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Editorial /339

EDITORIAL
This year marks my 10th year anniversary being the Editor-in-Chief of Crux.

Ten years feels like a long time. Indeed, it’s approximately a quarter of my life.
Apart from my dog, my partner, parents, friends and math itself, almost nothing
else has been constant in my life over the past 10 years. I was a PhD student when
I stepped into this role; I’ve since defended my thesis, done a PostDoc, got a job,
obtained a tenure. I moved 5 times. I had a child. I lost 3 grandparents.

On the other hand, these ten years flew by. My daughter is starting grade 2 this
September and I don’t quite recall where the years between the age of 1 and 6
went. My dog is now nearly 14 but it feels like I was complaining about his puppy
energy last year. Maybe the recent pandemic distorted my time perception or
maybe that’s just how human brains perceive time. Either way, I cannot believe
that Crux has been a major part of my life for ten whole years.

In these years, Crux has evolved from a subscription-based printed journal to an
open access online publication. We have grown our audience and with it we have
grown the Editorial Board to efficiently work with a big increase in submissions.
We have embraced new technologies and processes. Amidst these changes, we
kept producing high-quality mathematical content. We introduced a number of
new sections. We developed journal components that target secondary students
and teachers.

Thank you to our readers, contributors and my incredible team that supported
me over the last decade. Here is to the next one.

Kseniya Garaschuk

Copyright © Canadian Mathematical Society, 2023
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MATHEMATTIC
No. 47

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by October 30, 2023.

MA231. A grocery store clerk wants to make a large triangular pyramid of
oranges. The bottom level is an equilateral triangle made up 1275 oranges. Each
orange above the first level rests in a pocket formed by three oranges below. The
stack is completed at the final level with a single orange. How many oranges are
in the stack?

MA232. Determine the number of integers of the form abc+ cba, where abc
and cba are three-digit numbers with ac 6= 0.

MA233. Determine a polynomial function p(x) with the property that if a
line is drawn and intersects the graph of y = p(x) in two distinct points (a, p(a))
and (b, p(b)), then the y-intercept of the line is ab.

MA234. Proposed by Ed Barbeau.

Suppose a
b and c

d are two distinct fractions of positive integers that are both less
than 1

2 . Prove that the numerator of one of the fractions can be increased by 1 so
that the sum of the two resulting fractions is less than 1.

MA235. Proposed by Aravind Mahadevan.

In ∆ABC, cosA cosB + sinA sinB sinC = 1. Find a : b : c, where a, b, and c are
the lengths of sides BC, CA and AB respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 octobre 2023.

MA231. Un commis d’épicerie veut faire une grande pyramide triangulaire
avec des oranges. Le niveau inférieur de la pyramide est un triangle équilatéral
formé de 1 275 oranges. Chaque orange au-dessus du premier niveau se situe dans
la cavité formée par trois oranges du niveau précédent. La pile est complétée par
une seule orange au dernier niveau. Combien y a-t-il d’oranges dans la pile ?

MA232. Déterminer le nombre d’entiers de la forme abc+ cba, où abc et cba
sont des nombres à trois chiffres tels que ac 6= 0.

MA233. Déterminer une fonction polynomiale p(x) ayant la propriété suiv-
ante : si l’on trace une droite et que celle-ci coupe le graphe de y = p(x) en deux
points distincts (a, p(a)) et (b, p(b)), alors l’ordonnée à l’origine y de la droite est
ab.

MA234. Proposé par Ed Barbeau.

Supposons que a
b et c

d sont deux fractions distinctes d’entiers positifs qui sont
toutes deux inférieures à 1

2 . Prouvez que le numérateur de l’une de ces fractions
peut être augmenté de 1 de sorte que, malgré cela, la somme des deux fractions
résultantes demeure inférieure à 1.

MA235. Proposé par Aravind Mahadevan.

Pour triangle ABC, on a cosA cosB + sinA sinB sinC = 1. Déterminer a : b : c,
où a, b et c sont les longueurs des côtés BC, CA et AB respectivement.

Copyright © Canadian Mathematical Society, 2023
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(2), p. 62–64.

MA206. Place algebraic operations +; −; ÷; × between the numbers 1 to 9,
in that order, so that the total equals 100. You may also freely use brackets before
or after any of the digits in the expression and numbers may be placed together,
such as 123 and 67. Two examples are given below:

123+45−67+8−9 = 100 and 1+((2 + 3)× 4× 5)−((6− 7)× (8− 9)) = 100.

Originally from Mathematics Competitions Vol. 34, #1 (2021), A brief history
of the South African Mathematics Olympiad, classic well-known problems with a
twist, example 3.

We received 4 submissions. Each submission contained multiple answers. Here
are 7 possible solutions provided by Giotas Orfeas-Dimitrios, Papafragkas Ioannis
and Skias Antonios-Michail of 1st Model High School of Chalkida, Greece:

12 + 3 + 4 + 5− 6− 7 + 89, 12 + 3− 4 + 5 + 67 + 8 + 9,

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8× 9, (1− 2 + 3)× (4 + 5)× (−6 + 7× 8)÷ 9,

1× (2 + 3 + 4− 5 + 6)× (−7 + 8 + 9), 1× (2 + 3)× 4(−5− 6 + 7× 8)÷ 9,

1× (−2 + 3 + 4 + 5)× 6× (7 + 8)÷ 9.

MA207. Suppose that the points E, F , G, H lie in the plane of the square
ABCD such that AEB, BFC, CGD, and DHA are equilateral triangles. If the
area of EFGH is 25, then find the area of ABCD.

Originally question 9 from the 36th University of Alabama High School Mathemat-
ics Tournament: Team Competition, 2017.

We received 12 submissions, 9 of them were complete and correct. We present 3
solutions by Alex Yang.

Let AB = x. Since ABCD is a square, we have
that AB = DA = x and ∠DAB = 90o. The
fact that triangles HAD and EAB are equi-
lateral triangles implies HA = AD, AE = AB
and ∠HAD = ∠EAB = 60◦.

So, AH = AE = x and ∠HAE = 150o. Sim-
ilarly, we can show that triangles BEF,CFG
and DHG are isosceles triangles with legs of
length x and vertex angle of 150◦ and each
isosceles angle of 15◦.

Crux Mathematicorum, Vol. 49(7), September 2023
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Therefore triangles AHE, BEF , CFG and DHG are congruent. Then, we get
HE = EF = FG = GH. Meanwhile,

∠HEF = ∠HEA+ ∠AEB + ∠BEF = 15◦ + 60◦ + 15◦ = 90◦.

Similarly, we can show that

∠EFG = ∠FGH = ∠GHE = 90◦.

Thus EFGH is a square.

Method 1. Connect H and F. Denote the intersection of HF with AD by I and
that of HF with BC by J. Since the area of square EFGH is 25, we get the length
of side of EFGH is 5. So, HF = 5

√
2.

Since AB = x, AD = BC = IJ = x. In equilateral triangle AHD, we get

HI =
√
3x
2 . Similarly, FJ =

√
3x
2 . So, we obtain

5
√

5 =
2
√

3x

2
+ x.

Then, x =
5
√
2(
√
3−1)

2 . Thus, the area of ABCD is x2 = 25(2−
√

3).

Method 2. In triangle AHE, applying the sine law, we have

AH

sin∠HEA
=

HE

sin∠HAE
.

Since the square EFGH has an area of 25, we get HE = 5. This, together with
the fact that ∠HEA = 15◦ and ∠HAE = 150◦, gives

AH =
5 sin 15◦

sin 150◦
.

It follows from sin 15◦ =
√
6−
√
2

4 and sin 150o = 1
2 that AH = 5(

√
6−
√
2)

2 . Thus, the
area of ABCD is

AH2 = 25(2−
√

3).

Method 3. The figure consists of three types: one small square, four congruent
equilateral triangles, and four congruent isosceles triangles. The area of the square

ABCD is x2. The triangle AHD has area
√
3x2

4 . The triangle AHE has area of

AH ×AE × sin(∠HAE)

2
=
x2

4
.

So,

25 = x2 + 4

Ç√
3x2

4
+
x2

4

å
,

which gives x2 = 25(2−
√

3).

Copyright © Canadian Mathematical Society, 2023
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MA208. Solve the following equation for 0 ≤ x < 2π:

23 cos x+3 − 22 cos x+2 − 2cos x+1 + 1 = 0.

We received 14 submissions, of which 13 were correct and complete. We present
the solution by Mingshen Zong, lightly edited.

Let y = 2cos x; note that, since −1 ≤ cosx ≤ 1, we have 1
2 ≤ y ≤ 2. Substituting

in the original equation we obtain

8y3 − 4y2 − 2y + 1 = 0.

We group the left hand side of the above equation as follows

8y3 − 4y2 − 2y + 1 = 4y2(2y − 1)− (2y − 1)

= (4y2 − 1)(2y − 1)

= (2y + 1)(2y − 1)(2y − 1)

= (2y − 1)2(2y + 1).

Therefore y must be one of − 1
2 and 1

2 . Since y ≥ 1
2 the only option is y = 1

2 . This
means 2cos x = 1

2 = 2−1, so cosx = −1. Since 0 ≤ x < 2π, we obtain x = π.

MA209. Proposed by Aravind Mahadevan.

In ∆ABC, D is on BC. If ∠ADC = θ, prove that

BC cot θ = DC cotB −BD cotC.

We received 1 solution. We present the solution by Richard Hess, lightly edited.

From the sine law in 4ADC we have

sin(180◦ − (θ + C))

DC
=

sinC

AD
⇒ AD = DC

sinC

sin(θ + C)
.

Crux Mathematicorum, Vol. 49(7), September 2023



MathemAttic /345

From the sine law in 4ABD we have

sin(180◦ − ((180◦ − θ) +B))

BD
=

sinB

AD
⇒ AD = BD

sinB

sin(θ −B)
.

Equating the two expressions for the length of AD we get

DC
sinC

sin(θ + C)
= BD

sinB

sin(θ −B)

⇐⇒ DC sinC sin(θ −B) = BD sinB sin(θ + C)

Using the sum and difference formula for sine,

DC sinC(sin θ cosB − cos θ sinB) = BD sinB(sin θ cosC + cos θ sinC).

Dividing through by sinB sinC sin θ we get

DC(cotB − cot θ) = BD(cotC + cot θ).

Finally, we rearrange to get

DC cotB −BD cotC = BD cot θ +DC cot θ

⇐⇒ DC cotB −BD cotC = BC cot θ,

which is what we needed to show.

MA210. Proposed by Neculai Stanciu.

Determine all triplets (x, y, z) of real numbers which satisfy:

2xy − (z + x− 1)2 = 2xy − (x+ y − 1)2 = 2zx− (y + z − 1)2 = 1.

We received 7 submissions, showing solution to two problems: one as defined in
Vol. 49 (2) and one with slight modification of the second part of given equation.
4 of them were complete and correct. We present the solution by Ivan Hadinata
for the original problem and Daniel Vacaru for modified.

Original problem. Determine all triplets (x, y, z) of real numbers which satisfy:

2xy − (z + x− 1)2 = 2xy − (x+ y − 1)2 = 2zx− (y + z − 1)2 = 1

Note that we have

2xy − (x+ y − 1)2 = 1 =⇒ (x− 1)2 + (y − 1)2 = 0 =⇒ x = y = 1.

