
of the problem lead the students to discover the following number theory theorem.

Copyright © Canadian Mathematical Society, 2023
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Theorem 1. If the prime factorization of n is

n = pα1
1 × pα2

2 × pα3
3 × · · · × pαkk

for primes p1 < p2 < p3 < · · · < pk and integers αi ≥ 1, for 1 ≤ i ≤ k, then

d(n) = (α1 + 1)(α2 + 1)(α3 + 1) · · · (αk + 1).

Thus for the example, since 28 = 22 × 71, then the theorem gives us

d(28) = (2 + 1)(1 + 1) = 3× 2 = 6

as indicated in the problem.

Having given the students the theorem, without explicitly stating it, they are now
open to exploring questions regarding the number of factors of a positive integer.
We will look at the solution to the problem, discuss how to implement it in your
classroom, and present some ideas for further exploration.

Part (a) is just getting the students used to using their new idea. They need to
realize that they have to factor the numbers involved into primes, 675 = 33 × 52

and hence we have

d(675) = (3 + 1)(2 + 1) = 4× 3 = 12.

In part (b), we get the students thinking a bit. Since we are interested in the
factors of n, we should also factor the factors! So writing

9 = 32, 11, 15 = 3× 5, 25 = 52

we can tell that n is of the form

n = 32+α1 × 52+α2 × 111+α3 × k

where α1, α2, α3 ≥ 0 and k is a positive integer that is relatively prime with 3, 5,
and 11 and hence

d(n) = (3 + α1)× (3 + α2)× (2 + α3)× d(k)

From the problem statement we know that d(n) = 18. The only way to obtain
this is if α1 = α2 = α3 = 0 and k = 1, so that d(k) = 1 and hence n = 2475.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parts (a) and (b) have led the students to thinking about the connections between
the prime factorization of a number n and the number of positive integer factors
(divisors in number theory) it has. Part(c) is the real question we want to ask.
Let’s refresh our memory:

(c) Determine the number of positive integers less than 500 that have
the positive factors 2 and 9 and exactly ten other positive factors.

Crux Mathematicorum, Vol. 49(8), October 2023
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The other two parts were leading and lending some support to the student. We
can use our method of part (b) to say if n < 500 is one of the desired numbers,
then d(n) = 12 and n = 21+α1 × 32+α2 × k, where k is relatively prime to 2 and 3.
Hence

(2 + α1)× (3 + α2)× d(k) = 12.

We will look at two cases:

Case 1: k = 1
Since (2 + α1)× (3 + α2) = 12 and

12 = 1× 12 = 2× 6 = 3× 4

the only possibilities are α1 = 0 and α2 = 3, which yield n = 2× 35 = 486; α1 = 1
and α2 = 1, which yield n = 22 × 33 = 108; and α1 = 2 and α2 = 0, which yield
n = 23 × 32 = 72.

Case 2: k > 1
In this case d(k) > 1. However, since d

(
21+α1 × 32+α2

)
≥ 6, the only possibility

is α1 = α2 = 0 and d(k) = 2. What numbers have only two positive factors? That
would be the primes, as any prime p has only itself and 1 as factors. Thus any
number of the form n = 2×32×p, for a prime p > 3 satisfies d(n) = 12. Therefore,
since we want n < 500 we need

2× 32 × p < 500

p < 27 7
9

p ≤ 27

Thus we can choose p to be 5, 7, 11, 13, 17, 19, or 23 giving us, when we add in
the three solutions from case 1, ten possible numbers with the desired property.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OK, so we have answered the questions. Is there anything else that we can wrangle
out of this for our students? We can always try to dive deeper, expanding on the
richness of the problem and deepening our understanding of number theory along
the way. The problem focused on numbers with a specific number of factors. Can
we describe all numbers n such that d(n) = k, that is for each k, which numbers
have exactly k factors?

We will start with a systematic search. If k = 1, we get the only possible number
with one factor is 1. As such, 1 becomes its own “group” when grouping positive
integers into primes, composites and units (1). As mathematicians explore more
complex “numbers” this idea of a unit becomes more important. When discussing
all of the integers, we have primes, composites and units 1 and −1 (0 is something
else entirely). Mathematicians say two numbers are associates if we can write
one as the product of the other and a unit. So 6 and −6 are associates. Thus the

Copyright © Canadian Mathematical Society, 2023
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primes 7 and −7 are associates, so they belong together and don’t really constitute
two different primes. Moving on to the complex numbers or other number fields
we get even more associates, so we have to keep track of them by understanding
what our units are.

When we go to k = 2 we get the primes. That is, d(n) = 2 if and only if n is
prime, as we surmised in the solution to the problem. This makes sense from our
definition of a prime. If p is prime, then its only factors are 1 and p.

Next we are on to our first non-trivial case, k = 3. Depending on the level
of sophistication of the students, this might not jump out at them. In many
cases when we are problem solving, doing some computation and then looking for
patterns is never a bad strategy. If we go and factor a few numbers we will get

d(1) = 1 d(2) = 2 d(3) = 2 d(4) = 3 d(5) = 2

d(6) = 4 d(7) = 2 d(8) = 4 d(9) = 3 d(10) = 4

d(11) = 2 d(12) = 6 d(13) = 2 d(14) = 4 d(15) = 4

d(16) = 5 d(17) = 2 d(18) = 6 d(19) = 2 d(20) = 6

d(21) = 4 d(22) = 4 d(23) = 2 d(24) = 8 d(25) = 3

Colour coding cases with the same result we see, in red, our primes, p, with
d(p) = 2 as expected. Looking at the case of k = 3, in blue, we get n = 4, 9, 25,
which are squares of prime numbers. If we go back to our discovery in the problem,
if n = p2 for some prime p, then d(n) = 2 + 1 = 3. At this point we may come to
the conclusion, if n = px for some prime p, then d(n) = x+ 1. Checking our list,
it works for 8 = 23, with d(8) = 4 and 16 = 24, with d(16) = 5. If we wanted a bit
more evidence we could check the next few prime powers: 27 = 33, with factors 1,
3, 9, and 27 (30, 31, 32, 33), so d(27) = 4; and 32 = 25 with factors 1, 2, 4, 8, 16,
and 32 (20, 21, 22, 23, 24, 25), so d(32) = 6.

Checking theorem 1, we see that it makes sense that d(n) = 3 only for squares of
primes. Since 3 is itself prime, then from d(n) = (α1+1)(α2+1)(α3+1) · · · (αk+1),
one of the αi + 1 terms must be 3 and the others must be 1. That means that
αi = 2 and αj = 0 for j 6= i, or n = p2i . Thus, for d(n) = k, we are interested not
only in the factorization of n, but also in the factorization of k!

Moving to the case of k = 4 (brown in our list) illustrates this. As 4 = 1×4 = 2×2
we get two possibilities for d(n) = 4. We could have n = p3 for some prime p, as
illustrated by n = 8 and n = 27. We could also have n = p× q for distinct primes
p and q. We can see this for the remaining cases in our list: 6 = 2× 3, 10 = 2× 5,
14 = 2× 7, 15 = 3× 5, 21 = 3× 7, and 22 = 2× 11.

We can now make some generalizations. For example, if k = q is a prime, then
d(n) = q only for n = pq−1, for some prime p. So d(n) = 5 only for fourth powers
of primes, d(n) = 7 for sixth powers of primes, d(n) = 11 for tenth powers of
primes, and so on (trivially, d(n) = 2 only for the primes themselves).

Crux Mathematicorum, Vol. 49(8), October 2023
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Returning to part (c) of the original problem, we were interested in numbers with
twelve factors. Since 12 = 22 × 3 we can write 12 as a product as

12 = 1× 12 = 2× 6 = 3× 4

which suggests numbers of the form n1 = p11, n2 = p× q5, and n3 = p2 × q3, for
primes p and q. However, we are interested in all ways that we can form a number
with 12 factors and since 12 = 2 × 2 × 3, we get a fourth class n4 = p × q × r2,
where r is also prime.

From here the sky is the limit. We could explore all the classes of numbers with a
certain number of factors, we could determine the smallest number n that satisfies
d(n) = k for each k, how many numbers are in a particular range (similar to (c)),
and so on.

We could even go in another direction and explore functions with properties similar
to those of d(n). The function d(n) is called a multiplicative function, since if a
and b are relatively prime, then d(a × b) = d(a) × d(b). You may enjoy verifying
(or proving) this and seeing that if a and b have a common factor greater than
one then d(a × b) 6= d(a) × d(b) (a function that satisfies f(a × b) = f(a) × f(b)
for all a and b is called completely multiplicative). There are some functions that
are very familiar to high school students that are (completely) multiplicative, can
you find some?

There are many functions used in number theory, called arithmetic functions,
which are multiplicative. You may enjoy exploring the properties of some of these
functions with your students. Euler’s totient function, φ(n), is a nice example.
The function φ(n) returns the number of numbers less than n which are relatively
prime to n. So, φ(12) = 4 since 1, 5, 7, and 11 are the only numbers less than 12
which are relatively prime to it. The nice thing with multiplicative functions is we
can focus on what f(pn) is for prime p. Then, since the function is multiplicative, if
n = pα1

1 ×pα2
2 ×pα3

3 ×· · ·×pαkk , then f(n) = f (pα1
1 )×f (pα2

2 )×f (pα3
3 )×· · ·×f (pαkk ).

I hope you will have some fun exploring some of the ideas in this article. Check
out the Fryer, Galois and Hypatia contests for other candidates for classroom
exploration.

Copyright © Canadian Mathematical Society, 2023
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MATHEMAGICAL PUZZLES
No. 6

Tyler Somer

Rep-Tiles, Part 1

In this article and the next, I wish to explore some tiles which can replicate to
larger, yet similar, two-dimensional shapes when multiple copies of the basic tile
are used. In the world of mathematical puzzles, such replicating tiles are known
simply as rep-tiles. I will limit this introduction of rep-tiles to relatively simple
tiles, especially those which can be made with wood in a work-shop.

If not using wood from a work-shop, acrylic pieces can be laser-cut from sheets
at an engraver or similar professional service. If your school has the equipment,
the students in the shop classes can create kits for the math classes. Otherwise,
inexpensive classroom kits can be cut from paper, card-stock, or foam-board.

Using discrete tiles, one will need either 4, 9, 16, 25, . . . , or n2 tiles to replicate a
given shape in some larger size. Four copies of a square will replicate, trivially, to
a 2 × 2 square, and this can be extended to any set of n2 equal square tiles. A
triangle, being half of a parallelogram, can similarly replicate to larger copies of
itself. Figure 1 shows this for both 4 and 9 copies of an acute-scalene triangle.

Figure 1: Four and nine copies of an acute scalene triangle rep-tile

A domino has dimensions 1 × 2. Four dominoes can create a 2 × 4 tiling which
replicates the domino shape. It is interesting, however, that there are four distinct
solutions, up to rotation and reflection, for the four dominoes rep-tile. This is
unlike the unique – but still trivial – solutions for squares and triangles.

To avoid trivial cases, rep-tiles must move beyond triangles, squares, and rectan-
gles. Three relatively simple rep-tiles are given in Figure 2. They are composed of
squares, but they are interesting that they avoid trivial solutions that the earlier
shapes provided. The tromino-L, tetromino-L, and pentomino-P have areas 3, 4,
and 5, respectively. The letter suffixes (-L, -L, -P ) are assigned as the shapes
approximate the given letter of the alphabet.
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Figure 2: the tromino-L, the tetromino-L, and the pentomino-P

For readers not familiar with polyominoes, here is a brief introduction: First pre-
sented by Solomon Golomb in 1953, polyominoes are plane geometric figures made
by joining equal squares along common edges. A single square is thus named a
monomino. Two squares form the common domino. Three squares form a tro-
mino, and there are two distinct tromino shapes. Continuing the construction,
there are five tetrominoes, then twelve pentominoes. Most puzzle designers like
the “practical” set size of twelve pentominoes, with its total area of 60; although
some designers do extend to include some of the 35 hexominoes and 108 hep-
tominoes. (Interestingly, my spell-checker recognizes domino and pentomino, but
none of the other -omino names. It would seem that the set of pentominoes is
now common enough for word processing software spell checkers.) The number of
higher-order polyominoes does become quite large, so the introduction shall end
here [Ed.: Check out sequence A000105 from The On-Line Encyclopedia of Integer
Sequences]. Interested readers can find more information online with a search of
either Solomon Golomb or Polyomino.

Let us first consider the tetromino-L. In the wood-shop, waste of material can
be reduced by taking rectangular stock and cutting it as dominoes. Two such
dominoes can be glued as a butt joint, creating the tetromino-L, as in Figure 3a.

A set of four such tiles creates the simplest of puzzles for any young child. For the
adult, it is – it should be – trivial to set two tetromino-L tiles as a larger domino,
as in Figure 3b; then two such larger dominoes form the replicated 4-unit tile.
Owing to reflections of the two-piece sub-structure, there are four solutions to this
rep-tile puzzle.

Figure 3a: gluing two dominoes as a tetromino-L

Figure 3b: setting two tetromino-L pieces as a larger domino sub-structure
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The puzzle becomes interesting when it is increased to a set of nine basic tetromino-
L rep-tile pieces. There are fourteen solutions, but none of them include the 4-piece
rep-tile sub-structure. The solutions do split among four families – three families
of four solutions, and one family of two solutions – as a result of the domino-like
two-piece sub-structure. The one family of two solutions is the closest we get to
a unique solution. Nine tetromino-L pieces also occupy an area of 36, but it is
remarkable that they do not form any rectangle with area 36.

With 16 tetromino-L rep-tiles, triviality returns. The simplest solution is to repli-
cate the 4-piece solution four times over, with its many sub-reflections. Thousands
of other solutions exist, no less than 59 009 in total, for 16 tetromino-L rep-tiles.
Increasing to 25 tetromino-L rep-tiles, the size-5 shape can be replicated in over
17.5 million of ways. For this and larger sizes, determining the number of solu-
tions becomes an exercise for computer programmers. As a practical matter, with
a large set of pieces and working on a table or desk, it becomes almost impossible
NOT to find a solution. We can conclude that the set of nine pieces is not only
interesting, but it also provides a practical limit for puzzle enjoyment.

While the tetromino-L rep-tile is suited for youngsters and novice puzzle solvers,
the next three cases are a bit more sophisticated. Teachers can develop their
discovery activities to suit the grades they teach. Independent students can pursue
the puzzles to suit their level of curiosity, and determine various relationships
among the solutions.

The next rep-tile puzzle to consider is based on the pentomino-P piece. The puzzle
is interesting with a set of four pieces, and two solutions exist. At nine pieces, the
triple-size pentomino-P has five solutions. Four of these five solutions are related:
a four-piece pentomino-P sub-structure exists, and another two pieces form a 2×5
rectangle which can be reflected. The fifth solution is unique unto itself, and the
reader is encouraged to find it without computer assistance.

Similar as with the tetromino-L rep-tile, a set of 16 pentomino-P rep-tiles can
be solved as a trivial extension of the 4-piece puzzle. Computer analysis finds
that 16 pentomino-P rep-tiles will solve the size-4 puzzle in 3451 ways, and 25
pentomino-P rep-tiles will solve the size-5 puzzle in over 5 million ways.

Moving to the smaller tromino-L rep-tile, this puzzle is also interesting with a set
of four pieces. It is the first non-trivial result that is unique. It is closely related
to one of the two solutions of the pentomino-P rep-tile.

The reader is encouraged to make the pieces, solve the puzzles, and determine the
relationship between the four-piece pentomino-P and tromino-L rep-tile solutions.

At nine pieces, the tromino-L rep-tile remains practical, with the size-3 result
having 3 related solutions. It is left as a challenge to the reader to determine the
related solutions.

As before, the tromino-L rep-tiles of size-4, -5, and higher become impractical for
table-top work. For the computer programmers among the readers, it becomes an
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exercise to determine the number of solutions. Some numbers are given in a table
at the end of this article.

Bisecting the tromino-L, we get a right-angled trapezoid that also includes a 45◦

angle, as shown in Figure 4.

Figure 4: the 1-1-2-
√

2 right trapezoid

For this trapezoid, like the polyomino pieces, interesting replication puzzles do
exist for both 4 and 9 pieces. With 4 pieces – size 2 – there is a singular solution,
and it is indeed related to the comparable unique tromino-L solution. At size 3,
the 9 trapezoid pieces replicate in 10 solutions, divided in 3 families, as described
in the table at the end of this article. Similar to the earlier rep-tiles, 16 and 25
copies of this trapezoid also give a large number of solutions. The puzzle would
seem to lose its appeal at these sizes, although computer programmers may enjoy
the challenge of counting the number of solutions at these and larger sizes.

In summary, there are interesting puzzles for 4 and 9 physical copies of the non-
trivial rep-tiles presented in this article. The small number of solutions that do
exist – some which are unique – keep the puzzles engaging. Where multiple solu-
tions exist, the challenges are to find all the families of related solutions, in general;
and to find the families of fewer solutions, in particular.

Solutions are not given here. The joy of discovery is left to the reader. These
puzzles are not very difficult, and so they may be used as classroom discoveries or
as simple challenges for children.

Once we expand to 16 and 25 pieces, the solutions become numerous. Finding a
solution with physical pieces is no longer a challenge. The exercise becomes better
suited to computer programmers, with the goal to count the number of solutions
that exist.

We conclude this article with the following table, which provides a summary of
the results discussed earlier.
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REP-TILES 4 copies 9 copies 16 copies 25 copies
(size 2) (size 3) (size 4) (size 5)

Tetromino-L
.

4 solutions 14 solutions
4 families:
- 3 families of 4
- 1 family of 2

59 009 solutions over 17.5 million
solutions

Pentomino-P
.

2 solutions 5 solutions
- 1 family of 4
- 1 unrelated

3451 solutions over 5 million
solutions

Tromino-L
.

1 solution 3 solutions:
all related

205 solutions 54 213 solutions

1-1-2-
√
2 right

trapezoid
.

1 solution 10 solutions
- 2 families of 4
- 1 family of 2

721 solutions 96 158 solutions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When he was teaching, Tyler often had mechanical puzzles
in his classroom. As a freelancer, Tyler has worked with
numerous inventors and co-designers to bring dozens of
table-top solo-logic puzzle kits to market. He continues to
design puzzles, and he spends a good deal of time in his
woodshop, building his own and others’ puzzle designs.
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From the bookshelf of . . .
Frédéric Morneau-Guérin

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca.

Finding Moonshine : A Mathematician’s Journey Through Symmetry
by Marcus du Sautoy
ISBN-13: 978-0007214617
Published by Fourth Estate, 2009.

Il est indubitable que la nature regorge de mystérieuses
manifestations de symétries. À titre d’exemple, dans le
monde de la chimie physique, il appert que le diamant
tire sa force de l’arrangement hautement symétrique
des atomes de carbone qui le composent. Autre ex-
emple, issu celui-là du monde vivant : parmi l’infinité
de structures que les abeilles pourraient exploiter pour
emmagasiner une quantité donnée de miel, c’est le
treillis hexagonal isométrique (un motif hautement
symétrique) qu’elles emploient pour leurs alvéoles qui
minimise la quantité de cire nécessaire; un fait que les
abeilles semblent savoir d’instinct depuis la nuit des
temps, mais qui n’a été confirmé par la science qu’à
l’aube du vingt-et-unième siècle. Considérant ce qui précède, il n’est probable-
ment pas fortuit si l’esprit humain semble aussi intrigué et attiré par tout ce qui
incarne un aspect de symétrie. Notre cerveau semble en effet programmé pour
non seulement remarquer, mais même rechercher l’ordre, la régularité et, par voie
de conséquence, la symétrie. Notre inclinaison naturelle à apprécier, rechercher,
voire générer de la symétrie s’exprime depuis des temps immémoriaux dans les
arts visuels et vivants, l’architecture, la poésie et la musique. La redondance et
la répétition de motifs sont, quant à eux, des éléments clés de l’apprentissage du
langage humain de même que de la communication efficace et fluide.

Vu l’importance que revêt la symétrie tant dans l’univers matériel que dans l’univers
abstrait des mathématiques, le professeur pour la compréhension de la science à
l’Université d’Oxford Marcus Du Sautoy a jugé bon d’employer son immense talent
de vulgarisateur à démystifier ce concept aussi fondamental et omniprésent que
difficile à cerner. On lui en est reconnaissant, car l’ouvrage qui en a résulté, Find-
ing Moonshine : A Mathematician’s Journey Through Symmetry, est un splen-
dide tourne-page regorgeant d’informations historiques et mathématiques capti-
vantes rendues accessibles et compréhensibles pour un lectorat composé de non-
spécialistes cultivés. Paru en 2008, ce livre unique en son genre nous fait parcourir
plusieurs siècles de développement de théories mathématiques avancées avec, en
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filigrane, une réflexion personnelle sur la vie du mathématicien, de l’éveil à cette
discipline jusqu’à l’espoir de conquête des plus hauts sommets avec tous les risques
et les écueils auxquels cela expose.

Du Sautoy nous fait voir d’entrée de jeu que la notion de symétrie a longtemps
semblé évanescente. Déjà chez les Grecs de l’Antiquité, tous semblaient en avoir
une certaine conception intuitive, mais personne n’était en mesure de mettre le
doigt sur une définition entièrement convenable. La difficulté à saisir ce dont il
s’agit se reflète d’ailleurs jusque dans le mot lui-même. Le substantif “symétrie”
tire en effet son origine du grec ancien. Il s’agit d’une synthèse des mots συν, qui
signifie même, et µετρων, (metron), qui signifie mesure. Juxtaposés, ces deux mots
expriment donc l’idée de différents éléments “de même mesure”. Or, s’il semble
conforme à l’intuition qu’un polygone est plus symétrique lorsque tous ses côtés
sont de mêmes mesures, ce constat élude la question davantage qu’il n’y répond.
Quand bien même on disposerait d’un critère universel nous permettant de dire
que tel objet est plus symétrique que tel autre ou moins symétrique que tel autre
encore (et rien n’indique que ce concept de même mesure soit applicable dans tous
les contextes), cela ne nous aiderait en rien à répondre à la question quant à savoir
ce qu’est au fond la symétrie.

Petit à petit, nous dit l’auteur, on finit par saisir que, d’une certaine manière, une
symétrie est quelque chose d’actif et non de passif. En effet, on peut considérer
une symétrie comme une action pouvant être effectuée sur un objet et qui le
laisserait identique, plutôt que comme une propriété de l’objet lui-même. Un
triangle équilatéral, par exemple, possède six symétries : trois symétries axiales et
trois symétries de rotations. Si vous fermez vos yeux et que j’effectue une rotation
de 120◦, 240◦ ou 360◦ autour de l’orthocentre, ou encore une réflexion par rapport
à l’une ou l’autre des médiatrices de ses côtés, voire un enchanement de l’une
ou l’autre de ces actions, alors, lorsque j’aurai terminé et que je vous inviterai à
rouvrir les yeux, vous seriez incapable de déterminer avec certitude si une action
a été posée ou si on a plutôt laissé le triangle inchangé tant les portraits ex ante
et ex post se ressemblent.