Substituting x = y = 1 to 2xy − (z + x − 1)2 = 2zx − (y + z − 1)2 = 1 yields
2− z2 = 2z − z2 = 1 and thus z = 1. The only triplet is (x, y, z) = (1, 1, 1) which
clearly satisfies (1).

Copyright © Canadian Mathematical Society, 2023
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Modified problem. Determine all triplets (x, y, z) of real numbers which satisfy:

2xy − (z + x− 1)2 = 2yz− (x+ y − 1)2 = 2zx− (y + z − 1)2 = 1

We have

3 = 2xy − (z + x− 1)
2

+ 2yz − (x+ y − 1)
2

+ 2zx− (y + z − 1)
2 ⇔

3 =��2xy− z2− x2− 1−HH2xz+ 2z+ 2x+��HH2yz− x2− y2− 1−��2xy+ 2x+ 2y+HH2zx−
y2 − z2 − 1−��HH2yz + 2y + 2z ⇔
6 + 2x2 + 2y2 + 2z2 − 4x− 4y − 4z = 0⇔ (x− 1)

2
+ (y − 1)

2
+ (z − 1)

2
= 0.

It follows that (x, y, z) = (1, 1, 1).

Crux Mathematicorum, Vol. 49(7), September 2023
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PROBLEM SOLVING
VIGNETTES

No. 28

Shawn Godin

Tiling a Strip

In this issue, we will look at problem 15 from the 2022 Canada Jay Mathematical
Competition. The Canada Jay Mathematical Competition is hosted by the Cana-
dian Mathematical Society. The contest is aimed at students in grades 5 through
8 and is made up of 15 multiple choice questions. More information and past
contests can be found on the contest website.

You have a number of 2 × 1, 1 × 2, and 1 × 1 tiles and want to tile a
2× 2 square.

You notice that there are 7 different ways you could do the tiling as
shown below.

How many different ways could you tile the 2 × 4 rectangle, pictured
below, using the tiles?

(A) 49 (B) 55 (C) 63 (D) 71 (E) 81

It may be hard to see how to proceed with this problem. In cases like this, just
jumping in and playing with the problem can give us some inspiration. First, to
make things easier, we will refer to the 2× 1 tile (red) as a vertical tile, the 1× 2
tile (blue) as a horizontal tile, and the 1× 1 tile (green) as a square tile.

Proceeding systematically, we will look at things from the point of view of which
tile is covering the bottom left square on our rectangle. We then have three cases.

Copyright © Canadian Mathematical Society, 2023
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Case 1: A vertical tile covers the bottom left square.

In this case we are left with a 2× 3 rectangle to tile.

Case 2: A horizontal tile covers the bottom left square.

This leads us to two subcases where we consider which tile covers the top left
square, either another horizontal tile or a square tile.

In the first subcase we are left with a 2× 2 square, which we know from the prob-
lem can be tiled in 7 ways.

Case 3: A square tile covers the bottom left square.

As in case 2, there will be two subcases: one where another square tile covers the
top left square and one where a horizontal tile covers the top left square.

In the first case we are left with a 2× 3 rectangle to cover, as in the first case. In
the second case we are left with a shape similar to the second subcase in case 2.

From this playing, we see a possible strategy. We may be able to build 2 × n
rectangles from smaller rectangles.

Let’s begin with a 2× 1 rectangle. There are only two ways to cover the lower left
square: either with a vertical tile or by a square. That gives us only 2 ways of
covering a 2× 1 rectangle, shown below.

Proceeding to a 2× 2 rectangle, there will be (as always from this point on) three
ways to cover the bottom left square.

Crux Mathematicorum, Vol. 49(7), September 2023
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1. When the bottom left square is covered with a vertical tile, we are left with a
2× 1 rectangle which we know can be covered in 2 ways.

2. When the bottom left square is covered with a horizontal tile, we are left with
a 1× 2 rectangle which, like the 2× 1 rectangle, can be covered in 2 ways.

3. When the bottom left square is covered with a square tile, there are two possible
ways to cover the top left square. When the top left square is covered by another
square, we are left with a 2× 1 rectangle which can be covered in 2 ways.

When the top left square is covered by a horizontal tile there is only one way to
finish covering the original rectangle.

Thus we see that there are 2+2+2+1 = 7 ways to cover a 2×2 rectangle (which
agrees with what we were told in the problem statement).

Moving on to the 2×3 rectangle, the first case with the vertical tile leaves us with
a 2 × 2 rectangle, which can be covered in 7 ways. We can see that in general,
case 1 reduces a 2 × n rectangle to a 2× (n − 1) rectangle, which we would have
calculated in the previous step. Similarly, case 3, subcase 1 will also reduce a 2×n
rectangle to a 2×(n−1) rectangle. For our 2×3 rectangle, this gives us 7+7 = 14
tilings.

. . .

. . .

. . .
n

n− 1

Case 1

. . .

. . .

. . .
n

n− 1

Case 3, subcase 1

Copyright © Canadian Mathematical Society, 2023
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Looking at case 2 subcase 1, in general, we see it reduces a 2 × n rectangle to a
2 × (n − 2) rectangle. For our 2 × 3 rectangle this corresponds to 2 more tilings,
bringing us up to 16, so far.

. . .

. . .

. . .
n

n− 2

Case 2, subcase 1

That leaves us with case 2, subcase 2 and case 3 subcase 2. Both of these cases
look like a rectangle with an extra square on the leading edge. For our 2× 3 case
these look like letter L’s in different configurations, each of which can be covered
in 3 ways (I will leave that to the reader to verify).

Case 2, subcase 2 Case 3, subcase 2

Thus a 2× 3 rectangle can be tiled in 2× 7 + 2 + 2× 3 = 22 ways.

We can proceed to the desired 2× 4 rectangle. Case 1 and case 3 subcase 1 yield
the 2× 3 rectangle with 22 tilings, while case 2 subcase 1 yields a 2× 2 rectangle
with 7 tilings. We are only left with case 2 subcase 2 and case 3 subcase 2. By
symmetry, each of these should yield the same number of tilings so we will deal
with case 3 subcase 2. There are only two possible choices for the tile in the
bottom left: a square which leaves a 2× 2 rectangle, with 7 tilings; or a horizontal
tile which leaves an “L” shape, with 3 tilings.

Thus the total number of tilings for a 2× 4 rectangle is

2× 22 + 7 + 2× (7 + 3) = 71 D

At this point we get the feeling that the process can be generalized. Let Rn count
the number of tilings of a 2× n rectangle and let Bn count the number of tilings
of a 2×n rectangle with a square “bump” on the end. Thus, starting with a 2×n
rectangle, case 2 subcase 2 yields the figure below, which can be tiled in Bn−2
ways. Similarly, the figure resulting from case 3 subcase 2 can also be tiled in
Bn−2 ways.

Crux Mathematicorum, Vol. 49(7), September 2023
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. . .

. . .

. . .
n

n− 2

Case 2, subcase 1

To summarize, starting with a 2× n rectangle:

• case 1 yields a 2× (n− 1) rectangle, which can be tiled in Rn−1 ways;

• case 2, subcase 1 yields a 2× (n− 2) rectangle, which can be tiled in Rn−2
ways;

• case 2, subcase 2 yields a 2 × (n − 2) rectangle with a bump, which can be
tiled in Bn−2 ways;

• case 3, subcase 1 yields a 2× (n− 1) rectangle, which can be tiled in Rn−1
ways; and

• case 3, subcase 2 yields a 2 × (n − 2) rectangle with a bump, which can be
tiled in Bn−2 ways;

which we can write as

Rn = 2Rn−1 +Rn−2 + 2Bn−2 (1)

However, if we have a 2× n rectangle with a bump that we want to tile – starting
from the left – there are only two possible cases:

• fill the bump with a square, leaving a 2×n rectangle that can be tiled in Rn
ways; or

• fill the bump with a horizontal tile, leaving a 2 × (n − 1) rectangle with a
bump that can be tiled in Bn−1 ways

which gives us
Bn = Rn +Bn−1 (2)

Note that the “L” shapes we talked about earlier can be tiled in B1 = 3 ways.
However, recursion equation (2) tells us

B1 = R1 +B0

3 = 2 +B0

which imply that B0 = 1, which makes sense as this would be just a “bump”
which could only be covered by the square. Thus substituting (2) back into itself
repeatedly gives us

Bn = Rn +Rn−1 +Rn−2 + · · ·+R2 +R1 + 1 (3)

Copyright © Canadian Mathematical Society, 2023
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and hence, (1) becomes

Rn = 2Rn−1 +Rn−2 + 2(Rn−2 +Rn−3 + · · ·+R2 +R1 + 1)

Rn = 2Rn−1 + 3Rn−2 + 2Rn−3 + · · ·+ 2R2 + 2R1 + 2 (4)

Which gives us a nice way to calculate our tilings. Nevertheless, we can simplify
this further. Using (4) for Rn−1 gives

Rn−1 = 2Rn−2 + 3Rn−3 + 2Rn−4 + · · ·+ 2R2 + 2R1 + 2

so
Rn −Rn−1 = 2Rn−1 +Rn−2 −Rn−3

which can be rearranged to give

Rn = 3Rn−1 +Rn−2 −Rn−3 (5)

Combining (5) with R2 = 7 (from the original problem), R1 = 2 (from earlier
in our solution), and R0 = 1 (trivially), we can quickly verify our solution by
calculating

R3 = 3R2 +R1 −R0 = 3× 7 + 2− 1 = 22,

R4 = 3R3 +R2 −R1 = 3× 22 + 7− 2 = 71.

Readers may continue to enjoy playing with the problem. Here are some ideas for
further exploration.

1. Derive the value of R5 from “first principles” like earlier in the column and
show that it corresponds to the value given by the recursion.

2. One of the official solutions to the problem breaks the tilings into two cases:
those where a vertical line can be drawn down the centre without crossing
a tile, and those that cannot. See if you can use this strategy to determine
R4 more quickly than our original “first principles” solution.

3. Another method to attack the problem is to define an “unbreakable” tiling
of a 2 × n rectangle to be one where no vertical line can be drawn through
the rectangle without crossing a tile. All tilings of a 2× n rectangle can be
worked out by looking at its unbreakable parts.

Have fun playing with these, or other tiling problems.

Crux Mathematicorum, Vol. 49(7), September 2023
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Prime-Producing Pairs of Dice
Doddy Kastanya

In this short article, I would like you to consider special pairs of dice. The tra-
ditional die we are all familiar with has six faces numbered 1 through 6. For the
first part of this article, let’s consider a pair of four-faced dice. Instead of being
cubes, these dice are tetrahedrons, another one of the Platonic solids. In addition,
we are not going to simply number the faces of our dice 1 through 4. Each face of
these two dice will have a unique number such that when we roll them, the sum
of the numbers at the bottom of the dice will always be a prime number.

The key to building up these dice is to consider the answer – that is, all 16 possible
prime numbers produced when rolling these dice – and then going backward to
determine the number to be painted on each face. Symbolically, the answer is
illustrated in the figure below.

Die B
β1 β2 β3 β4

α1 π1,1 π1,2 π1,3 π1,4
Die α2 π2,1 π2,2 π2,3 π2,4
A α3 π3,1 π3,2 π3,3 π3,4

α4 π4,1 π4,2 π4,3 π4,4

The following are requirements that need to be satisfied:

• α1 through α4 as well as β1 through β4 are unique and non-negative integers.