À la suite d’une épiphanie soudaine survenue dans la première moitié du 19e
siècle chez un jeune révolutionnaire français à l’approche de sa mort aussi tragique
que prématurée, la vraie nature de la notion de symétrie se révéla enfin. De ce
moment Eureka, admirablement bien décrit par Du Sautoy, surgit un nouveau
langage celui de la théorie des groupes permettant d’en capturer la véritable
signification. Au cur de cette vision nouvelle et géniale se trouve la reconnaissance
du fait qu’il ne faut pas se contenter de regarder les symétries individuelles d’un
objet. Il faut plutôt aborder ces symétries comme une collection qu’il convient
d’appeler un groupe. Ce sont en effet les interactions unissant les diverses symétries
entrant dans la composition du groupe de symétrie d’un objet qui synthétisent les
caractéristiques essentielles de la symétrie d’un objet.

Il n’avait pas échappé aux Grecs de l’Antiquité que tout nombre naturel peut être
factorisé en produit de nombres dits premiers (à savoir des nombres indivisibles
en ceci qu’ils n’admettent que deux diviseurs, soit 1 et eux-mêmes) et que ces
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nombres premiers sont en quelque sorte les éléments constitutifs de tous les autres
nombres naturels. Le développement de la théorie des groupes qui offre un langage
permettant de concevoir puis de nommer, et par conséquent, d’étudier la symétrie
comme jamais auparavant elle ne l’avait été rendit possible la réalisation d’un fait
étonnant d’un haut niveau de subtilité : les groupes de symétries, tout comme les
nombres naturels, peuvent être factorisés encore et encore en groupes de symétries
plus petits jusqu’à obtenir des groupes de symétries qui sont en quelque sorte,
à l’image des nombres premiers, élémentaires puisqu’indivisibles. Ces groupes
de symétries indivisibles, comme les nombres premiers, ont pour caractéristique
essentielle d’être les éléments constitutifs à partir desquels tous les groupes de
symétries peuvent être construits. Il fallut un temps considérable et des efforts in-
tellectuels soutenus à la communauté mathématique pour appréhender ce concept
d’indivisibilité s’appliquant en matière de symétrie. Mais lorsqu’ils y parvinrent
enfin, l’opportunité de produire une sorte de tableau périodique de la symétrie
se profila. De la même manière que le tableau périodique des éléments est une
classification systématique rassemblant les constituants élémentaires de toute sub-
stance, un éventuel Atlas des groupes de symétrie indivisible listerait tous (sinon
exhaustivement du moins en compréhension) les groupes de symétries primitifs
entrant dans les compositions des groupes de symétries composés.

Nous l’avons dit, l’esprit humain semble en quête d’ordre et de régularité. Catégori-
ser, classifier et ordonner sont des processus mentaux auxquels nous nous prêtons
tous avec une certaine aisance et avec un enthousiasme certain. Il arrive cependant
que la nature refuse de se plier à nos dispositions naturelles vers l’ordre. C’est
notamment le cas dans le domaine de la symétrie. Alors qu’au milieu du 19e siècle
la classification des éléments constitutifs de la symétrie allait plutôt bon train,
le mathématicien français mile Mathieu mit au jour, presque par inadvertance,
cinq groupes de symétries indivisibles plutôt insolites. Alors que tous les groupes
indivisibles découverts précédemment s’étaient avérés appartenir à une famille
infinie de groupes partageant certaines propriétés communes, les cinq groupes
dont l’existence fut révélée par Mathieu ne semblaient ni appartenir à une famille
connue ni suggérer l’existence d’une nouvelle famille infinie ayant jusque-là échappé
à l’attention. Tout indiquait plutôt qu’ils constituaient une sorte d’archipel isolé
dans du mystérieux monde de la symétrie. Afin de souligner le caractère épisodique
de ces groupes, on les qualifia de sporadiques. Plusieurs décennies s’écoulèrent sans
que l’on puisse déterminer clairement où logeaient les groupes de Mathieu dans
l’édifice mathématique. Puis, relate Du Sautoy, en 1954, à l’occasion du Congrès
international des mathématiciens d’Amsterdam, un appel fut lancé pour dresser
une liste exhaustive de ces groupes dits sporadiques. Ainsi s’amorça une aventure
épique, unique dans l’histoire des mathématiques, qui devait durer trente ans.

Les explorateurs se divisèrent naturellement en deux camps reflétant des philoso-
phies distinctes. Le premier camp, composé d’une troupe bigarrée de mathéma-
ticiens anticonformistes à la tête de laquelle se trouvait le coloré et charismatique
John Horton Conway, se spécialisait, tels des pirates à la recherche de trésors,
dans la découverte d’objets mathématiques de plus en plus exotiques dont les
symétries sont modélisées par des groupes sporadiques. Quant au second camp,
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il était constitué d’un vaste réseau d’individus travaillant de façon organisée et
disciplinée. Telle une force de pacification, cette équipe, désireuse d’enfin acquérir
une connaissance complète, vérifiait chaque avenue en procédant méticuleusement
et systéma-tiquement en vue d’exploiter les limites inhérentes à la symétrie pour
expliquer pourquoi il n’y avait pas de nouvelles symétries indivisibles qui pour-
raient exister si l’on partait dans telle ou telle direction. Au grand dam de la
horde de corsaires et de flibustiers s’accrochant à l’espoir de voir se poursuivre
indéfiniment l’aventure exploratoire, au tournant des années 1980, à la suite de la
découverte d’un vingt-sixième groupe sporadique, les deux équipes commencèrent
à s’apercevoir l’une et l’autre aux confins de l’horizon. La circumnavigation du
monde de la symétrie avait été complétée. Le point d’orgue de cette épopée enl-
evante fut la construction d’un objet arborant 808 017 424 794 512 875 886 459
904 961 710 757 005 754 368 000 000 000 symétries et dont le groupe de symétrie
fut surnommé à bon droit le groupe Monstre.

Le présent texte serait ne saurait être qualifié de complet sans une explication
minimale du titre de l’ouvrage considéré. Bien que la traduction littérale de Find-
ing Moonshine soit Chercher de l’alcool de contrebande, il va sans dire qu’il ne
s’agit pas là de la signification voulue par l’auteur. Il faut savoir que, dans le
registre familier de la langue de Shakespeare, le mot moonshine possède un sec-
ond sens. En effet, il est parfois utilisé pour qualifier une idée et signifier qu’elle
est saugrenue, voire complètement dingue. C’est ce mot, dans cette acception,
qu’aurait employé John H. Conway, le capitaine des corsaires, lorsqu’on aurait
porté à son attention que, par une étrange concidence, la valeur numérique de
certains attributs du groupe Monstre concordait avec une suite de nombres oc-
cupant un rôle prépondérant dans une théorie mathématique en apparence sans
rapport avec la théorie des groupes. Il n’en fallut pas plus pour que le nom Mon-
strous Moonshine (qu’on pourrait rendre dans la langue de Molière par la mon-
strueuse idée saugrenue) soit accolé à la conjecture suivant laquelle, loin d’être
le fruit du hasard, cette concordance numérique était en fait la manifestation
visible d’une interconnexion inattendue et insoupçonnée entre deux lointains con-
tinents du mystérieux monde des mathématiques. On l’aura compris, au cours
du voyage au cur de la symétrie que nous propose Marcus Du Sautoy on glanera
suffisamment d’informations historiques et mathématiques pour nous permettre de
savoir et d’apprécier comment des mathématiciens, qui sont nos contemporains,
ont statué sur la valeur de vérité de cette conjecture.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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OLYMPIAD CORNER
No. 416

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by November 30, 2023.

OC646. Let ω be a plane in 3-space which passes through a vertex A of a
unit cube. For the vertices B1, B2, B3 of the cube which are adjacent to A, let
F1, F2, F3 in turn be the feet of the perpendiculars dropped from these vertices to
ω. Determine the value of

(AF1)2 + (AF2)2 + (AF3)2.

OC647. In an infinite arithmetic progression of positive integers there are two
integers with the same sum of digits. Will there necessarily be one more integer
in the progression with the same sum of digits?

OC648. Consider two concentric circles Ω and ω. The chord AD of the circle
Ω is tangent to ω. Inside the minor segment AD of the disc with the boundary
Ω, an arbitrary point P is selected. The tangent lines drawn from the point P
to the circle ω intersect the major arc AD of the circle Ω at points B and C.
The segments BD and AC intersect at the point Q. Prove that the segment PQ
divides the segment AD into two equal parts.

OC649. For each positive integer n, denote by ω(n) the number of distinct
prime divisors of n (for example, ω(1) = 0 and ω(12) = 2). Find all polynomials
P (x) with integer coefficients, such that whenever n is a positive integer satisfying
ω(n) > 20232023, then P (n) is also a positive integer with

ω(n) ≥ ω(P (n)).

OC650. Determine all real values of x for which»
log2 x · log2(4x) + 1 +

 
log2 x · log2

Å
x

64

ã
+ 9 = 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2023.

OC646. Soit ω un plan dans l’espace trois dimensionnel, passant par le
sommet A d’un cube unitaire. À partir des sommets B1, B2, B3 du cube, adjacents
à A, soient dans le même ordre F1, F2, F3 les pieds des perpendiculaires vers ω.
Déterminer la valeur de

(AF1)2 + (AF2)2 + (AF3)2.

OC647. Dans une progression arithmétique formée d’entiers positifs, il en
existe deux avec la même somme de chiffres en représentation décimale. Y en
aura-t-il un troisième avec cette même somme de chiffres?

OC648. Soient deux cercles concentriques Ω et ω. La corde AD du cercle Ω
est tangente à ω. Dans le segment mineur AD du disque de frontière Ω est choisi
un point P . Les tangentes de P au cercle ω rencontrent l’arc majeur du cercle
Ω en B et C. De plus, les segments BD et AC se rencontrent en un point Q.
Démontrer que le segment PQ divise le segment AD en deux parties égales.

OC649. Pour tout entier positif n, soit ω(n) le nombre de diviseurs premiers
de n; par exemple, ω(1) = 0 et ω(12) = 2. Déterminer tous les polynômes P (x) à
coefficients entiers, tels que, pour tout n entier positif vérifiant ω(n) > 20232023,
P (n) est un entier positif tel que

ω(n) ≥ ω(P (n)).

OC650. Déterminer toutes les valeurs réelles x telles que»
log2 x · log2(4x) + 1 +

 
log2 x · log2

Å
x

64

ã
+ 9 = 4.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(3), p. 140–142.

OC621. Find all natural numbers n for which the number nn + 1 is divisible
by n+ 1.

Originally 2020 All-Ukranian Mathematical Olympiad (virtual), Grade 10, Day 1,
problem 1.

We received 19 submissions, of which 16 were correct and complete. We present
a typical solution.

Let m = n+ 1. Then n ≡ −1 (mod m) and nn + 1 ≡ (−1)n + 1 (mod m).

If n is odd, then nn + 1 ≡ −1 + 1 (mod m) ≡ 0 (mod m) and so n + 1 divides
nn + 1.

If n is even, then nn + 1 ≡ 1 + 1 (mod m) ≡ 2 (mod m). Since m = n+ 1 6= 1, 2,
then n+ 1 does not divide nn + 1.

Thus n+ 1 divides nn + 1 if and only if n is odd.

OC622. An equilateral triangle with side length n is divided into n2 small
equilateral triangles of side length 1 (as in the picture for n = 10). At the start,
one small internal triangle (with no points in common with external sides of the
large triangle) is painted in blue, and the rest are painted yellow. In one move,
you can choose any of the n2 small triangles and swap its colour and the colours
of the triangles adjacent to it along its sides. Using such moves, is it possible to
make the entire board one colour?

Originally 2020 All-Ukranian Mathematical Olympiad (virtual), Grade 10, Day 1,
problem 2.

We received 2 submissions, but neither of them were correct and complete. We
leave the problem as an exercise to the reader.
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OC623. Let B and C be two points on the circumference of a circle with
diameter AD such that AB = AC. Let P be a point on line segment BC and let
M,N be points on line segments AB and AC, respectively, such that PMAN is
a parallelogram. Suppose PL is an angle bisector of triangle MPN with L lying
on the line segment MN . If the line PD intersects MN in point Q, show that the
points B,Q,L and C lie on the same circle.

Originally from the 2019 All-Ukranian Mathematical Olympiad, Grade 11, day 1,
problem 4.

We received 5 submissions of which 4 were correct and complete. We present the
solution by Theo Koupelis.

Let O be the centre of the circle with diameter AD. Let DP intersect this circle
again at F, let I be the intersection point of the diagonals of parallelogram PMAN,
let H be the intersection of PL with AB, let CL intersect the circle again at S
and the line PM at G, let the segment PG intersect the circle at J, let the ray
MP intersect the circle at U, and let BQ intersect the circle again at W.

We have

∠MPB = ∠ACB = ∠ABC = ∠NPC,

so triangles MBP and NPC are isosceles and similar, and ∠LPB = ∠LPC = 90◦.
But then

∠MHP = ∠BAO = 90◦ − ∠ABC = 90◦ − ∠MPB = ∠MPH,

and thus M is the midpoint of the hypotenuse of the right triangle HPB. Because
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PL is the angle bisector of ∠MPN and AC ‖ PG we have

GL/LC = ML/LN = MP/PN = BP/PC,

and thus BG ‖ PL. Therefore, BGHP is a rectangle inscribed in the circle
(M,MP ).

But
∠FBH = ∠FBA = ∠FDA = ∠FPH,

and thus F is on the circle (M,MP ), and therefore ∠GFP = ∠AFD = 90◦ and
A,F,G are collinear. Also, because M, I are midpoints of PG,PA, respectively,
we have MN ‖ AG and thus DF ⊥MN. Now

2∠SGM = 2∠CGU = C̃U − ŜJ = ÂJ − ŜJ = ÂS = 2∠SBA.

Thus, GBMS is cyclic and ∠MSB = ∠MGB = ∠PHB = ∠DAB = ∠DSB, and
therefore S,M,D are collinear.

Now, the quadrilateral QMBD is cyclic because ∠MQD = ∠MBD = 90◦, so

∠FDS = ∠QDM = ∠MBQ = ∠ABW.

Thus, ĀW = F̃S and SW ‖ AF ‖ MN. Therefore, ∠WBC = ∠WSC = ∠NLC,
and the quadrilateral BQLC is cyclic.

OC624. A series contains 51 not necessarily different natural numbers which
add up to 100. A natural number k is called representable if it can be represented
as the sum of several consecutively written numbers in this series (perhaps one
number). Prove that at least one of the two numbers k and 100−k is representable,
where 1 ≤ k ≤ 100.

Originally 2023 Kharkiv Regional Mathematical Olympiad, Grade 11, Final Round,
problem 2.

We received 2 correct and complete submissions. We present both solutions.

Solution 1, by Oliver Geupel.

Let k be any integer such that 50 ≤ k ≤ 100. We are going to show that at least
one of the two numbers k and 100− k is representable.

Suppose the given series of positive integers is a1, a2, . . . , a51. We extend it by
integers a52, a53, . . . , a51+k, defined by the relation ai = ai−51 for 52 ≤ i ≤ 51 + k.
For 1 ≤ j ≤ 51, consider the sums of k + 1 consecutively written numbers

sj = aj + aj+1 + · · ·+ aj+k.

We have

s1 + s2 + · · ·+ s51 = (a1 + a2 + · · ·+ a51) (k + 1) = 100(k + 1).
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At least one of the 51 sums sj is not greater than

1

51
(s1 + s2 + · · ·+ s51) =

100

51
(k + 1) < 2k + 1.

Let ` be an index such that 1 ≤ ` ≤ 51 and

a` + a`+1 + · · ·+ a`+k = s` ≤ 2k.

Consider the k + 1 sums

ti = a` + a`+1 + · · ·+ a`+i

for 0 ≤ i ≤ k. By the pigeonhole principle, at least two of them are congruent to
each other modulo k. Suppose that

tm ≡ tm+d (mod k)

where 0 ≤ m < m+ d ≤ k. It follows that

am+1 + am+2 + · · ·+ am+d = tm+d − tm = k.

By the hypothesis k ≤ 100 = a1 + a2 + · · ·+ a51, we have d ≤ 51.

Let m+ 1 ≡ r (mod 51) where 1 ≤ r ≤ 51. If r + d ≤ 51, then k is representable
by the sum

k = ar + ar+1 + · · ·+ ar+d.

Otherwise, we have r + d > 51. Then 100− k is representable by

100− k = 100− (ar + ar+1 + · · ·+ a51 + a52 + a53 + · · ·+ ar+d)

= 100− (ar + ar+1 + · · ·+ a51 + a1 + a2 + · · ·+ ar+d−51)

= ar+d−50 + ar+d−49 + · · ·+ ar−1.

Hence the result.

Solution 2, by UCLan Cyprus Problem Solving Group.

Let Gk be the graph with vertex set V = {0, 1, 2, . . . , 100} where i is joined to j if
and only if |i− j| ∈ {k, 100− k}.
For k 6= 50 every vertex in Gk has degree 2. Indeed m is joined to exactly one out
of m− k,m+ (100− k) and exactly one out of m− (100− k),m+ k. Furthermore,
for k 6= 50, these two numbers are distinct. For k = 50 a similar argument shows
that every vertex has degree 1.

Thus Gk is a union of cycles if k 6= 50 and a perfect matching if k = 50.

Let x1, x2, . . . , x51 be the given sequence of numbers and for i = 1, 2, . . . , 51 define
si = x1 + · · · + xi. Consider the 51 vertices s1, s2, . . . , s51. Two of them, say si
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and sj with i < j, must be adjacent in Gk. Then xi+1 + · · ·+ xj is equal to k or
100− k.

OC625. Does there exist a convex 2021-gon with vertices at points with
integer coordinates and such that the lengths of all its sides are equal?

Originally 2023 Kharkiv Regional Mathematical Olympiad, Grade 10, Final Round,
problem 5.

We received 5 submissions of which 3 were correct and complete. We present the
solution by Theo Koupelis.

This topic is discussed by D.G. Ball in “Constructibility of regular and equilateral
polygons on a square pinboard,” Mathematical Gazette 57 (1973) p. 119-122. If a
planar n-gon whose vertices are at points with integer coordinates has all its sides
equal, then n must be even; conversely, for n even and greater than 2, there exists
an equilateral polygon of n sides on a square pinboard, in which case the n-gon can
be taken to be convex. For the proof that n must be even we follow the argument
found at http://paulscottinfo.ipage.com/lattice-points/5regular.html#
anchor2.

If an n-gon A1A2 . . . An exists, where n is an odd natural number, such that its
vertices have integer coordinates and its sides have equal lengths, then there is
such a polygon with a side length ` that is minimal.

Let −→uij =
−−−→
AiAj = (ai, bi), where i = 1, 2, . . . , n, j = i + 1, and An+1 = A1. But

`2 = a2i + b2i and −→u12 +−→u23 + · · ·+−→un1 = ~0.

Thus,
∑
i ai = 0 and

∑
bi = 0. Squaring and adding we have

n`2 + 2S = 0,

where

S =
n−1∑
i=1

n∑
j=i+1

(aiaj + bibj).

But n, `2, S are integers and n is odd, and thus 2 | `2. Therefore, ai and bi are
either both even or both odd for each i = 1, 2, . . . , n. In either case, however, S is
even because for each term aiaj there is a corresponding term bibj . Therefore, 4 | `2
and thus both ai and bi are even for each i. But this contradicts the assumption of
a minimal ` because another polygon of half this side length can be constructed.
In other words, for an n-gon with the given properties to exist, n must be even.
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How Less is More (With Origami)
Medha Ravi

It is 478BC ancient Greece and a plague sent by Apollo has devastated the small
island of Delos. The oracle has presented a problem that, once solved, will end
the plague. Apollo must have his cubic altar’s volume doubled. Everyone has
turned to you, an avid member of the social club of mathematicians, to salvage
the country and bring an end to the turmoil. In a world that consists solely of
lines and circles, you may only use a straightedge and a compass.

Your feverish work on the problem of doubling the cube soon gives way to the
problem of squaring the circle: given a circle of area A, you attempt to construct
a square of the same area.

Your intellectual faculties having thus been stimulated, multiple new problems
arise, including the construction of a regular heptagon and the trisection of an
angle. As you and countless others toil over these problems over the course of 2000
years, there comes a breakthrough: none among these four problems is possible
with just a straightedge and compass. Some other more powerful tool is necessary.

1 Setting the stage

Let us explore what we can construct with the straightedge and compass, given 2
points in the Cartesian coordinate plane.

(0, 0) (1, 0) (2, 0)

Given (0, 0) and (1, 0), we can construct the rest of the integers. We can create
the x-axis that extends through both points, and create a circle centered at (1, 0)
that passes through the origin. The intersection point T of the circle and x-axis
that isn’t the origin is (2, 0). In the same way, we can construct the rest of the
integers.

We can also section any length into n equal length sections for any integer n.
Below is a proof without words on such a construction. Thus, we can construct
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any rational number.

A B A B

C

A B

C

D

A B

C

D

E

A B

C

D

E

A B

C

D

E

FG

Additionally, we can see that the square root of any integer is constructible. Given
a length A, the origin, and the length of 1 unit, we can construct the square root
of the length A.

(0, 0)
(1, 0)

(

A+1

2
, 0
)

(A, 0)
(A+ 1, 0)

We begin by constructing a circle centered at (A+1
2 , 0) that passes through the

origin, as shown in the diagram above. We know the radius, or length of the blue
line, is A+1

2 . Using the Pythagorean theorem on the triangle highlighted in blue

confirms that the length of the red line is
√
A.

It turns out, beginning with the lengths 0 and 1, we can construct any integer
number, any square root of a given number, and any iterative combination of
the two with a field operation: addition, subtraction, multiplication, or division1.
These numbers, which are composed solely of square roots, integers and operations
that are included above, are called constructible numbers. Some examples of

constructible numbers are
√
62
5 ,
»

1 +
√
3
8 , or

…
3 +

√
1+
√

3
8

6 .

Are any other numbers straight-edge and compass constructible? Surprisingly,
no. These numbers that are a combination of integers, square roots, and field
operations are the only numbers that can be constructed with a straightedge and
a compass.

To understand this, let us take two points (a, b) and (c, d) in the coordinate plane
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with coordinates that are constructible numbers. The equation of such a line
would be (b− d)x+ (c− a)y = bc− ad. In this equation, note that all coefficients
are constructible numbers. We can express y in terms of the linear expression x.

Similarly, let us take two points (a, b) and (c, d) in the coordinate plane that
define a circle centered at (a, b) passing through (c, d), where a, b, c, and d are all
constructible numbers. The equation of this circle is

(x− a)2 + (y − b)2 = (c− a)2 + (d− b)2.

Now consider the intersection of such a line with such a circle. By the equation
of the straight line, we can express y as a linear function of x with constructible
coefficients. If we plug y into this equation of our circle and solve, we get y as
a quadratic function of x with constructible coefficients. This implies that the
solution, x, must be constructible. Therefore, y must also be constructible, since
y is a linear function of x with constructible coefficients.