• πi,j for i = 1, . . . , 4 and j = 1, . . . , 4 are unique and prime.

• For a given j, πi,j − πi−1,j = αi − αi−1 for i ≥ 2.

• Similarly, for a given i, πi,j − πi,j−1 = βj − βj−1 for j ≥ 2.

So, the next step is to find four sets of prime numbers, each containing four prime
numbers which satisfy the desired spacing requirement above. The following are
some examples of the four sets of prime numbers which could be used as the basis
for building up the two dice:

• {7, 11, 13, 17}, {37, 41, 43, 47}, {457, 461, 463, 467}, {1423, 1427, 1429, 1433}
• {251, 257, 263, 269}, {1741, 1747, 1753, 1759}, {3301, 3307, 3313, 3319},
{5101, 5107, 5113, 5119}

• {11, 19, 29, 31}, {23, 31, 41, 43}, {53, 61, 71, 73}, {89, 97, 107, 109}
• {23, 29, 31, 37}, {53, 59, 61, 67}, {563, 569, 571, 577}, {4643, 4649, 4651, 4657}
• {47, 53, 59, 61}, {167, 173, 179, 181}, {257, 263, 269, 277}, {557, 563, 569, 571}
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Finally, to determine what numbers should be painted on each face of the dice, we
need to work with the smallest prime number in the four available sets. The
sum of α1 and β1 will be this number. We need to work with the smallest
number since using other numbers could lead to a violation of the first require-
ment (i.e., αi’s and βj ’s being non-negative integers) due to the last two require-
ments (i.e., the spacing requirements). As an illustration, let’s work with the
third example shown above. The smallest number in the four sets of primes
is 11 in this case. So, we can have 12 combinations of (α1, β1) pairs namely
(0, 11) , (1, 10) , (2, 9) , (3, 8) , . . . , (10, 1) , (11, 0). The values for the others αi’s and
βj ’s could be easily calculated since they will follow the same “spacing” as the re-
sulting prime numbers. If we pick (3, 8) as an example, the numbers to be painted
on the faces of the two dice along with the results from rolling the two dice are
shown in the figure below. Die A will have 3, 15, 45, and 81 painted on its faces
while Die B will have 8, 16, 26, and 28.

Die B
8 16 26 28

3 11 19 29 31
Die 15 23 31 41 43
A 45 53 61 71 73

81 89 97 107 109

Now, we are going to use the dice that we are more familiar with – the ones with
six faces. The challenge is still the same. We would like to have two dice with
the following conditions: each face of these two dice will have a unique number
such that when we roll the two dice, the sum of the numbers shown must be a
prime number. Now that we have regular dice, the number we are interested in
is on top of the die when it settles after the roll. The same approach as in the
previous case will work. However, this time around you would need to find six
sets of prime numbers, each of which contains six prime numbers which satisfy the
spacing requirement above. This problem is significantly more challenging than
the tetrahedral dice one. Shown below is one solution for this challenge. Could
you find another one that will give a different set of resulting prime numbers?
Otherwise, there are 11 other solutions readily available. Good luck and have fun!

Die B
6 12 66 78 132 168

5 11 17 71 83 137 173
31 37 43 97 109 163 199

Die 61 67 73 127 139 193 229
A 101 107 113 167 179 233 269

145 151 157 211 223 277 313
185 191 197 251 263 317 353

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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From the bookshelf of . . .
Shawn Godin

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

Keys To Infinity
by Clifford A. Pickover
ISBN 0-471-11857-5, 352 pages
Published by John Wiley & Sons, 1995.

I own – at the time I am writing this – 14 books by
Cliff Pickover. He has written many wonderful books
on mathematics, puzzles, computer science and more (I
have yet to read any of his fiction). Keys To Infinity was
the first of his books that I purchased. After reading
it, I always kept my eyes open for more of his titles.

This book has a little bit of everything. Many of the 31
chapters are on some sort of mathematical puzzle. For
example, chapter 28 Chaos in Ontario talks about the
following problem the author encountered while visiting
the Ontario Science Centre in Toronto:

In the ten boxes below, write a ten-digit number. The
digit in the first box (of row 2, Ed.) indicates the total
number of zeros in the entire number. The box marked 1 indicates the total number
of 1’s in the entire number. The box marked 2 indicates the total number of 2’s
in the entire number, and so on. For example, the 3 in the box labelled 0 would
indicate that there must be exactly three 0’s in the ten-digit number.

0 1 2 3 4 5 6 7 8 9 Row 1
3 Row 2

The chapter includes a discussion of the problem and the solution. As well, Pick-
over discusses a possible extension to the problem where the “solution” to the
puzzle becomes the description of a new number and the process is repeated. It
turns out that the sequence of numbers derived by this method eventually cycles.
The author then created a “contest” for colleagues to find the longest sequence
of such numbers before cycling occurs. Being a computer scientist, the author
includes code for many of the problems explored in the book and Appendix 2
contains the program for one of the solutions to the “contest”.
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The author is also well-known in the area of computer graphics, and several of
the chapters are on mathematically based graphics. In chapter 9, The Loom of
Creation, he discusses shapes created by a hypothetical spider. The spider spins
webs made up of line segments with starting points at (r cos θ, r sin θ) and the end
points at (r cos aθ, r sin bθ) while θ ranges from 0◦ to 360◦ in equal sized steps. The
variable a and b are positive integer parameters, each pair defining a new figure.
Below are two diagrams created using the author’s method.

a = 4, b = 4 a = 2, b = 5

Pickover also loves to play with numbers that have peculiar properties, especially
ones that can be investigated with computer programs. Chapter 22, The Loneli-
ness of the Factorions introduces two similarly defined families of numbers: fac-
torions and narcissistic numbers, while chapter 30, Vampire Numbers, introduces
the titular family. Factorions are numbers that can be written as a sum of the
factorials of their digits, such as

145 = 1! + 4! + 5!.

Similarly, narcissistic numbers are n-digit numbers that are equal to the sum of
the nth powers of its digits, such as

153 = 13 + 53 + 33.

Vampire numbers are numbers with an even number of digits that can be factored
into two factors, each with half as many digits as the original, in such a way that
all the digits of the original number are contained in the factors. For example,

1395 = 15× 93

where the original number can be formed by writing out the two factors and
rearranging the digits. Pickover discusses each family, some of their properties as
well as looking at some programs to explore them.

Keys To Infinity contains much of interest to MathemAttic readers. Pick it up – or
any other of Pickover’s books for that matter – and you will not be disappointed!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This book is a recommendation from the bookshelf of
Shawn Godin. Shawn, a retired high school math teacher,
is a co-editor of MathemAttic and has been involved with
Crux in one form or another for over 20 years. Shawn
continues to be involved in mathematical activities in his
retirement: helping with mathematics contest creation and
marking, writing columns and doing the occasional presen-
tation. He lives in Carleton Place, Ontario with his wife,
Julie, and their dog, Daisy.
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OLYMPIAD CORNER
No. 415

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by October 30, 2023.

OC641. Let a, b, c be integers. Prove that there exists a positive integer n
such that the number n3 + an2 + bn+ c is not a perfect square.

OC642. Determine if there exist positive integers n and k such that

n

11k − n
is the square of an integer.

OC643. Find the smallest natural number n such that for every 3-colouring
of the numbers 1, 2, . . . , n there are two (different) numbers of the same colour
such that their positive difference is a perfect square.

OC644. In a 2018×2018 chessboard, some of the cells are painted white, the
rest are black. It is known that from this chessboard one can cut out a 10 × 10
square, all cells of which are white, and a 10 × 10 square, all cells of which are
black. What is the smallest d for which it can be guaranteed that a 10×10 square
can be cut out of it, in which the number of black and white cells differs by no
more than d?

OC645. Prove that if a, b, c ≥ 0 and a+ b+ c = 3, then

a

1 + b
+

b

1 + c
+

c

1 + a
≥ 1

1 + a
+

1

1 + b
+

1

1 + c
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 octobre 2023.

OC641. Soient a, b, c des entiers. Démontrer qu’il existe un entier positif n
tel que le nombre n3 + an2 + bn+ c n’est pas un carré parfait.

OC642. Déterminer s’il existe des entiers positifs n et k tels que

n

11k − n
est le carré d’un entier.

OC643. Déterminer le plus petit nombre naturel n tel que pour tout 3-
colorage des nombres 1, 2, . . . , n il existe deux nombres différents mais de même
couleur dont la différence positive est un carré parfait.

OC644. Sur un échiquier de taille 2018×2018, certaines cellules sont colorées
blanc, tandis que les autres sont colorées noir. On sait que cet échiquier spécifique
comporte une section 10 × 10 entièrement blanche et une autre section 10 × 10
entièrement noire. Quelle est la plus petite valeur d possible assurant l’existence
d’une section 10× 10 dont les nombres de cellules blanches et noires diffèrent par
au plus d?

OC645. Démontrer que si a, b, c ≥ 0 et a+ b+ c = 3, alors

a

1 + b
+

b

1 + c
+

c

1 + a
≥ 1

1 + a
+

1

1 + b
+

1

1 + c
.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(2), p. 80–81.

OC616. Let a, b, c be integer side-lengths of a triangle, gcd(a, b, c) = 1 and
all the values

a2 + b2 − c2
a+ b− c ,

b2 + c2 − a2
b+ c− a ,

c2 + a2 − b2
c+ a− b

are integers as well. Prove that

(a+ b− c)(b+ c− a)(c+ a− b) or 2(a+ b− c)(b+ c− a)(c+ a− b)

is a perfect square.

Originally problem 3 of the 2018 Czech Mathematical Olympiad.

We received 6 solutions. We present the solution by Ivan Hadinata.

We first prove the following lemma:

Lemma. For any positive integers p, q, r with gcd(p, q, r) = 1 and r | pq, q | pr,
p | qr then pqr is a perfect square.

0.7Proof. Let d,m, n ∈ N be such that d = gcd(p, q), p = dm, q = dn, and
gcd(m,n) = 1. Since gcd(p, q, r) = 1 then gcd(d, r) = 1. Therefore

r | pq =⇒ r | d2mn =⇒ r |mn (1)

q | pr =⇒ n |mr =⇒ n | r (2)

p | qr =⇒ m |nr =⇒ m | r (3)

By (2) and (3), lcm(m,n) = mn can divide r. Combining it with (1) implies that
r = mn. Hence pqr = d2r2, that is a perfect square. 2

Back to the problem, let x, y, z ∈ N where

x = a+ b− c, y = a− b+ c, z = −a+ b+ c.

Then 2a = x + y, 2b = y + z, 2c = z + x. Clearly the parity of x, y, z must
be the same. Let α = gcd(x, y, z). Then, α divides all of 2a, 2b, and 2c. So
α | 2 · gcd(a, b, c) = 2, which implies that α = 1 or 2.