We can also draw a similar conclusion for the intersection of two circles. The proof
is done in a similar spirit to that of the circle and line. When we subtract one
equation from the other and simplify, we obtain a linear equation in x and y. We
can solve for y and then plug our value for y back into one of the original equations
of the circles. This gives us, after some simplifying, a quadratic equation in terms
of x with constructible coefficients.

The last link of this visualization is to understand what occurs when we construct
points and lengths with a straightedge and compass. When we construct segments,
we are creating lines and circles, taking their intersection points, creating more
lines and circles with those points, so on and so forth.

Thus, if we begin with two points of constructible coordinates, and construct either
a line or a circle, and solve for intersections that are constructed from the 2 points,
we will arrive at intersections with constructible coordinates. This follows from
the fact that solving linear and quadratic equations with constructible coefficients
results in constructible numbers.

Summarizing, starting with the numbers 0 and 1 on the x−axis, we can construct
any constructible number, but we can construct only constructible numbers.

What if, instead, we could use origami to fold points and lines? Let us provisionally
call the numbers that we can fold in this manner “foldable numbers.” Would the
set of foldable numbers be larger or smaller than the set of constructible numbers?
How are the constructions of origami different from the constructible numbers?

The crucial fold that sets origami apart from straightedge and compass construc-
tions is the Beloch Fold[4,6,9].

Beloch Fold

Given two points P1 and P2 and two lines l1 and l2, we can create, where possible,
a fold F placing P1 onto l1 and P2 onto l2 simultaneously. Note that the Beloch
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fold does not exist for every set of two point line pairs. The Beloch Fold exists if
l1 and l2 are nonparallel. If l1 and l2 are parallel, the Beloch Fold exists if and
only if the distance between P1 and P2 is greater than or equal to the distance
between l1 and l2

[15].

P2

P1

l1

l2

fold F

Beloch Square

Given two points A and B and two lines l1 and l2, a Beloch square is a square
XYWZ such that X and Y lie on l1 and l2 respectively, A lies on line XZ and B
lies on line YW .

A

B

l1 l2

1)

A

B

l1

l
′

1

l2

l
′

2

2)

A

B

A
′

B
′

l1

l
′

1

l2

l
′

2

X Y

3)

A

B

A′

B′

l1

l′
1

l2

l′
2

X Y

WZ
4)
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We now fold the Beloch square[5, 8, 10]: to create a square, we must have 2 sets of
parallel sides set at 90◦ to adjacent sides. Let x denote the perpendicular distance
between A and line l1 and let l′1 be a line parallel to line l1 set a distance of x
away from line l1 such that l1 lies between A and l′1. Likewise, we do the same for
point B and l2 to create l′2. (Figure 2)

We then employ the Beloch fold, folding A onto l′1 and B onto l′2 to create A′ and
B′, respectively. This crease is the perpendicular bisector of AA′ and BB′. If we
find the midpoints of AA′ and BB′, X and Y respectively, we know that X lies
on l1 and Y on l2 using the definitions of l1 and l2. (Figures 3) We then fold
vertices W and Z of the square by extending lines XA and Y B past X and Y ,
respectively, by a distance of the length XY . (Figure 4)

The Beloch square also provides us with the foldable length of the cube root of
any number.

A

B

Y

X

A′

B′

l1 l′
1

l2

l′
2

O

f

Let us define l1 as the y-axis, l2 as the x-axis, A = (−1, 0), and B = (0,−k). We
fold lines l′1 and l′2 as x = 1 and y = k respectively. We use the Beloch fold to
fold A and B onto l′1 and l′2, respectively, to find X and Y . X is the intersection
of the crease and l1 and Y is the intersection of the crease and l2. Let O be the
origin. We then get that:

4OAX ∼ 4OXY ∼ 4OY B.

From that, we have:
OX

OA
=
OY

OX
=
OB

OY
.

We know that OA = 1 and OB = k. Plugging in, we get OX = OY
OX = k

OY . Using
this, we can solve for OX:

OX3 = OX · OY
OX

· k

OY
= k.

Crux Mathematicorum, Vol. 49(8), October 2023



Medha Ravi /433

We get that OX is 3
√
k. Therefore, folding the Beloch square results in the folded

length of the cube root of any foldable number.

2 The Impossibility (and Possiblity) of Doubling
the Cube

It is surprising to see that, when compared to straightedge and compass con-
structions, the origami constructions[†] are actually more versatile and can accom-
plish more than the straightedge and compass constructions. To put it differently,
origami, which requires no tools whatsoever, can accomplish much more than using
the straightedge and compass.

This was demonstrated by showing that origami can be used to take not only
addition, subtraction, multiplication, division, and the square root, but also the
cube root of a number as well. Similar to when we did straightedge and compass
constructions, we must ask ourselves: Are there any additional folded lengths that
are possible to obtain with origami? The answer would, again, be no. The numbers
that are a combination of square roots, cube roots, and integer numbers using field
operations are the only numbers that can be folded with origami. Such numbers
make up the foldable set.

Since constructing a cube of side length 1 is doable with a straightedge and com-
pass, doubling the cube ultimately boils down to constructing 3

√
2. Countless

people attempted to construct 3
√

2 with a straightedge and compass for over 2000
years until, in 1837, Pierre Wantzel proved that the construction is impossible[12].

We attempt an induction-like approach[3] to prove that 3
√

2 cannot be written
in as a field operation combination of integers and square roots ( 3

√
2 is not a

constructible number). We can use a proof by contradiction.

Key Point 1: 3
√

2 is not of the form a
b .

Since it is known that 3
√

2 is not a rational number, 3
√

2is also not of the form a
b .

Key Point 2: 3
√

2 is not of the form a + b
√
c, where c is a rational number but√

c is irrational.

We proceed by contradiction: assume that 3
√

2 is of the form a+ b
√
c where a, b,

and c are rational numbers, but
√
c is not rational.

Then a+ b
√
c solves the equation x3 = 2. If we plug in a+ b

√
c for x and expand,

we get:
(a3 + 3ab2c− 2) + (3a2b+ b3c)

√
c = 0

Now, we know that both of the expressions in the parenthesis (above) are in terms
of only rational numbers, and, therefore, we can simplify the above equation in

[†] It is important to specify that we will be working only with single-folds: we only create
one fold at a time. It is possible to form two folds at once, and this increases the range of
origami-constructible numbers.
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terms of 2 rational numbers:

Q1 +Q2

√
c = 0

From this, we know that Q2 must be 0 because, if not, solving for
√
c would result

in the quotient of 2 rational numbers: −Q1/Q2, which is impossible, because it
would imply that

√
c is rational. Now that we have that Q2 must be 0, we have

the equation:
Q1 = 0

This gives us that Q1 must be 0 and Q2 must be 0.

Hence, Q1 −Q2
√
c must also be 0.

Plugging back our values for Q1 and Q2, we have

(a3 + 3ab2c− 2)− (3a2b+ b3c)
√
c = 0.

Note that this is equivalent to, after some factorization, (a − b√c)3 − 2 = 0. In
other words, a− b√c is a solution to x3 = 2.

Let us take a closer look at x3 = 2. Restricting our attention to the real numbers,
the equation has only one solution: 3

√
2.14 This implies that our a + b

√
c and

a−b√c must be equal. Setting them equal gives us that b = 0. Therefore, a solves
the equation x3 = 2 and is equal to 3

√
2. But we had stated previously that a is

a rational number. We settled in key point 1 that 3
√

2 is not a rational number.
This is a contradiction. Thus, we have that 3

√
2 is not of the form a+ b

√
c.

Let us summarize the key points so far:

1. We have that 3
√

2 is not rational. In other words, 3
√

2 is not of the form a
b

2. While c is rational,
√
c is not rational

Now, we begin our iteration. Below, the iteration is presented first and then the
walk through of each step. We begin with some rational number c.

1. c is a rational number

2. 3
√

2 is not of the form of c

3. a+ b
√
c is constructible for all rational numbers a, b, c.

4. 3
√

2 is not of the form a+ b
√
c

5. d + e
√
f is constructible for all d, e, and f of the form a + b

√
c where a, b,

and c are rational.

6. 3
√

2 is not of the form d+ e
√
f

We know that steps 1-3 are facts. Using the equation x3 = 2, we showed that
3
√

2 is not of the form a + b
√
c (Step 4). Let us call such numbers constructible

numbers of the first step. We know that step 5 is true, as it is explicitly written in
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terms of square roots and rational numbers. By the same logic used in steps 3-4,
we have that 3

√
2 is not of the form d + e

√
f where d, e, and f are constructible

numbers of the first step. Let us call such numbers constructible numbers of the
second step. We can continue to do this in order to form an exhaustive set of
constructible numbers with a straightedge and compass.

Given any number composed of square roots and integers, by iterating the exten-
sion of the constructible numbers set, we can find, in a finite number of steps, a
set containing the given number. And so, by the proof in the previous paragraph,
that number, or any number that can be written in terms of square roots and
integers, cannot be 3

√
2. In other words, by iterating this process of proving that

3
√

2 is not of the form of the constructible number of the nth step, we show that
3
√

2 cannot be constructed with a straightedge and a compass.

However, we could use origami — in square ABCD, we attempt to fold 3
√

2.

A

B C

D

M N
L

C ′

J

m

N ′

P Q

K

θ

θ

b

1

a

a+1

3

1. Find the midpoint K of side CD by finding the intersection of BC and the
fold placing C onto D.

2. Find the intersection L of lines AC and BK.

3. Create a fold MN parallel to line BC through L.

4. Create a fold PQ parallel to line MN halfway between MN and AD.
We have now trisected side AB and DC into thirds with points M and P
and N and Q, respectively.

5. Let fold m be the Beloch fold that places C on AB at C ′ and N on PQ at
N ′.

6. Point J is the intersection point of the fold m with BC.

7. AC ′ is 3
√

2.
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Proof. (inspired by [4]) Let us denote the length of the side of the square as a+ 1.
We aim to show that a = 3

√
2. After step 6, we label BC ′ of length 1 and BJ of

length b. We know that JC ′ = JC = a+ 1− b.

We solve for the value of PC ′. This is 2
3 (a + 1) − 1 =

2a− 1

3
. Additionally, we

can solve for the value of b using the Pythagorean theorem on triangle C ′BJ to

get b =
a(a+ 2)

2(a+ 1)
.

We have that angle JC ′N ′ is a right angle as it is just a projection of, and therefore
congruent to, the angle JNC. From this, we can angle chase in triangles BC ′J
and C ′PN ′ to get that BC ′J ∼ C ′PN ′ by Angle-Angle Theorem.

Using the similarity, we have:

b

a+ 1− b =
2a−1

3
a+1
3

.

Once we substitute for b, we get:

a2 + 2a

a2 + 2a+ 2
=

2a− 1

a+ 1
.

Once we simplify and solve for a, we get a3 = 2 so a = 3
√

2.

3 The Impossibility of Squaring the Circle

The objective of squaring the circle is, given a circle of area πr2, to fold a square
of the same area. In order to square the circle,

√
π must be constructed. We have

previously demonstrated that, given a number we can obtain its square root, and
vice versa.

We established that all straightedge and compass constructible lengths must be
obtained from Q by a finite process of creating and solving polynomials, where
any number created at one stage can be used as a coefficient in later stages.
In other words, these straightedge and compass lengths must be a solution to a
polynomial with constructible coefficients. Note that any solution to a polynomial
with constructible coefficients is also a solution to a polynomial with rational
coefficients[11]. In 1882, Ferdinand von Lindemann proved that π is transcendental
[2] i.e. not a solution to any polynomial with rational coefficients, yielding the
impossibility of this construction.