Note that
a2 + b2 − c2
a+ b− c =

1

2

(
x+ y + z − xy

z

)
∈ Z

implies that z |xy. Similarly, y |xz and x | yz.
If α = 1, by the Lemma it implies that (a+ b− c)(b+ c− a)(c+ a− b) = xyz
is a perfect square.
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If α = 2, let x = 2x0, y = 2y0, z = 2z0, x0, y0, z0 ∈ N and gcd(x0, y0, z0) = 1.
Then

a2 + b2 − c2
a+ b− c = x0 + y0 + z0 −

x0y0
z0

gives that z0 |x0y0. Similarly, y0 |x0z0 and x0 | y0z0. By the Lemma,

2(a+ b− c)(b+ c− a)(c+ a− b) = 16x0y0z0

is a perfect square. The proof is complete.

OC617. Consider a positive integer n, a circle of circumference 6n and 3n
points on the circle that divide it into 3n small arcs so that n of these arcs have
a length of 1, another n of these arcs have a length of 2, and the remaining arcs
have a length of 3. Show that among the considered points there are two that are
diametrically opposite.

Originally 4th Problem of Grade 9, Final Round of the 2018 Romania Mathemat-
ical Olympiad.

We received 2 solutions. We present the solution by UCLan Cyprus Problem Solv-
ing Group.

Given a circle of circumference 4m + 2n and 2m + n points on it dividing it into
2m+n arcs where m of them have length 1, n of them have length 2, and another
m have length 3, then two of the points are diametrically opposite.

Assume that this is not true and pick a counterexample where m is minimal. If
m = 0 then n is even, say n = 2k and we have 2k arcs of length 2. Then the k-th
and 2k-th point are diametrically opposite, a contradiction.

So m > 0. Let x1, x2, . . . , x4m+2n be equally spaced points on the circle containing
the 2m+n chosen points and assume for contradiction that no two are diametrically
opposite. By rotation, we may assume that x1, x2 are two of the chosen points.
So xm+2n+1, xm+2n+2 are not chosen. This implies that xm+2n and xm+2n+3 are
chosen.

We delete the arc x1x2 merging the chosen points x1, x2 into a new chosen point,
say a. We also delete the middle third of the arc xm+2nxm+2n+3 merging the
unchosen points xm+2n+1, xm+2n+2 into a new unchosen point, say b. So the new
points are a, x3, . . . , xm+2n, b, xm+2n+3, . . . , x4m+2n.

So we removed an arc of length 1 and changed an arc of length 3 into an arc of
length 2. Thus we now have m − 1 arcs of length 1, n + 1 arcs of length 2 and
m− 1 arcs of length 3. Because the deleted arc and part of arc were diametrically
opposite we still don’t have chosen points which are diametrically opposite. So we
have a counterexample with m− 1 arcs of length 1, a contradiction.
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OC618. Let n ∈ N, n ≥ 2. For all real numbers a1, a2, . . . , an denote S0 = 1
and

Sk =
∑

1≤i1<i2<...<ik≤n
ai1ai2 · . . . · aik

the sum of all the products of k numbers chosen among a1, a2, . . . , an, k ∈ {1, 2, . . . , n}.
Find the number of n-tuples (a1, a2, . . . , an) such that

(Sn − Sn−2 + Sn−4 − . . .)2 + (Sn−1 − Sn−3 + Sn−5 − . . .)2 = 2nSn.

Originally 4th Problem of Grade 10, Final Round of the 2018 Romania Mathe-
matical Olympiad.

We received 3 solutions and we will present 2 of them.

Solution 1, by Oliver Geupel.

We prove that the required number is 2n−1.

Consider the polynomials S0 (x1, . . . , nn) = 1 and, for k ∈ {1, 2, . . . , n},

Sk (x1, . . . , xn) =
∑

1≤i1<i2<...<ik≤n
xi1xi2 · . . . · xik .

Then, for every n-tuple E = (e1, . . . , en) ∈ {0, 1, 2}n, there is an integer coefficient
cE such that it holds, with the notation X = (x1, . . . , xn) and XE = xe11 x

e2
2 . . . xenn ,

that

(Sn(X)− Sn−2(X) +− . . . )2+(Sn−1(X)− Sn−3(X) +− . . . )2 =
∑

E∈{0,1,2}n
cEX

E .

(1)
By inspection, if

∑n
i=1 ei is odd, then cE = 0.

Next consider

E = (2, 2, . . . , 2︸ ︷︷ ︸
` times

, 1, 1, . . . , 1︸ ︷︷ ︸
2m times

, 0, 0, . . . , 0),

where ` ≥ 0 and m ≥ 0. With the notation L = {1, 2, . . . , `} and M = {`+ 1, `+
2, . . . , `+ 2m}, we have

cEX
E =

∑
A⊆M

(−1)m−|A|

(∏
k∈L

xk ·
∏
i∈A

xi

)Ñ∏
k∈L

xk ·
∏

j∈M\A

xj

é
.

If m = 0 then it follows that cE = 1. If m > 0 then

cE =
2m∑
i=0

(−1)m−i
Ç

2m

i

å
= (−1)−m

2m∑
i=0

(−1)2m−i
Ç

2m

i

å
= (−1)−m(1− 1)2m = 0.
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By symmetry, we may deduce cE = 0 whenever there is an index i ∈ {1, . . . , n}
such that ei = 1. Thus, the polynomial (1) is equal to

∑
E∈{0,2}n

XE =
n∏
i=1

(
x2i + 1

)
.

Therefore,

(Sn − Sn−2 + Sn−4 − . . . )2 + (Sn−1 − Sn−3 + Sn−5 − . . . )2 =
n∏
i=1

(
a2i + 1

)
,

which is greater than or equal to 2n |∏n
i=1 ai| = 2n |Sn| by the AM–GM inequality.

By the equality condition of the AM–GM inequality, the equality holds if and only
if ai = ±1 for 1 ≤ i ≤ n, where an even number of the ai is equal to −1. The
required number is therefore equal to

bn/2c∑
k=0

Ç
n

2k

å
= 2n−1,

which completes the proof.

Solution 2, by UCLan Cyprus Problem Solving Group.

Define T0 = 1 and for 1 6 k 6 n define Tk to be the sum of squares of all products
of k numbers chosen among a1, a2, . . . , an. We will prove by induction on n that

(Sn − Sn−2 + · · · )2 + (Sn−1 − Sn−3 + · · · )2 = T0 + T1 + · · ·+ Tn .

The case n = 2 is immediate as

(S2 − S0)2 + S2
1 = (a1a2 − 1)2 + (a1 + a2)2

= (a1a2)2 − 2a1a2 + 1 + a21 + a22 − 2a1a2

= (a1a2)2 + a21 + a22 + 1 = T2 + T1 + T0 .

For the inductive hypothesis assume the result is true for n = k − 1. As usual we
write Sr for the sum of all products of r numbers chosen among a1, a2, . . . , ak. We
also write S′r for the sum of all products of r numbers chosen among a1, a2, . . . , ak−1.
Note that ak is not included in any of the sums of S′r, so essentially we have

S′r = Sr(a1, . . . , ak−1, 0) .

We define T ′r analogously and observe that

Sr = S′r + akS
′
r−1 and Tr = T ′r + a2kT

′
r−1
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for each r > 1. We get

(Sk − Sk−2 + · · · )2 + (Sk−1 − Sk−3 + · · · )2

= (S′k − S′k−2 + · · ·+ ak
(
S′k−1 − S′k−3 + · · ·

)
)2

+ (S′k−1 − S′k−3 + · · ·+ ak(S′k−2 − S′k−4 + · · · ))2

= (S′k − S′k−2 + · · · )2 + (S′k−1 − S′k−3 + · · · )2 + 2ak(Sk − Sk−2 + · · · )(Sk−1 − Sk−3 + · · · )
+ 2ak(Sk−2 − Sk−4 + · · · )(Sk−1 − Sk−3 + · · · )
+ a2k

î(
S′k−1 − S′k−3 + · · ·

)2
+ (S′k−2 − S′k−4 + · · · )2

ó
Since S′k = 0 and by the induction hypothesis we have

(S′k−1 − S′k−3 + · · · )2 + (S′k−2 − S′k−4 + · · · )2 = T ′0 + T ′1 + · · ·+ T ′k−1

we deduce that

(Sk − Sk−2 + · · · )2 + (Sk−1 − Sk−3 + · · · )2

= T ′0 + T ′1 + · · ·+ T ′k−1 + a2k(T ′0 + T ′1 + · · ·+ T ′k−1)

= T ′0 + T1 + · · ·+ Tk−1 + a2kT
′
k−1

= T0 + T1 + · · ·+ Tk

as claimed.

Now observe that T0 + T1 + · · · + Tn has a total of 2n monomials, one for each
subset of {1, 2, . . . , n}. Furthermore, each a2i appears in 2n−1 monomials, one for
each subset of {1, 2, . . . , n} \ {i}. Thus by AM-GM we have

T0 + T1 + · · ·+ Tn > 2n 2n
»

(a21 · · · a2n)2n−1 = 2n|Sn| > 2nSn .

Equality occurs if and only if Sn > 0 and all of the monomials are equal. This
happens if and only if Sn > 0 and each ai is equal to ±1.

So there are 2n−1 cases of equality. Once we fixed the signs of a1, . . . , an−1, then
the sign of an is determined as the product has to be positive.

OC619. Find all functions f : R → R that satisfy simultaneously the
following conditions:

(a) f(x) + f(y) ≥ xy for all real numbers x and y;

(b) for every real number x there is a real number y such that f(x) + f(y) = xy.

Originally 1st Problem, Second Round of the 2018 Poland Mathematical Olympiad.

We received 9 solutions. We present the solution by Michel Bataille.

Let f0 : R→ R be defined by f0(x) = x2

2 . Then f0 is a solution (since x2+y2 ≥ 2xy
with equality if y = x). We show that there is no other solution.
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Let f be a solution. From condition (a), we have f(x)+f(x) ≥ x2, hence f(x) ≥ x2

2
for all x ∈ R.

Let x be a real number. From condition (b), there exists yx ∈ R such that

f(x) + f(yx) = xyx and we deduce that xyx ≥ x2

2 +
y2x
2 .

It follows that x2 + y2x− 2xyx ≤ 0, that is (x− yx)2 ≤ 0. Thus implies yx = x and
therefore 2f(x) = x2. Thus, f = f0 and the proof is complete.

OC620. Given a trapezoid ABCD with bases AB and CD, with the circle
of diameter BC tangent to the line AD, prove that the circle of diameter AD is
tangent to the line BC.

Originally 4th Problem, Second Round of the 2018 Poland Mathematical Olympiad.

We received 9 solutions. We present 2 solutions.

Solution 1, by Theo Koupelis.

Let M be the midpoint of BC, and K the projection of M on AD. Similarly, let
N be the midpoint of AD, and L the projection of N on BC. It is given that K
is on the circle of diameter BC. Clearly MN ‖ AB ‖ DC, and the quadrilateral
NKLM is cyclic, because ∠NKM = ∠NLM = 90◦. Then

180◦ − ∠KDC = ∠BAN = ∠MNK = ∠KLC,

and therefore KLCD and AKLB are cyclic. Therefore,

∠ALD = ∠ALK+∠KLD = ∠ABK+∠DCK = 180◦−(∠KBL+∠KCL) = 90◦,

because ∠BKC = 90◦. Thus, L is on the circle of diameter AD, and BC is tangent
to this circle.
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Solution 2, by UCLan Cyprus Problem Solving Group.