Recall that in order to prove that 3
√

2 is not constructible, we proved that 3
√

2 can’t
be obtained from the set of constructible numbers by a finite process of creating
and solving polynomials, where any number created at one stage can be used as a
coefficient in later stages.
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Since we know π can’t be obtained from Q by a finite process of creating and
solving polynomials, we know that π cannot be in the set of foldable numbers.
This proves that folding a square with the same area of a circle is impossible.

4 Further Reading

There are some other intriguing problems not included in the paper that can be
solved with origami, including the trisection of an angle, solution of the cubic, or
construction of a regular heptagon, to name a few. This paper covers straightedge
and compass constructible and origami “foldable” numbers with proofs in logic,
but extensions of the topic would usually dabble in field theory.[11]

In fact, the proofs presented in this paper actually parallel aspects of fields, includ-
ing field extensions and Galois theory. An understanding of field theory provides
a rigorous way to prove the set of constructible numbers in both origami and
straightedge and compass. Perhaps one of Galois theory’s more fascinating appli-
cations is understanding – at a deeper level – the sets of constructible numbers
defined through different methods in order to see exactly how powerful origami is
compared to other tools. Hence the title:“How Less is More (With Origami)”.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by November 30, 2023.

4871. Proposed by Mihaela Berindeanu.

For ∆ABC, let AM the A-symmedian with M ∈ BC. Moreover, let P ∈ AC and
N ∈ AB such that MP ||AB and MN ||AC. The tangent at P to the circumcircle

Γ of ∆MNP cuts BC in Q. If NQ ∩MP = {X}, prove that
MX

XP
=

Å
AB

BC

ã2
.

4872. Proposed by Phan Ngoc Chau.

Let a, b, c be positive real numbers such that abc = 1. Prove that

2(a+ b+ c)

Å
1 +

a

b
+
b

c
+
c

a

ã
≥ 3(a+ b)(b+ c)(c+ a).

When does equality occur?

4873. Proposed by Byungjun Lee.

Let Γ be a semicircle with diameter AB. For a point C on Γ, the incircle of
4ABC touches AC and BC at points P and Q, respectively, and PQ intersects
Γ at points X and Y (XP < XQ). Another semicircle is inscribed in 4ABC
so that its diameter lies on AB, and it touches AC and BC at points R and S,
respectively. Prove that the lines XR,Y S, and AB are coincident.
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4874. Proposed by Michel Bataille.

Let Ia, Ib, Ic be the excenters of a triangle ABC with circumradius R. Prove that
the inradius of the triangle IaIbIc is equal to

2R

Å
sin

A

2
+ sin

B

2
+ sin

C

2
− 1

ã
.

4875. Proposed by Toyesh Prakash Sharma.

For n ∈ N, show thatÃ
11

1!
+

√
22

2!
+

 
33

3!
+ · · ·+

…
nn

n!
<

√
5e

2
.

4876. Proposed by George Apostolopoulos, modified by the Editorial Board.

For a triangle ABC, let R and r be the radii of its circumcircle and its incircle,
respectively. What is the largest value of r

R when the angle at A of the triangle
ABC is fixed?

4877. Proposed by Florentin Visescu.

Let P be a point in the interior of triangle ABC. Show that

cos(∠PAB) cos(∠PAC)+cos(∠PBC) cos(∠PBA)+cos(∠PCA) cos(∠PCB) ≤ 9

4
.

When does equality hold?

4878. Proposed by Paul Bracken.

Evaluate the following infinite series in closed form for |x| < 1.

a)
∞∑
n=1

Å
1

(1− x)2
− 1− 2x− · · · − nxn−1

ã
b)

∞∑
n=1

Å
1

(1− x)2
− 1− 2x− · · · − nxn−1

ã2
4879. Proposed by Thanos Kalogerakis.

Consider a triangle ABC and its angle bisector AD with D on BC. Let Γ,Γ1

and Γ2 denote the circumcircles of triangles ABC,ADB and ADC, respectively.
Let Ω1 denote the circle externally tangent to Γ,Γ1,Γ2. Let Ω2 denote the circle
externally tangent to Γ1 and Γ2 and internally tangent to Γ. Prove that
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• Ω1, Ω2 and Γ have a common tangent point E;

• AE is the A-symmedian of triangle ABC.

A

B CD

E

Γ
Γ1

Γ2

Ω1

Ω2

4880. Proposed by Austin Shapiro.

Find all solutions to a3 + b3 + c3 − 3abc = 2023, where a, b, c are integers and
a ≤ b ≤ c.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2023.

4871. Soumis par Mihaela Berindeanu.

Pour ∆ABC, soit AM la A-symédiane avec M ∈ BC. De plus, soient P ∈ AC et
N ∈ AB tels que MP ||AB et MN ||AC. La tangente en P au cercle circonscrit Γ

de ∆MNP coupe BC en Q. Si NQ∩MP = {X}, montrez que
MX

XP
=

Å
AB

BC

ã2
.

4872. Soumis par Phan Ngoc Chau.

Soient a, b et c des nombres réels positifs tels que abc = 1. Montrez que

2(a+ b+ c)

Å
1 +

a

b
+
b

c
+
c

a

ã
≥ 3(a+ b)(b+ c)(c+ a).

Quand a-t-on égalité?

4873. Soumis par Byungjun Lee.

Soit Γ un demi-cercle de diamètre AB. Étant donné un point C sur Γ, le cercle
inscrit à 4ABC rencontre AC et BC aux points P et Q, respectivement, et PQ
rencontre Γ aux points X et Y (XP < XQ). Un autre demi-cercle est inscrit
dans 4ABC de sorte que son diamètre est situé sur AB et il rencontre AC et BC
aux points R et S, respectivement. Montrez que XR et Y S se rencontrent sur le
segment AB.
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4874. Soumis par Michel Bataille.

Soient Ia, Ib et Ic les centres des cercles exinscrits au triangle ABC dont le rayon
du cercle circonscrit est R. Montrez que le rayon du cercle inscrit au triangle
IaIbIc est égal à

2R

Å
sin

A

2
+ sin

B

2
+ sin

C

2
− 1

ã
.

4875. Soumis par Toyesh Prakash Sharma.

Pour n ∈ N, montrez queÃ
11

1!
+

√
22

2!
+

 
33

3!
+ · · ·+

…
nn

n!
<

√
5e

2
.

4876. Soumis par George Apostolopoulos, modifié par le comité de rédaction.

Étant donné un triangle ABC, soient R et r respectivement les rayons des cercles
circonscrit et inscrit. Quelle est la plus grande valeur de r

R lorsque l’angle A du
triangle ABC est fixe ?

4877. Soumis par Florentin Visescu.

Soit P un point à l’intérieur du triangle ABC. Montrez que

cos(∠PAB) cos(∠PAC)+cos(∠PBC) cos(∠PBA)+cos(∠PCA) cos(∠PCB) ≤ 9

4
.

Quand a-t-on égalité ?

4878. Soumis par Paul Bracken.

Évaluez les séries infinies suivantes sous forme fermée pour |x| < 1.

a)
∞∑
n=1

Å
1

(1− x)2
− 1− 2x− · · · − nxn−1

ã
b)

∞∑
n=1

Å
1

(1− x)2
− 1− 2x− · · · − nxn−1

ã2
4879. Soumis par Thanos Kalogerakis.

Considérons un triangle ABC et sa bissectrice AD avec D sur BC. Γ,Γ1 et Γ2

désignent respectivement les cercles circonscrits des triangles ABC,ADB et ADC.
Soit Ω1 le cercle tangent extérieurement à Γ,Γ1,Γ2. Soit Ω2 le cercle tangent
extérieurement à Γ1 and Γ2 et tangent intérieurement à Γ. Montrer que
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• Ω1, Ω2 et Γ ont un point tangent commun E;

• AE est la A-symédiane du triangle ABC.

A

B CD

E

Γ
Γ1

Γ2

Ω1

Ω2

4880. Soumis par Austin Shapiro.

Trouvez toutes les solutions de a3 + b3 + c3 − 3abc = 2023, où a, b et c sont des
entiers vérifiant a ≤ b ≤ c.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2023: 49(3), p. 156–160.

4821. Proposed by Corneliu Manescu-Avram.

Let k be a positive integer, n = 2k+1 and let N be the number of ordered solutions
in n-tuples of positive integers to the equation

1

x1
+

1

x2
+ · · ·+ 1

xn
= 1.

Prove that N − k is odd.

We received 5 submissions, all of which are correct, but one is slightly incomplete.
We present the solution by Marie-Nicole Gras.

First we prove the following lemma:

Lemma. Let k be an integer, k ≥ 2, and n = 2k + 1. If 2 ≤ m ≤ n − 2, then the
binomial coefficient

(
n
m

)
is even.

Proof. We have (1+x)2 = 1+x2 +2x, and we deduce by iteration that (1+x)2
k

=

1 + x2
k

+ 2P (x), P (x) ∈ Z[x]. It follows, with Q(x) = (1 + x)P (x) ∈ Z[x], that,
since k ≥ 2,

(1 + x)2
k+1 =(1 + x)(1 + x)2

k

=

Ç
n

0

å
+

Ç
n

1

å
x+ 2Q(x) +

Ç
n

n− 1

å
x2

k

+

Ç
n

n

å
x2

k+1

,

and the binomial coefficients
(
n
m

)
are even, since 2 ≤ m ≤ n− 2.

We denote by ` the number of n-uples (x1, x2, . . . , xn) solutions of the given equa-
tion with xi ≤ xi+1, 1 ≤ i ≤ n−1. The number N of ordered solutions is obtained
considering all the distinct permutations of {x1, x2, . . . , xn}.
First, we consider the case k = 1, n = 3; there are ` = 3 solutions:

1

2
+

1

3
+

1

6
= 1,

1

2
+

1

4
+

1

4
= 1,

1

3
+

1

3
+

1

3
= 1,

which gives N = 6 + 3 + 1 = 10 ordered solutions, and N − k = 9 is odd.

Now, we consider the solutions (x1, x2, . . . , xn) according to the number of terms
xi which are equal to each other.

• If we have a solution where all xi are distinct, the corresponding number N1

is equal to n! and is even.
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• If n ≥ 5 and if we have a solution where j terms are equal, 2 ≤ j ≤ n − 2,
the corresponding number N2 is a multiple of

(
n
j

)
and then is even (lemma).

• If we have a solution where n− 1 terms are equal and distinct from the last,
the corresponding number N3 is equal to

(
n
n−1
)

= n = 2k + 1, k ≥ 1 and N3

is odd.

• There exists a unique solution with x1 = x2 = · · · = xn = n, and N4 = 1.

Now, we compute the number of solutions such that, with a, b ≥ 2 and b 6= a,

1

a
+
n− 1

b
= 1 ⇐⇒ b(a− 1) = (n− 1)a = 2ka.

The integers a and a− 1 are coprime; it follows that b = λa, λ ≥ 2 (b 6= a) and we
deduce λ(a− 1) = 2k. Since λ ≥ 2, there are exactly k solutions obtained with

a− 1 = 1, 2, 22, . . . , 2k−1.

The terms of the form N1 and N2 are even; there exist k solutions where n − 1
terms are equal and distinct from the last, and, for each solution, N3 = 2k + 1; it
follows that

N ≡ k(2k + 1) + 1 (mod 2) ≡ k + 1 (mod 2)

and N − k is odd.

Note by the proposer. The case k = 2 is the problem 1, day 2, from the Team
Selection Test, Moldova, 2013.

4822. Proposed by Anton Mosunov.

The n-th Chebyshev polynomial of the first kind is defined by means of the recur-
rence relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

Prove that for all n ≥ 2,

1

3
<

+∞∫
1

dx

Tn(x)2/n
<

1

3
n
√

4.