We can set the coordinates so that A = (a, 0), B = (b, 0), C = (c, 1) and D = (d, 1).
The midpoint M of BC has coordinates M = ( b+c2 , 12 ). The line AD has equation
x− (d− a)y − a = 0. So the distance from M to this line is

|1 · b+c2 − (d− a) · 12 − a|√
12 + (d− a)2

=
|(b+ c)− (a+ d)|
2
√

1 + (d− a)2
.

Also,

MB = MC =

 Å
b+ c

2
− b
ã2

+
1

4
=

1

2

»
1 + (c− b)2 .

So the circle of diameter BC is tangent to AD if and only if

|(b+ c)− (a+ d)|
2
√

1 + (d− a)2
=

1

2

»
1 + (c− b)2 ⇐⇒ |(b+c)−(a+d)|

»
1 + (c− b)2

»
1 + (d− a)2 .

By symmetry this is also the condition for the circle of diameter AD being tangent
to BC.
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FOCUS ON...
No. 57

Michel Bataille

Solutions to Exercises from Focus On... No. 52 - 56

From Focus On... No. 52

1. Solve the following system in real numbers x, y, z:

x+ y + z = 2, (x2 + y2)2 + (y2 + z2)2 + (z2 + x2)2 = (x+ y)(y + z)(z + x).

Let (x, y, z) be a solution. Then, x, y, z satisfy

2[(x2 + y2)2 + (y2 + z2)2 + (z2 + x2)2]− (x+ y+ z)(x+ y)(y+ z)(z+ x) = 0, (1)

or after a straightforward calculation:

4(x4+y4+z4)+2(x2y2+y2z2+z2x2)−x3y−xy3−y3z−yz3−z3x−zx3−4xyz(x+y+z) = 0.

The left-hand side can be rewritten as A+B + C where

A = x4 + y4 + z4 − (x2y2 + y2z2 + z2x2),

B = [x4 + y4)− (x3y + xy3)] + [(y4 + z4)− (y3z + yz3)] + [(z4 + x4)− (z3x+ zx3)],

C = x4 + y4 + z4 + 3(x2y2 + y2z2 + z2x2)− 4xyz(x+ y + z).

Now A ≥ 0 (since a2 + b2 + c2 ≥ ab+ bc+ ca for all real numbers a, b, c) and B ≥ 0
since for all real numbers a, b, we have

(a4 + b4)− (a3b+ ab3) = (a− b)(a3 − b3) = (a− b)2(a2 + ab+ b2) ≥ 0.

Using the arithmetic-geometric mean inequality, we have

x4 + x2y2 + y2z2 + z2x2 ≥ 4 4
√
x8y4z4 = 4x2|y||z| = 4x2|xy| ≥ 4x2xy.

Similarly,

y4 + x2y2 + y2z2 + z2x2 ≥ 4xy2z

and

z4 + x2y2 + y2z2 + z2x2 ≥ 4xyz2

and by addition, C ≥ 0. Thus A+ B + C ≥ 0 and (1) forces A = B = C = 0. In
particular, from B = 0 we deduce x = y = z, hence x = y = z = 2

3 .

Conversely, it is readily checked that ( 2
3 ,

2
3 ,

2
3 ) is a solution, hence is the unique

solution to the system.
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2. Solve for real numbers x, y, z:

3x
2+3x + 3y

2+3y + 3z
2+3z = 3x+y+z+1.

Clearly, a solution (x, y, z) satisfies 3x
2+2x−y−z + 3y

2−x+2y−z + 3z
2−x−y+2z = 3.

Applying Jensen’s inequality to the convex function t 7→ 3t, we are led to

3 = 3x
2+2x−y−z + 3y

2−x+2y−z + 3z
2−x−y+2z

≥ 3 · 3 (x2+2x−y−z)+(y2−x+2y−z)+(z2−x−y+2z)
3

= 3 · 3 x2+y2+z2

3

and therefore 3
x2+y2+z2

3 ≤ 1.

But we have 3t ≥ 1 for t ≥ 0. It follows that 3
x2+y2+z2

3 = 1, which implies
x2 + y2 + z2 = 0, that is, x = y = z = 0.

Conversely, the equation is obviously satisfied if x = y = z = 0 and we conclude
that (0, 0, 0) is the unique solution.

3. Find all real numbers x such that 3
√

48− 2x+ 3
√

9− 3x+ 3
√

5x− 30 = 3. Here
3
√
a denotes the unique real u such u3 = a.

First, let us show that if u, v, w are real numbers such that u + v + w = 3 and
u3+v3+w3 = 27, then at least one of the numbers u, v, w equals 3. Indeed, u, v, w
are the roots of the polynomial

p(X) = X3 − 3X2 +mX − p,

where m = uv + vw + wu and p = uvw. Since

u3 + v3 + v3 − 3uvw = (u+ v + w)((u+ v + w)2 − 3(uv + vw + wu)),

we have 27− 3p = 27− 9m, hence p = 3m. Thus,

p(X) = x3 − 3X2 +mX − 3m = (X − 3)(X2 +m)

and 3 is a root of p(X).

Returning to the problem, if x is a solution, then

u = 3
√

48− 2x, v = 3
√

9− 3x, w = 3
√

5x− 30

satisfy the above conditions, hence one of them must equal 3. Since u = 3 (resp.
v = 3, resp. w = 3) only if x = 21

2 (resp. x = −6, resp. x = 57
5 ), we see that

x ∈ S = { 212 ,−6, 575 }.
Conversely, it is readily checked that if x ∈ S, then x is a solution to the equation.
Thus, S is the set of all solutions.
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From Focus On... No. 54

1. Prove that
∞∑
n=1

arctan
2

n2
=

3

4
π.

Recall that for ab < 1, the following formula holds

arctan(a) + arctan(b) = arctan

Å
a+ b

1− ab

ã
.

Taking a = 1
n−1 , b = −1

n+1 yields

arctan

Å
1

n− 1

ã
− arctan

Å
1

n+ 1

ã
= arctan

2

n2
.

Thus, for all integer N > 2, we have

N∑
n=1

arctan
2

n2
= arctan(2) +

N∑
n=2

Å
arctan

Å
1

n− 1

ã
− arctan

Å
1

n+ 1

ãã
= arctan(2) + arctan(1) + arctan

1

2
− arctan

1

N
− arctan

1

N + 1

that is,
N∑
n=1

arctan
2

n2
=

3

4
π − arctan

1

N
− arctan

1

N + 1

(since arctan(1) = π
4 and arctan(2) + arctan 1

2 = π
2 ). Letting N →∞, we obtain

∞∑
n=1

arctan
2

n2
=

3

4
π

2. Evaluate
∞∑
n=1

2Hn

n(n+ 1)(n+ 2)
.

By coincidence, the problem has also appeared as problem 4826 in the March
2023 issue. So, we refer the reader to the forthcoming solution.

3. Use summation by parts to give a four-line solution to the following problem
posed in The American Mathematical Monthly in 2014:

Let Hn,2 =
∑n
k=1 k

−2, and let Dn = n!
∑n
k=0(−1)k/k!. (This is the

derangement number of n, that is, the number of permutations of
{1, . . . , n} that fix no element.) Prove that

∞∑
n=1

Hn,2
(−1)n

n!
=
π2

6e
−
∞∑
n=0

Dn

n!(n+ 1)2
.
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We have
N∑
n=1

Hn,2
(−1)n

n!
= HN,2 ·

N∑
n=1

(−1)n

n!
−
N−1∑
n=1

(Hn+1,2 −Hn,2)
n∑
k=1

(−1)k

k!

= HN,2 ·
(
−1 +

N∑
n=0

(−1)n

n!

)
−
N−1∑
n=1

1

(n+ 1)2

Å
Dn

n!
− 1

ã
= HN,2

N∑
n=0

(−1)n

n!
−
N−1∑
n=0

Dn

n!(n+ 1)2

and the result follows from lim
N→∞

HN,2 = π2

6 and lim
N→∞

N∑
n=0

(−1)n
n! = 1

e .

From Focus On... No. 55

1. Calculate
+∞∑
n=0

n!
1×3×5×···×(2n+1) via a differential equation satisfied by

f(x) =
+∞∑
n=0

n!

1× 3× 5× · · · × (2n+ 1)
· x2n+1.

For |x| <
√

2, denoting by (2n + 1)!! the product 1 × 3 × 5 × · · · × (2n + 1), we
successively obtain

xf(x) =
+∞∑
n=0

n!

(2n+ 1)!!
x2n+2,

−2f ′(x) = −2−
+∞∑
n=1

2(n!)

(2n− 1)!!
x2n,

x2f ′(x) = x2 +
+∞∑
n=1

n!

(2n− 1)!!
x2n+2.

By addition, (x2− 2)f ′(x) +xf(x) = −2 [since on the left, the coefficient of x2n−1

(for n ≥ 1) is 0, the coefficient of x2n is −2 if n = 0, 1− 2 + 1 = 0 if n = 1 and if
n ≥ 2, is

(n− 1)!

(2n− 1)!!
− 2(n!)

(2n− 1)!!
+

(n− 1)!

(2n− 3)!!
=

(n− 1)!

(2n− 1)!!
(1− 2n+ (2n− 1)) = 0.]

The function f : (−
√

2,
√

2) → R satisfies f(0) = 0 and the differential equation
(x2 − 2)y′ + xy = −2. This equation can be solved by a classical method, which
leads to

f(x) =
2Arcsin(x/

√
2)√

2− x2
.

Thus, the required sum is f(1) = 2× π

4
=
π

2
.
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2. Prove the following:

∞∑
k=1

Hk

k + 1

Å
π2

6
−Hk+1,2

ã
=
π4

90
,

where Hk =
∑k
i=1

1
i is the kth harmonic number and Hk,2 =

∑k
i=1

1
i2 is the kth

generalized harmonic number.

Recall that π4

90 =
∞∑
n=1

1
n4 . The result is obtained through the following calculation

in which the interchanges
∑
/
∫

are possible, the involved functions being positive.

∞∑
k=1

Hk

k + 1

Å
π2

6
−Hk+1,2

ã
=
∞∑
k=1

Hk

k + 1

∞∑
n=k+1

1

(n+ 1)2
=
∞∑
k=1

Hk

k + 1

∞∑
n=k+1

∫ 1

0

(−xn ln(x)) dx

=
∞∑
k=1

Hk

k + 1

∫ 1

0

( ∞∑
n=k+1

(−xn ln(x))

)
dx =

∞∑
k=1

Hk

k + 1

∫ 1

0

(− ln(x))
xk+1

1− x dx

=

∫ 1

0

− ln(x)

1− x ·
( ∞∑
k=1

Hkx
k+1

k + 1

)
dx =

1

2

∫ 1

0

(− ln(x))(ln(1− x))2

1− x dx

=
1

2

∫ 1

0

(− ln(1− x))(ln(x))2

x
dx =

1

2

∫ 1

0

(ln(x))2

( ∞∑
n=1

xn−1

n

)
dx

=
1

2

∞∑
n=1

1

n

∫ 1

0

xn−1(ln(x))2 dx =
1

2

∞∑
n=1

1

n
· 2

n3
=
∞∑
n=1

1

n4
=
π4

90
.

Note that we have used some results met on p. 155 of Focus On... No 55.

From Focus On... No. 56

1. Let ABC be a triangle for which there exists a point D in its interior such that
∠DAB = ∠DCA and ∠DBA = ∠DAC. Let E and F be points on the lines AB
and CA, respectively, such that AB = BE and CA = AF . Prove that the points
A,E,D, and F are concyclic. (First construct D satisfying the constraints.)