We received 7 submissions and they were all complete and correct. We present the
solution by the majority of solvers.

It is well known that
Tn(cos θ) = cosnθ.

Therefore,
Tn(cosh θ) = Tn(cos iθ) = cos(niθ) = coshnθ.
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Hence, letting x = cosh θ, we have

In =

∫ ∞
1

dx

Tn(x)2/n
=

∫ ∞
0

sinh θ dθ

(coshnθ)
2/n

.

Observe that for each t > 0, the following inequality holds:

et

2
< cosh t =

et + e−t

2
< et.

Therefore ∫ ∞
0

sinh θ dθ

(enθ)
2/n

< In <

∫ ∞
0

sinh θ dθ

(enθ/2)
2/n

=
n
√

4

∫ ∞
0

sinh θ dθ

(enθ)
2/n

.

Since ∫ ∞
0

sinh θ dθ

(enθ)
2/n

=

∫ ∞
0

sinh θ dθ

e2θ
=

1

2

∫ ∞
0

(
e−θ − e−3θ

)
dθ =

1

3
,

the result follows.

4823∗. Proposed by Michael Friday, modified by the editorial board.

Given four points A,B,C,D on a circle, define the Simson segment of A with
respect to the triangle BCD to be the smallest line segment containing the feet of
all three perpendiculars dropped from A to the sides of the triangle. For any four
points on a circle, prove that the Simson segments determined by each point with
respect to the triangle formed by the other three all have the same length.

Not counting the proposer (whose proposal arrived without a solution), we received
7 correct submissions. We feature the solution by the UCLan Cyprus Problem
Solving Group.

Assume that A,B,C,D appear in this order on the circle, and let X,Y, Z be the
projections of D on AB,BC,CA respectively.

Note that D,X,B, Y are concyclic on a circle of diameter DB. Using the Law of
Sines twice, we have

XY = DB sin (∠XBY ) = DB sin(∠ABC) =
DB ·AC

2R

where R is the radius of the circumcircle of ABCD. By symmetry, the lengths of
the other Simson segments are equal to that. (Note that XY has to be the Simson

segment as XZ and ZX have lengths equal to
DA ·BC

2R
and

DC ·BA
2R

which by

Ptolemy’s theorem sum to
DB ·AC

2R
.)

Bonus Fact. The above calculations shows that we can deduce Ptolemy’s Theorem
from the existence of the Simson line.
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4824. Proposed by George-Florin Şerban.

Find all prime numbers p for which there are integers x and y that satisfy the
conditions 11p = 8x2 + 23 and p2 = 2y2 + 23.

We received nine submissions, eight of which were correct and complete. Presented
is the one by the UCLan Cyprus Problem Solving Group, modified by the editor.

We will show that the only solutions are p = 5 (with x = 2, y = 1) and p = 61
(with x = 9, y = 43).

We may assume that x, y are positive integers. Subtracting the two equations
yields

p(p− 11) = 2(y − 2x)(y + 2x).

Since p is prime it divides one of the three factors. y + 2x is the largest factor in
absolute value and is positive, so we get p ≤ y + 2x or

2x ≥ p− y. (1)

Furthermore, we have

p2 = 2y2 + 23 > 2y2 ⇒
√

2y < p (2)

and

11p = 8x2 + 23 > 8x2 ⇒
√

11p > 2
√

2x. (3)

Combining inequalities (3), (1), and (2) we obtain√
11p > 2

√
2x ≥

√
2(p− y) > p(

√
2− 1).

Squaring and rearranging gives

p <
11

(
√

2− 1)2
=

11

3− 2
√

2
= 11(3 + 2

√
2) < 66.

We also observe that 8x2 = 11p− 23 < 11 · 66− 23 = 703 and therefore

x ≤ 9.

Finally, 8x2 = 11p− 23 gives

8x2 ≡ −1 (mod 11)

⇐⇒ x2 ≡ 4 (mod 11)

⇐⇒ x ≡ ±2 (mod 11) .

It remains to check x = 2 and x = 9, which yield the two solutions p = 5 and
p = 61.
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4825. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Let On = 1 + 1
3 + · · ·+ 1

2n−1 , n ≥ 1. Calculate

∞∑
n=1

On
n(n+ 1)

.

We received 23 solutions from 22 contributors. One of these was incomplete and
three were incorrect. We present 3 different approaches.

Solution 1 by Walther Janous, C.R. Pranesachar and Yuyong Zhang, done inde-
pendently.

The answer is log 4 = 2 log 2. For each positive integer n, On+1 = On + 1
2n+1 and

m∑
n=1

On
n(n+ 1)

=
m∑
n=1

On
n
−

m∑
n=1

On
n+ 1

=
m∑
n=1

On
n
−

m∑
n=1

On+1

n+ 1
+

m∑
n=1

1

(n+ 1)(2n+ 1)

=
O1

1
− Om+1

m+ 1
+ 2

m∑
n=1

1

(2n+ 1)(2n+ 2)

= 2

Å
1− 1

2

ã
+ 2

m∑
n=1

Å
1

2n+ 1
− 1

2n+ 2

ã
− Om+1

m+ 1

= 2

Å
1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2m+ 1
− 1

2m+ 2

ã
− Om+1

m+ 1
.

Let m→∞. Then, since Om+1 < 1 + log(2m+ 1),

∞∑
n=1

On
n(n+ 1)

= 2 log 2 = log 4.

Solution 2, by Brian Bradie, Rahima Karimova, Christopher Linhardt, Raymond
Mortini & Rudolph Rupp, and UCLan Cyprus Problem Solving Group, done inde-
pendently.

We have:

m∑
n=1

On
n(n+ 1)

=
m∑
n=1

1

n(n+ 1)

n∑
k=1

1

2k − 1
=

m∑
k=1

1

2k − 1

m∑
n=k

1

n(n+ 1)

=
m∑
k=1

1

2k − 1

Å
1

k
− 1

m+ 1

ã
= 2

m∑
k=1

1

(2k − 1)(2k)
− 1

m+ 1

m∑
k=1

1

2k − 1
.

Letting m→∞ yields the result.
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Solution 3, by Devis Alvarado, G.C. Greubel and the Missouri State University
Problem Solving Group, done independently.

Since

On =

∫ 1

0

1− x2n
1− x2 dx,

we get

∞∑
n=1

On
n(n+ 1)

=

∫ 1

0

[
1

1− x2
∞∑
n=1

1− x2n
n(n+ 1)

]
dx

=

∫ 1

0

[
1

1− x2

(
1−

∞∑
n=1

Å
x2n

n
− x2n

n+ 1

ã)]
dx

=

∫ 1

0

ï
1

1− x2
Å

1−
Å
− log(1− x2) +

1

x2
log(1− x2) + 1

ããò
dx

= −
∫ 1

0

log(1− x2)

x2
dx

= lim
a↑1

∫ a

0

− log(1− x2)

x2
dx.

Integrating by parts (with u = − log(1− x2), dv = x−2dx), we find that

∫ a

0

− log(1− x2)

x2
dx =

ï
log(1− x2)

x

òa
0

+

∫ a

0

2

1− x2 dx

=
log(1− a2)

a
+

∫ a

0

Å
1

1 + x
+

1

1− x

ã
dx

=

Å
log(1− a) + log(1 + a)

a

ã
+ log(1 + a)− log(1− a)

=
(1− a) log(1− a)

a
+

(1 + a) log(1 + a)

a
.

Letting a increase to 1 reveals that

−
∫ 1

0

log(1− x2)

x2
dx = 2 log 2.

Editor’s Comments. Several solvers used On = H2n− 1
2Hn, where Hn = 1+1/2+

1/3 + · · ·+ 1/n, as the basis of their manipulations.

One of the incorrect solutions had a rather subtle flaw, which might interest anal-
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ysis lecturers as a teaching tool. We have

∞∑
n=1

On
n(n+ 1)

=
∞∑
n=1

Å
On
n
− On
n+ 1

ã
= O1 +

∞∑
n=1

On+1 −On
n+ 1

= 1 +
∞∑
n=1

1

(n+ 1)(2n+ 1)

= 1 +
∞∑
n=1

Å
2

2n+ 1
− 1

n+ 1

ã
= 1 + 2

∞∑
n=1

1

2n+ 1
−
∞∑
n=1

1

2n
−
∞∑
n=1

1

2n+ 1

= 1−
∞∑
n=1

1

2n
+
∞∑
n=1

1

2n+ 1
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · = log 2.

Unfortunately, one of the logs fell off the truck during the journey. To see what
went amiss, consider the partial sum up to index m:

m∑
n=1

On
n(n+ 1)

=
m∑
n=1

Å
On
n
− On
n+ 1

ã
= O1 +

m−1∑
n=1

Å
On+1

n+ 1
− On
n+ 1

ã
− Om
m+ 1

= 1 +
m−1∑
n=1

1

(n+ 1)(2n+ 1)
− Om
m+ 1

= 1 +
m−1∑
n=1

Å
2

2n+ 1
− 1

n+ 1

ã
− Om
m+ 1

= 1 + 2
m−1∑
n=1

1

2n+ 1
−
k(m)∑
n=1

1

2n
−
k(m)∑
n=1

1

2n+ 1
− Om
m+ 1

= 1 +
m∑

n=k(m)+1

1

2n+ 1
−
k(m)∑
n=1

1

2n
+

k(m)∑
n=1

1

2n+ 1
− Om
m+ 1

=
m∑

n=k(m)+1

1

2n+ 1
+

Å
1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·+ (−1)m−1

1

m

ã
− Om
m+ 1

,

where k(m) = bm/2c.
The first term along with the partial sum in parentheses each tend to log 2 and
the last term tends to 0, as m tends to infinity.

Copyright © Canadian Mathematical Society, 2023



452/ Solutions

4826. Proposed by Paul Bracken.

Let Hn be the n-th harmonic number Hn =
∑n
k=1 1/k. Evaluate the following

sum in closed form

S =
∞∑
k=1

Hk

k(k + 1)(k + 2)
.

We received 22 submissions. We present the solution by Michel Bataille.

Let n be a positive integer. From

2

k(k + 1)(k + 2)
=

1

k(k + 1)
− 1

(k + 1)(k + 2)
,

we obtain
n∑
k=1

2

k(k + 1)(k + 2)
=

1

2
− 1

(n+ 1)(n+ 2)

and, summing by parts, it follows that

n∑
k=1

2Hk

k(k + 1)(k + 2)
= Hn

Å
1

2
− 1

(n+ 1)(n+ 2)

ã
−
n−1∑
k=1

Å
1

2
− 1

(k + 1)(k + 2)

ã
1

k + 1

=
Hn

2
− Hn

(n+ 1)(n+ 2)
− 1

2
(Hn − 1) +

n−1∑
k=1

1

(k + 1)2(k + 2)

=
1

2
− Hn

(n+ 1)(n+ 2)
+
n−1∑
k=1

1

(k + 1)2(k + 2)
.

From
1

(k + 1)2(k + 2)
=

1

(k + 1)2
−
Å

1

k + 1
− 1

k + 2

ã
,

we deduce that

n−1∑
k=1

1

(k + 1)2(k + 2)
=
n−1∑
k=1

1

(k + 1)2
− 1

2
+

1

n+ 1
.

Since

lim
n→∞

Hn

(n+ 1)(n+ 2)
= lim
n→∞

lnn

n2
= 0,

we obtain

S =
1

2
lim
n→∞

n∑
k=1

2Hk

k(k + 1)(k + 2)
=

1

2
lim
n→∞

n−1∑
k=1

1

(k + 1)2
=

1

2

Å
π2

6
− 1

ã
=
π2

12
− 1

2
.
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4827. Proposed by Michel Bataille.