Let α = ∠DAB = ∠DCA, β = ∠DBA = ∠DAC and θ = 180◦ − (α + β) so
that ∠ADB = ∠ADC = θ. From the law of sines,

DB

sinα
=

DA

sinβ
=

c

sin θ
and

DA

sinα
=

DC

sinβ
=

b

sin θ

where as usual, c = AB and b = CA. It follows that DA
DC = DB

DA = c
b . Therefore, D

is a point of the loci S1 = {M : MA
MC = c

b} and S2 = {M : MB
MA = c

b}. If b = c, S1
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and S2 are the perpendicular bisectors of AC and AB, respectively, and D must
be the circumcenter of ∆ABC (and the triangle ABC must be acute-angled for
D to be interior to the triangle). Otherwise S1 and S2 are circles centered on AC
and AB. S1 for example, passes through the points of the line AC dividing the
segment AC in the ratio c

b . Drawing S1 and S2 leads to D.

Moreover, we are prompted to consider the spiral similarity σ with center D which
transforms C into A [ its ratio is c

b and its angle is θ oriented from DC towards
DA ].

We have σ(C) = A, σ(A) = B from which it readily follows that σ(F ) = E
(because F ′ = σ(F ) is on the ray [AB) and AF ′ = c

b · CF = c
b · 2b = 2c, hence

F ′ = E). As a result, ∠EDF = ∠EAF (= θ) and so A,E,D, F are concyclic.

2. Consider the semicircles in the configuration below:

Prove that
1

x
=

1

a
+

1

b
.
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(First construct the figure and then deduce a solution.)

We first draw the semi-circles with diameters AB and BC and the common tangent
EF ; to complete the figure, we use properties obtained in Focus On No 56: since
the triangle FCK is right-angled at C, K is the point of intersection of the line EF
and the perpendicular to CF through C. Then the center of the third semi-circle
is the point of the line AC on the perpendicular to EF through K.

Let AB = 2r1, BC = 2r2, CD = 2r3. As seen in the column, we have a2 = 4r1r2
and b2 = 4r2r3. Also AE is parallel to BF since both are perpendicular to BE.
Similarly, CK is parallel to BF and it follows that

BC

BA
=
FK

FE
=
b

a
,

hence r2
r1

= b
a =
»

r3
r1

, that is, r2 =
√
r1r3 and therefore

ab = 2
√
r1r2 · 2

√
r2r3 = 4r2

√
r1r3 = 4r22.

Now, M and N being the midpoints of EF and FK, we have

HC

HB
=
FN

FM
=
b

a

and HB +HC = BC = 2r2, from which we deduce that

HB =
2ar2
a+ b

and HC =
2br2
a+ b

.

Finally, the altitude x of the right-angled triangle BFC satisfies

x2 = HB ·HC =
4abr22

(a+ b)2
=

(ab)(ab)

(a+ b)2

and therefore x =
ab

a+ b
, as desired.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by October 30, 2023.

4861. Proposed by Pericles Papadopoulos.

Let I be the incenter of a triangle ABC and let D, E and F be the points of
contact of the incircle of the triangle with the side BC, AC and AB respectively.
The circle AIB meets the sides BC and AC at points K and P respectively; the
circle AIC meets the sides BC and AB at points L and T respectively; the circle
BIC meets the sides AC and AB at points Q and S, respectively. Prove the
following:

• KL+ PQ+ ST = AB +BC +AC

• Points D, E and F are the midpoints of KL, PQ and ST respectively.

4862. Proposed by Michel Bataille.

Let m be a nonnegative integer. Find

lim
n→∞

1

2nnm

n∑
k=0

Ç
m+ k

k

åÇ
m+ n+ 1

n− k

å
.
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4863. Proposed by Mihaela Berindeanu, modified by the Editorial Board.

In a parallelogram ABCD, let E be the point where the diagonal BD is tangent
to the incircle of ∆ABD. If r1 and r2 are the inradii of the triangles DEC and
BEC, prove that r1

r2
= DE

EB .

4864. Proposed by Goran Conar.

Let a, b, c be side-lengths of an arbitrary three-dimensional box, and D the length
of its main diagonal. Prove

√
1 + a+

√
1 + b+

√
1 + c ≥ (a+ b+ c)2

D2
·
 

1 +
D2

a+ b+ c
.

When does the equality occur?

4865. Proposed by George Apostolopoulos.

Let ABC be an acute triangle with inradius r and circumradius R. Prove that

(secA)cosA + (secB)cosB + (secC)cosC

secA+ secB + secC
<

5R− r
12r

.

4866. Proposed by Ivan Hadinata.

Find all functions f : R→ R such that the equation

f(xy + f(f(y))) = xf(y) + y

holds for all real numbers x and y.

4867. Proposed by Thanos Kalogerakis.

Consider a triangle ABC with |AC| > |BC| > |AB| and let M the midpoint of
BC. Let K, L and N be points on the sides of ABC (see the figure) such that
the points K,L,M,N divide the perimeter of ABC into 4 equal parts. Prove that
KM bisects LN .
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4868. Proposed by Michel Bataille.

Let k ∈ [−1, 1] and let a, b, c be real numbers such that a2 + b2 + c2 = 1. Find the
minimal and maximal values of a3 + b3 + c3 + kabc.

4869. Proposed by Leonard Giugiuc and Mohamed Amine Ben Ajiba.

Let ABC be a non-obtuse triangle with area 1 and side-lengths a, b, c. Let n be a
fixed non-negative real number. Find the minimum value of

2n

a2 + b2 + c2
+

1

a2
+

1

b2
+

1

c2
.

4870*. Proposed by Borui Wang.

Define the series {an} by the following recursion: a1 = 1, an+1 = an +
1

q · an
for

n > 0, q > 0. Find the constant number c(q) such that

lim
n→∞

(an −
»
c(q) · n) = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 octobre 2023.

4861. Soumis par Pericles Papadopoulos.

Soit I le centre du cercle inscrit au triangle ABC et soit D, E et F les points de
contact du cercle inscrit au triangle avec les côtés BC, AC et AB, respectivement.
Le cercle AIB rencontre les côtés BC et AC aux points K et P , respectivement;
le cercle AIC rencontre les côtés BC et AB aux points L et T , respectivement;
le cercle BIC rencontre les côtés AC et AB aux points Q et S, respectivement.
Montrez ce qui suit :

• KL+ PQ+ ST = AB +BC +AC

• Les points D, E et F sont les points milieux de KL, PQ et ST respective-
ment.

4862. Soumis par Michel Bataille.

Soit m un entier non négatif. Trouvez

lim
n→∞

1

2nnm

n∑
k=0

Ç
m+ k

k

åÇ
m+ n+ 1

n− k

å
.
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4863. Soumis par Mihaela Berindeanu, modifié par le comité de rédaction.

Dans un parallélogramme ABCD, soit E le point où la diagonale BD est tangente
au cercle inscrit à ∆ABD. Si r1 et r2 sont les rayons des cercles inscrits aux
triangles DEC et BEC respectivement, montrez que r1

r2
= DE

EB .

4864. Soumis par Goran Conar.

Soient a, b et c les longueurs des côtés d’un rectangle arbitraire à trois dimensions
et soit D la longueur de sa diagonale principale. Montrez que

√
1 + a+

√
1 + b+

√
1 + c ≥ (a+ b+ c)2

D2
·
 

1 +
D2

a+ b+ c
.

Quand a-t-on égalité?

4865. Soumis par George Apostolopoulos.

Soit ABC un triangle acutangle. Soient r et R les rayons des cercles inscrit et
circonscrit à ce triangle, respectivement. Montrez que

(secA)cosA + (secB)cosB + (secC)cosC

secA+ secB + secC
<

5R− r
12r

.

4866. Soumis par Ivan Hadinata.

Trouvez toutes les fonctions f : R→ R pour lesquelles l’équation

f(xy + f(f(y))) = xf(y) + y

est vérifiée pour tous les nombres réels x et y.

4867. Soumis par Thanos Kalogerakis.

Considérons un triangle ABC avec |AC| > |BC| > |AB| et soit M le point milieu
de BC. Si K, L et N sont des points sur les côtés de ABC (voir la figure) tels que
K,L,M,N divisent le périmètre de ABC en 4 parties égales, montrez que KM
bissecte LN .
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4868. Soumis par Michel Bataille.

Soit k ∈ [−1, 1] et soient a, b et c des nombres réels tels que a2 + b2 + c2 = 1.
Trouvez les valeurs minimales et maximales de a3 + b3 + c3 + kabc.

4869. Soumis par Leonard Giugiuc et Mohamed Amine Ben Ajiba.

Soit ABC un triangle non obtus d’aire 1 avec les longueurs des côtés a, b et c. Soit
n un nombre réel non négatif fixé. Quelle est la valeur minimale de

2n

a2 + b2 + c2
+

1

a2
+

1

b2
+

1

c2
?

4870*. Soumis par Borui Wang.

Définissons la suite {an} par récurrence comme suit : a1 = 1, an+1 = an +
1

q · an
pour n > 0 et q > 0. Trouvez le nombre constant c(q) tel que

lim
n→∞

(an −
»
c(q) · n) = 0.
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BONUS PROBLEMS
These problems appear as a bonus. Their solutions will not be considered for publication.

B126. Proposed by Mihaela Berindeanu.

Let ABC be a triangle with the circumcircle Γ1, the incircle Γ2, the circumcenter
O, the incenter I, Γ2∩AC = {E} , Γ2∩BC = {F} and cosA+cosB+cosC =

√
2.

If X respectively Y are the middle points of the segments OE, respectively OF ,
show that IY OX has a circumcircle.

B127. Proposed by Mihaela Berindeanu.

Let ABC be a triangle with the circumcenter O and the orthocenter H. Let
D ∈ BC be the foot of the altitude from A, Γ1 be 4ADC circumcircle and Γ2 be
4AHB circumcircle. If Γ1 ∩ Γ2 = {X} and CX ∩BH = {Y }, show that Y is the
midpoint of BH.

B128. Proposed by Adnan Ali, Salem Malikic, Nermin Hodzic.

Do there exist positive integers a, b, c that satisfy the following equation:

(a− b)2 + (b− c)2 + (c− a)2 = 6abc.

B129. Proposed by Nguyen Viet Hung.

Consider a triangle ABC with side lengths a, b, c opposite of angles A,B,C, re-
spectively. Let r and R denote its inradius and circumradius. Prove that

(b+ c)2

bc
cosA+

(c+ a)2

ca
cosB +

(a+ b)2

ab
cosC = 5 +

2r

R
.

B130. Proposed by Nguyen Viet Hung.

Given a triangle ABC with incenter I. The ray AI intersects the side BC and the
circumcircle at A1, A2, respectively. Pairs of points B1, B2 and C1, C2 are defined
similarly. Prove that

a4

(b+ c)2(A1A2)2
+

b4

(c+ a)2(B1B2)2
+

c4

(a+ b)2(C1C2)2
≤ 9.

B131. Proposed by Daniel Sitaru.

Evaluate
∞∑
n=1

∞∑
m=1

(m− n)2

mn(m+ 1)2(n+ 1)2(m+ 2)(n+ 2)
.
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B132. Proposed by Mihaela Berindeanu.

In the right triangle ABC, ]BAC = 90◦, D ∈ BC, AD ⊥ BC and E ∈ AD. The
projections of E on AB and AC are F and K, respectively. If E is the center of

gravity of 4KFD, find the value
AE

ED
.

B133. Proposed by Nguyen Viet Hung.

Find all triples (x, y, z) of positive integers satisfying the equation

(2x+ 3y − 1)(2x−1 + x2 − x+ y) = 2z + 1.

B134. Proposed by Aravind Mahadevan.

Given that

tan2A tan2B + tan2B tan2 C + tan2A tan2 C + 2 tan2A tan2B tan2 C = 1,

find the value of sin2A+ sin2B + sin2 C.

B135. Proposed by Daniel Sitaru.

Let A,B,C ∈M2(R) such that detA > 0, detB > 0, detC > 0 and det(ABC) =
64. Show that

det(A+B + C) + det(−A+B + C) + det(A−B + C) + det(A+B − C) ≥ 48.

B136. Proposed by George Apostolopoulos.

Let ABC be an arbitrary triangle and let x, y, z be positive real numbers. Prove
or disprove that

x

y + z
csc2A+

y

x+ z
csc2B +

z

x+ y
csc2 C ≥ 2.

B137. Proposed by Nguyen Viet Hung.

Let a, b, c be non-negative real numbers, no two of which are zero. Prove that 
bc

(a+ b)(a+ c)
+

…
ca

(b+ c)(b+ a)
+

 
ab

(c+ a)(c+ b)
≥
 

1 +
10abc

(a+ b)(b+ c)(c+ a)
.

When does the equality happen?
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B138. Proposed by George Apostolopoulos.

Let a, b, c be positive real numbers with a+ b+ c ≤ 3. Prove that

9

abc
−
Å
a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b

ã
≥ 6.

B139. Proposed by Nguyen Viet Hung.

Prove that for any positive real numbers a, b, c

ab

a2 + ab+ b2
+

bc

b2 + bc+ c2
+

ca

c2 + ca+ a2
+ 1 ≥ 2(ab+ bc+ ca)

a2 + b2 + c2
.

B140. Proposed by George Apostolopoulos.

Let ABC be an acute triangle. Prove that…
cot

A

2
· cot

B

2
· cot

C

2
≥
√

cotA+
√

cotB +
√

cotC.

B141. Proposed by George Apostolopoulos.

Show that for any triangle ABC we have√
2− sin2A

1− cosA
+

√
2− sin2B

1− cosB
+

√
2− sin2 C

1− cosC
≥ 3
√

5.

B142. Proposed by Goran Conar.

Let x1, x2, . . . , xn > 0 such that x21 + x22 + · · ·+ x2n = 1. Prove

1

1 + x1 + x1x2
+

1

1 + x2 + x2x3
+

1

1 + x3 + x3x4
+· · ·+ 1

1 + xn + xnx1
≥ n2

n+
√
n+ 1

.

In which cases does equality hold?

B143. Proposed by George Apostopoulos.

In an acute triangle ABC, point H is the intersection of the altitudes AA1, BB1

and CC1. Prove that

AH

HA1
+

BH

HB1
+

CH

HC1
≥ secA+ secB + secC.
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B144. Proposed by Goran Conar.

Find the lowest constant c > 0 such that for all a1, a2, . . . , an ≥ 1 it is satisfied

(a1 + a2 + · · ·+ an)2 ≤ c
(

n∑
i=1

√
1 + ai

) (
n∑
i=1

a2i
√

1 + ai

)
.

B145. Proposed by Florică Anastase.

If 0 < a1 ≤ a2 ≤ ... ≤ an, n ∈ N, n > 0 then:

n+
a1 · an
n

( n∑
k=1

1

ak

)2
≤ (a1 + an)

Å∑ 1

ak

ã
.

B146. Proposed by Goran Conar.

Let u, v, w > 0 be real numbers such that uvw = 2 + u + v + w. Prove that the
following inequality holds:

4 ≤ 1 +

√
1 + u+ v + uv

1 + w
+

√
1 + u+ w + uw

1 + v
+

√
1 + v + w + vw

1 + u
≤ uvw

2
.

When does the equality occur?

B147. Proposed by Goran Conar.

Let a, b, c > 0 be real numbers such that 1
a + 1

b + 1
c = 1. Prove

1

b+ c

(
1 +

c

a

)Å
1 +

b

a

ã
+

1

c+ a

(
1 +

a

b

)(
1 +

c

b

)
+

1

a+ b

Å
1 +

b

c

ã(
1 +

a

c

)
≥ 36

abc− a− b− c .

When does equality occur?

B148. Proposed by Nguyen Viet Hung.

Prove that for any positive real numbers a, b, cÅ
a2 + b2 + c2

ab+ bc+ ca

ã3
≥ 8(a2 + b2)(b2 + c2)(c2 + a2)

(a+ b)2(b+ c)2(c+ a)2
.

B149. Proposed by Florentin Visescu.

Let a, b, c be the side-lengths of a triangle such that a+ b+ c = 1. Show that

π

2
≤ arcsin

a

b+ c
+ arcsin

b

c+ a
+ arcsin

c

a+ b
< π.
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B150. Proposed by George Apostolopoulos.

Let R be the circumradius of triangle ABC. Let D,E, F be chosen on the sides
BC,CA,AB respectively so that AD,BE,CF bisect the corresponding angles of
ABC. Prove that

(AB +BC + CA) ·
Å
DE2

AB
+
EF 2

BC
+
FD2

CA

ã
≤ 27

4
R2.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2023: 49(2), p. 101–104.

4811. Proposed by Nguyen Viet Hung.

Find all positive integers n such that
√
n3 + 1 +

√
n+ 2 is a positive integer.

We received 20 submissions out of which 18 were correct and complete. We present
the solution by C.R. Pranesachar, lightly edited.

Let Q(n) =
√
n3 + 1 +

√
n+ 2. We have

Q(n)2 = n3 + 1 + 2
»

(n3 + 1)(n+ 2) + n+ 2.

Therefore if Q(n) is a positive integer then (n3 + 1)(n + 2) = n4 + 2n3 + n + 2
must be a perfect square. Note that

(n2 + n− 1)2 = n4 + 2n3 − n2 − 2n+ 1 = (n3 + 1)(n+ 2)− n2 − 3n− 1

and
(n2 + n)2 = n4 + 2n3 + n2 = (n3 + 1)(n+ 2) + n2 − n− 2

Thus for n > 2,

(n2 + n− 1)2 < (n3 + 1)(n+ 2) < (n2 + n)2.

Since (n3 +1)(n+2) lies strictly between two consecutive perfect squares it cannot
be a square itself. Finally Q(1) =

√
2 +
√

3 6∈ N and Q(2) = 5. Therefore n = 2 is
the only value for which Q(n) is a positive integer.

4812. Proposed by Michel Bataille.

Let ABCD be a tetrahedron. Prove that a = BC2 + DA2, b = CA2 + DB2,
c = AB2 + DC2 are the sides of a triangle. For which tetrahedra is this triangle
equilateral?

All of the 12 submissions we received were correct, and we feature two of the various
approaches.

Solution 1, by Oliver Geupel.

As usual, ~A, ~B, ~C, ~D denote the vectors from an arbitrary but fixed origin to the
points A,B,C,D, respectively. Since the midpoints of BC and DA are distinct,
it follows that ~B + ~C 6= ~D + ~A. Hence,

a <
Ä
~B − ~C

ä2
+
Ä
~D − ~A

ä2
+
Ä
( ~A+ ~D)− ( ~B + ~C)

ä2
=
Ä
~C − ~A

ä2
+
Ä
~D − ~B

ä2
+
Ä
~A− ~B

ä2
+
Ä
~D − ~C

ä2
= b+ c.
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Similarly b < c + a and c < a + b. By the converse of the triangle inequality it
follows that a, b, and c are the side lengths of a nondegenerate triangle.

It turns out that a triangle with side lengths a, b, c is equilateral if and only if
the four altitudes of the corresponding tetrahedron are concurrent. This was the
subject of shortlisted problem 72-5 proposed by the German Democratic Republic
for the 14th IMO, 1972. The problem called for a proof that the altitudes of ABCD
intersect in a point if and only if BC2 + DA2 = CA2 + DB2 = AB2 + DC2. A
proof of this assertion is contained in D. Djukić, V. Janković, I Matić, N. Petrović,
The IMO Compendium. A Collection of Problems Suggested for The International
Mathematical Olympiads: 1959-2009, 2nd ed., 2011, Springer, page 397. Such a
tetrahedron is called orthocentric.

Solution 2 is a composite of similar solutions by Vivek Mehra, Daniel Văcaru, and
the Proposer.

Let M,N be the midpoints of BC,DA respectively. Since MN,AM, and DM are
medians in the triangles AMD,BAC, and BDC, respectively, we have

4MN2 = 2(AM2 +DM2)−DA2,

4AM2 = 2(AB2 +AC2)−BC2,

4DM2 = 2(DB2 +DC2)−BC2,

from which we readily deduce that

8MN2 = 2 · (AB2 +DC2 +AC2 +DB2 −BC2 −DA2).

Because M and N must be distinct points (assuming that the given tetrahedron is
nondegenerate), it follows that 0 < 4MN2 = b+ c− a. Thus, a < b+ c. Similarly,
we obtain b < c+ a, c < a+ b and conclude that a, b, c are the sides of a triangle.

We now investigate the properties of a tetrahedron for which the quantities a, b, c
are equal.

a = b iff ( ~B − ~C)2 + ( ~D − ~A)2 = (~C − ~A)2 + ( ~D − ~B)2

iff ~B · ~C + ~D · ~A = ~C · ~A+ ~D · ~B
iff ~C · ( ~B − ~A)− ~D · ( ~B − ~A) = 0

iff (~C − ~D) · ( ~B − ~A) = 0.

In words, a = b if and only if the lines AB and CD point in perpendicular direc-
tions. A similar calculation for a = c and b = c leads to the conclusion that the
triangle with sides a, b, and c is equilateral if and only if the corresponding tetra-
hedron has its three pairs of opposite sides pointing in perpendicular directions
(in which case the tetrahedron is orthocentric).

Editor’s comments. A tetrahedron ABCD is defined to be orthocentric if the
four altitudes concur in a point. References can be found in the Wikipedia article

Copyright © Canadian Mathematical Society, 2023



388/ Solutions

“Orthocentric tetrahedron.” The following six characterizations, mostly from the
19th century, are equivalent:

1. ABCD is orthocentric.

2. Opposite edges are perpendicular.

3. BC2 +DA2 = CA2 +DB2 = AB2 +DC2.

4. The line segments joining the midpoints of opposite sides have equal lengths.

5. The feet of the altitudes of the tetrahedron are the orthocenters of the tri-
angular faces.

6. For each of the quadrilaterals ABCD,ABDC, and ACBD, the midpoints
of its sides are the vertices of a rectangle.

4813. Proposed by Mihai Prunescu.

Find all plane triangles ABC such that every side is equal with the opposed angle:
BC = ∠A, AC = ∠B and AB = ∠C.

We received 15 submissions: one was completely incorrect, and the others were
somewhat flawed, as explained in the editor’s comments. We feature the solution
by the Eagle Problem Solvers of Georgia Southern University, which is typical of
the submissions.