In the plane, two circles Γ1 and Γ2, with respective centres O1 and O2, intersect
at A and B. Let X be a point of Γ1 with X 6= A,B. The lines XA and XB
intersect Γ2 again at Y and Z, respectively. Prove that

Y Z =
AB ·O1O2

O1A
.

We received 14 submissions. We present the solution by NUM Problem Solving
Group.

Note that
∠Y AB + ∠BAX = 180◦.

Since ABZY is cyclic, we have

∠Y AB + ∠BZY = 180◦.

It follows that ∠BAX = ∠BZY and so triangle XY Z and XBA are similar.
Hence

Y Z

AB
=
XY

XB
⇐⇒ Y Z = AB · XY

XB
.

On the other hand, we have ∠AXB = ∠AO1O2 and ∠BY A = ∠O1O2A, so that
triangles XY B and O1O2A are similar; hence

XY

O1O2
=
XB

O1A
⇐⇒ XY

XB
=
O1O2

O1A
.

From the above two identities, we get that

Y Z =
AB ·O1O2

O1A
.
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4828. Proposed by Narendra Bhandari.

Prove ∫ π
4

0

∫ π
4

0

sec(x+ y) sec(x− y)

secx sec y
dxdy =

∞∑
n=0

(−1)n/(2n+ 1)2.

We received 14 submissions, 13 of which are correct. We present here the solution
by Michel Bataille.

Let I be the integral on the left.

Since cosx cos y = 1
2 (cos(x+ y) + cos(x− y)), we have

I =
1

2

∫ π/4

0

∫ π/4

0

Å
1

cos(x+ y)
+

1

cos(x− y)

ã
dxdy.

It follows that

I = −1

2

∫ π/4

0

[
ln
(

tan
(π

4
− x+ y

2

))
+ ln

(
tan

(π
4
− x− y

2

))]x=π/4
x=0

dy.

Since ln
(
tan

(
π
4 −

y
2

))
+ln

(
tan

(
π
4 + y

2

))
= ln

(
(tan

(
π
4 −

y
2

)
(tan

(
π
4 + y

2

))
= ln(1) =

0, the latter yields

I = −1

2

∫ π/4

0

(
ln
(

tan
(π

8
− y

2

))
+ ln

(
tan

(π
8

+
y

2

)))
dy

= −1

2

Ç∫ 0

π/8

(ln(tan t))(−2dt) +

∫ π/4

π/8

(ln(tan t))(2dt)

å
= −

∫ π/4

0

ln(tan t) dt.

Now, integrating by parts, we readily obtain

I =

∫ π/4

0

t · 1 + tan2 t

tan t
dt = 2

∫ π/4

0

t

sin 2t
dt =

1

2

∫ π/2

0

w

sinw
dw.

Finally the change of variables w = 2 arctanα leads to

I =

∫ 1

0

arctanα

α
dα =

∫ 1

0

( ∞∑
n=0

(−1)n
α2n

2n+ 1

)
dα =

∞∑
n=0

(−1)n

2n+ 1

∫ 1

0

α2n dα

=
∞∑
n=0

(−1)n

(2n+ 1)2
.

Note that we can interchange

∫ 1

0

and
∞∑
n=0

because the series
∞∑
n=0

(−1)n
α2n

2n+ 1

is uniformly convergent on [0, 1] by Abel’s Theorem, the series
∞∑
n=0

(−1)n

2n+ 1
being

convergent.
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Editor’s Comment. The double integral expressed in terms of Catalan’s constant
G is given in the paper by S. W. Stewart, A Catalan constant inspired integral
odyssey, Mathematical Gazette (2020), 449-459. This is integral Φ, found on page
458, where cosx→ 1/ sec(x).

4829. Proposed by George Apostolopoulos.

Let ABC be a triangle and K,L,M be interior points on the sides BC, CA, AB,
respectively. Let [XY Z] denote the area of a triangle XY Z.

a) Find the maximum value of the expression 
[ALM ]

[ABC]
+

 
[BMK]

[ABC]
+

 
[CKL]

[ABC]
.

b) Find the minimum value of the expression

[KLM ]

[ALM ]
+

[KLM ]

[BMK]
+

[KLM ]

[CKL]
.

We received 8 correct solutions for this problem. The following is the solution by
M. Bello, M. Benito, Ó. Ciaurri, and E. Fernández.

We will use absolute barycentric coordinates with respect to the triangle ABC. Let
then be A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), M = (x, 1−x, 0), K = (0, y, 1−y),
and L = (1− z, 0, z), with 0 < x, y, z < 1.

a) The maximum value required is 3/2. We have

[ALM ]

[ABC]
=

∣∣∣∣∣∣
1 0 0
x 1− x 0

1− z 0 z

∣∣∣∣∣∣ = (1−x)z,
[BMK]

[ABC]
=

∣∣∣∣∣∣
0 1 0
0 y 1− y
x 1− x 0

∣∣∣∣∣∣ = (1−y)x,

[CKL]

[ABC]
=

∣∣∣∣∣∣
0 0 1

1− z 0 z
0 y 1− y

∣∣∣∣∣∣ = (1− z)y.

Let us define the function

M(x, y, z) :=
»

(1− x)z +
»

(1− y)x+
»

(1− z)y.

It is enough to apply the AM-GM inequality in each term to obtain

M(x, y, z) ≤ 1− x+ z

2
+

1− y + x

2
+

1− z + y

2
=

3

2
,

with equality if and only if 1− x = z, 1− y = x and 1− z = y, that is, if and only
if x = y = z = 1/2.

Therefore, the maximum value of M(x, y, z) in (0, 1)3 is 3/2. On the other hand,
it can be verified that the maximum value on the border of the cube is

√
2 < 3/2,

Copyright © Canadian Mathematical Society, 2023



456/ Solutions

and is reached at the points (1, 1/2, 0), (0, 1, 1/2) and (1/2, 0, 1). Therefore, the
maximum value of M(x, y, z) in the compact cube [0, 1]3 is also 3/2, the optimal
configuration being when the points K, L, and M are the midpoints of the sides
of triangle ABC.

b) The minimum value required is 3. With the same notation as above, we have

[KLM ]

[ABC]
=

∣∣∣∣∣∣
x 1− x 0
0 y 1− y

1− z 0 z

∣∣∣∣∣∣ = xyz + (1− x)(1− y)(1− z),

and

[KLM ]

[ALM ]
+

[KLM ]

[BMK]
+

[KLM ]

[CKL]
=

[KLM ]/[ABC]

[ALM ]/[ABC]
+

[KLM ]/[ABC]

[BMK]/[ABC]
+

[KLM ]/[ABC]

[CKL]/[ABC]

=
(
xyz+(1−x)(1−y)(1−z)

)Å 1

(1− x)z
+

1

(1− y)x
+

1

(1− z)y

ã
=: m(x, y, z),

say, where 0 < x, y, z < 1. Operating, we get

m(x, y, z) =
xy

1− x+
yz

1− y+
zx

1− z+
(1− z)(1− y)

z
+

(1− x)(1− z)
x

+
(1− y)(1− x)

y
.

But

xy

1− x = −y +
y

1− x,
yz

1− y = −z +
z

1− y ,
zx

1− z − x+
x

1− z
and, by the other hand,

(1− z)(1− y)

z
=

1− y
z
− 1 + y,

and similarly for cyclic rotation of the variables x, y, z, so

m(x, y, z) =

Å
y

1− x +
1− x
y

ã
+

Å
z

1− y +
1− y
z

ã
+

Å
x

1− z +
1− z
x

ã
− 3

≥ 2 + 2 + 2− 3 = 3,

as we have said. The equality is attained if and only if 1 − x = y, 1 − y = z and
1− z = x, that is, if and only if x = y = z = 1/2. Thus, the optimal configuration
for this inequality occurs again when the points K, L, and M are the midpoints
of the sides of triangle ABC.

Remark. Several solvers mentioned that the answer to the part (b) follows from
the well known inequality

1/[ALM ] + 1/[BMK] + 1/[CKL] ≥ 3/[KLM ],

proved by W. Janous in [2]. The last inequality also generalizes Erdös and De-
brunner inequality [KLM ] ≥ min([ALM ], [BMK], [CKL]). See [1, p.80], [2] and
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[3] for many generalizations and variations for perimeters, inradii, exradii, for n-
gons, etc. Marie-Nicole Gras mentioned that part (b) was discussed in Crux 1413,
March 1990, vol. 16(3), p. 95-96.

References:

[1] O. Bottema, et al.: Geometric Inequalities. Wolters and Noordhoff, Groningen
1969.

[2] W. Janous, A short note on the Erdös-Debrunner inequality, Elemente der
Mathematik, 61 (2006) 32-35.

[3] Y.N. Aliyev, Inequalities involving reciprocals of triangle areas, Crux Mathe-
maticorum with Mathematical Mayhem 36(8) (2010) 535-539.

4830. Proposed by Goran Conar.

Let ai ∈ (0, 12 ), i ∈ {1, 2, . . . , n} be real numbers such that
∑n
i=1 ai = 1. Prove

that the following inequalities hold:

n

…
n− 1

n+ 1
≤

n∑
i=1

 
1− ai
1 + ai

< (n+ 1)

…
n− 1

n+ 1
.

We received 11 submissions, all correct and complete. We present two solutions,
slightly altered by the editor.

Solution 1, by Michel Bataille.

Let f(x) =

…
1− x
1 + x

, so

f ′′(x) = (1− x)−3/2(1 + x)−5/2(1− 2x).

Hence, f ′′(x) > 0 when x ∈ (0, 12 ) and f is convex on (0, 12 ). Jensen’s inequality
gives

n∑
i=1

f(ai) ≥ nf
(

1

n

n∑
i=1

ai

)
= nf

Å
1

n

ã
= n

…
n− 1

n+ 1
,

proving the left inequality.

On the other hand, the Cauchy-Schwarz inequality yields

n∑
i=1

f(ai) ≤
(

n∑
i=1

(
√

1− ai)2
)1/2( n∑

i=1

Å
1√

1 + ai

ã2)1/2

,

which is equivalent to,

n∑
i=1

f(ai) ≤
√
n− 1

(
n∑
i=1

1

1 + ai

)1/2

.
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Since
1

1 + ai
< 1 for i = 1, . . . , n, we deduce that

n∑
i=1

f(ai) <
√
n− 1

√
n,

which is sharper than the required right inequality.

Solution 2, by Theo Koupelis.

From the given conditions we get that n ≥ 3. Let f(x) =

…
1− x
1 + x

with x ∈ [0, 12 ].

Then

f ′(x) = − 1

(1 + x)2

…
1 + x

1− x < 0,

and

f ′′(x) = −
…

1 + x

1− x ·
2x− 1

(1− x)(1 + x)3
≥ 0.

Thus, f(x) is convex in [0, 12 ], and by Jensen’s inequality we get

n∑
i=1

 
1− ai
1 + a1

=
n∑
i=1

f(ai) ≥ n · f
Å∑n

i=1 ai
n

ã
= n

…
n− 1

n+ 1
.

Equality occurs when a1 = a2 = . . . = an = 1
n .

Now let

g(x) = 1− 2

3
(3−

√
3)x.

Since, g(0) = f(0) = 1, g(1/2) = f(1/2) =
√

3/3, and f(x) is strictly convex on
(0, 12 ) we have that g(x) > f(x) in that open interval. Therefore, we obtain an
improved upper bound:

n∑
i=1

 
1− ai
1 + a1

<
n∑
i=1

g(ai) = n− 2

3
(3−

√
3) < (n+ 1)

…
n− 1

n+ 1
=
√
n2 − 1,

which holds for all n ≥ 3.
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