We claim that the only possible triangle is the equilateral triangle with sides of
length π

3 .

Suppose that ABC satisfies the given condition. Then by the Law of Sines,

sinBC

BC
=

sinAC

AC
=

sinAB

AB
. (1)

Consider the function f(x) = x cosx − sinx. Since f ′(x) = −x sinx < 0 on the
interval (0, π), then f is decreasing on (0, π). Since f(0) = 0, then f(x) < 0 on
(0, π). Then

d

dx

Å
sinx

x

ã
=
f(x)

x2
< 0

on (0, π), so
sinx

x
is decreasing, and hence injective, on (0, π). The equations in

(1) therefore imply that BC = AC = AB, whence ABC is equilateral, and

∠A = ∠B = ∠C =
π

3
= BC = AC = AB. (2)

Editor’s comments. The proposer called for “all” triangles that satisfy the given
conditions; note that the featured solution fails to include, among others, the
equilateral triangle with sides of length 60. The source of the trouble lies in the
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statement of the problem: the problem is only meaningful if we agree on units. The
display in (2) is not dimensionally consistent — it sets dimensionless radians equal
to dimensioned measures of length. The problem can be salvaged by introducing
an arbitrary but fixed unit of length L and agreeing to measure angles by radians.
Then one can replace lengths everywhere by lengths divided by L, in which case
(2) becomes

∠A = ∠B = ∠C =
π

3
=
BC

L
=
AC

L
=
AB

L
.

4814. Proposed by Mihaela Berindeanu.

In triangle ABC, let G be the centroid and I be the incenter. Suppose that
GI is parallel to BC, AI cuts BC in E and the circumcircle in D. Show that
BD = 2ED.

We received 17 correct solutions. We present 7 solutions with a variety of ap-
proaches.

Solution 1, by Miguel Amengual Covas.

A

CBP Q

D

E

G
I

MT

Let h = AP be the height of triangle ABC from A. Then

h

r
=
AP

IT
=
AE

IE
=
AM

GM
= 3,

so that

3r = h =
2[ABC]

a
=

2rs

a
⇒ 2s = 3a⇒ b+ c = 2a.
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Since BE : EC = AB : AC, it follows that the length of EC is ab(b+ c)−1 = b/2.
Since ∠DBE = ∠DAC and ∠BDE = ∠ECA, triangles BDE and ACE are
similar. Therefore

BD

ED
=
AC

EC
=

b

b/2
= 2.

Solution 2, by Theo Koupelis.

Since triangles BDE and ACE are similar and since CI is an angle bisector in
triangle ACE,

BD : DE = AC : EC = AI : IE = AG : GM = 2 : 1,

as desired.

Solution 3, by Ivan Hadinata.

We have that ∠DIB = 1
2 (∠BAC + ∠ABC) (exterior angle of triangle ABI) and

so

∠DBI = ∠DBE + ∠EBI = ∠DBC + ∠CBI = ∠DAC + ∠CBI

= 1
2 (∠BAC + ∠ABC) = ∠DIB.

Therefore BD = ID.

Since AI : EI = AG : MG = 2 : 1, AI = 2EI. Since triangles BED and ABD
are similar, DE : BD = BD : AD, whereupon

ID2 = BD2 = DE ·AD = (ID − EI)(ID +AI).

Therefore

ID · EI = ID(AI − EI) = AI · EI = 2EI2,

so that

BD = ID = AD −AI = 2ID − 2EI = 2ED.

Solution 4, by Cristbal Sanchez-Rubio.

Using the fact that BI and CI are angle bisectors of the respective triangles ABE
and ACE, we find that

2 =
AG

GM
=
AI

EI
=
AB

BE
=
AC

CE
=
AB +AC

BE + CE
=
b+ c

a
,

whence b+ c = 2a. Therefore BD = ac(b+ c)−1 = c/2. Since triangles ABD and
BED are similar,

BE

ED
=
AB

BD
=

c

c/2
= 2.
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Solution 5, by C.R. Pranesachar.

As before, 2a = b+ c.

∠BED = ∠AEC = 180◦ − C − A

2
= 90◦ +

B − C
2

and ∠DBE = ∠DAB = A
2 . By the Law of Sines,

BD

ED
=

sin(90◦ − (B − C)/2)

sinA/2
=

2 cosA/2 cos(B − C)/2

2 cosA/2 sinA/2

=
sinB + sinC

sinA
=
b+ c

a
= 2.

Solution 6, by UCLan Cyprus Problem Solving Group.

We have that AE · ED = BE · EC = bc/4. Since triangles ACE and ADB are
similar, b : AD = AE : c, whence AE(AE + ED) = bc and so AE2 + 1

4bc = bc.
Therefore AE2 = 3

4bc = 3AE · ED. Thus

ED =
1

3
AE = IE =

1

2
ID =

1

2
BD,

as desired.

Solution 7, by Michel Bataille.

We use familiar notations for the elements of triangle ABC and barycentric coor-
dinates relative to (A,B,C). Since 3G = A+B +C and 2sI = aA+ bB + cC, we
deduce that

6s
−→
IG = 6s(G−I) = (2s−3a)A+(2s−3b)B+(2s−3c)C = (2s−3a)

−−→
BA+(2s−3c)

−−→
BC.

Since GI is parallel to BC, we have 2s− 3a = 0 or b+ c = 2a.

The equation of the circumcircle of triangle ABC is a2yz + b2zx + c2xy = 0 and
of the line AI is cy − bz = 0. Their point of intersection D is (−a : 2b : 2c). Since
E = (0 : b : c),

3aD = (2b+ 2c− a)D = −aA+ 2(b+ c)E = −aA+ 4aE,

so that 3D = 4E − A. Also, 3aI = 2sI = aA + 2aE, whence 3I = A + 2E.
Therefore D + I = 2E so that E is the midpoint of ID. Since DB = DI = DC,
it follows that BD = 2DE.

Editor’s Comment. Solution 2, in particular, proves that GI is parallel to BC if
and only if BD = 2ED. This joins the many characterizations of triangles for
which b+c = 2a that were discussed in Recurring Crux Configurations 2, triangles
for which b + c = 2a by J. Chris Fisher, Crux Mathematicorum 37:6 (October,
2011), pages 385 – 387.

Copyright © Canadian Mathematical Society, 2023



392/ Solutions

4815. Proposed by Aravind Mahadevan.

In triangle ABC, let a, b, c denote the lengths of the sides BC, CA and AB,
respectively. If tanA, tanB and tanC are in harmonic progression, prove that a2,
b2 and c2 are in arithmetic progression. Does the converse hold?

We received 15 correct solutions from 14 respondents. Almost all solutions were
as follows.

An exception to the converse is the right triangle with sides (a, b, c) = (1,
√

2,
√

3)
on the technical grounds that tanC is undefined. We can avoid this complication
by expressing the angle condition in terms of cotangents: cotA+ cotC = 2 cotB.

Using the fact that [ABC] = 1
2bc sinA, etc. and a2 = b2 + c2 − 2bc cosA, etc., we

find that

cotA+ cotC − 2 cotB =
b2 + c2 − a2

4[ABC]
+
a2 + b2 − c2

4[ABC]
− 2

Å
a2 + c2 − b2

4[ABC]

ã
= 2

Å
2b2 − (a2 + c2)

4[ABC]

ã
.

Therefore cotA+ cotC = 2 cotB if and only if a2 + c2 = 2b2.

Comment from the editor. Vivek Mehra pointed out that, when a2 + c2 = 2b2,
then the vertex B, respective midpoints E and D of AB and BC, and the centroid
are vertices of a cyclic quadrilateral. This can be esablished from the equality

3a2 + c2 = 2(a2 + b2) = 4m2 + c2,

the latter a consequence of Apollonius’ theorem for the length m of the median
CE. This leads to the power result CG ·CE = CD ·CB. Our problem and Mehras
observation describe two of the many interesting properties of triangles for which
2b2 = a2 + c2, the subject of Recurring Crux Configurations 1 in this journal,
volume 37:5, October 2011, pages 304 – 307.

4816. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Let a, b, k ≥ 0. Calculate

lim
n→∞

∫ 1

0

xk
…
a

x
+ bn2x2n dx.

We received 10 submissions, 7 of which are correct and complete. We present here
the solution by Raymond Mortini and Rudolf Rupp.

We show that for a, b, k ≥ 0 (k not necessarily an integer)

In :=

∫ 1

0

xk
…
a

x
+ bn2x2n dx

n→∞−→
√
b+

√
a

k + 1/2
.
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Let
fn(x) = xk−1/2

√
a+ bn2x2n+1.

If a = 0, then

In =

∫ 1

0

√
bnxn+kdx =

n
√
b

n+ k + 1
→
√
b.

For a > 0, let

dn(x) := xk−1/2
(√

a+ bn2x2n+1 −
√
bn2x2n+1

)
.

Then

0 ≤ dn(x) = xk−1/2
a√

a+ bn2x2n+1 +
√
bnxn+1/2

≤ a√
a
xk−1/2.

Hence dn is dominated by an L1[0, 1] function and so, by using that nxn → 0 for
0 < x < 1,

lim
n

∫ 1

0

dn(x)dx =

∫ 1

0

lim
n
dn(x)dx =

∫ 1

0

√
axk−1/2 =

√
a

k + 1/2
.

Consequently,∫ 1

0

fn(x)dx =

∫ 1

0

dn(x)dx+
√
b

∫ 1

0

nxk−1/2xn+1/2dx

=

∫ 1

0

dn(x)dx+
√
b

n

k + n+ 1

−→
n→∞

√
a

k + 1/2
+
√
b.

4817. Proposed by Goran Conar.

Let a, b, c > 0 be real numbers such that abc = 1. Prove that the following
inequality holds

a7 + a3 + bc

a+ bc+ 1
+
b7 + b3 + ca

b+ ca+ 1
+
c7 + c3 + ab

c+ ab+ 1
≥ 3 .

When does equality occur?

We received 29 submissions, 28 of which were correct and complete. We present
the solution by Ivan Hadinata, slightly altered by the editor.

Since abc = 1,

∑
cyc

a7 + a3 + bc

a+ bc+ 1
=
∑
cyc

a8 + a4 + abc

a2 + abc+ a
=
∑
cyc

a8 + a4 + 1

a2 + a+ 1
.
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By Hölder’s inequality, for x > 0

(x8 + x4 + 1)(1 + 1 + 1)3 ≥ (x2 + x+ 1)4

and so,

x8 + x4 + 1

x2 + x+ 1
≥
Å
x2 + x+ 1

3

ã3
≥ x2 · x · 1 = x3,

by the AM-GM inequality. Replacing x by a, b, c in succession and summing
terms yields: ∑

cyc

a8 + a4 + 1

a2 + a+ 1
≥
∑
cyc

a3 ≥ 3abc = 3.

Equality is achieved if and only if a = b = c = 1.

4818. Proposed by Yagub Aliyev.

In triangle ABC, let E ∈ AC,D ∈ BC,F ∈ AB such that AD, BE, CF are

concurrent. Let G ∈ ED. Prove that
(
AF
FB

)2
= DG

GE if and only if

1

[ADE]2
+

1

[BDE]2
=

1

[AEG]2 + [BDG]2

We received 9 correct solutions. The following is the solution by Ivan Hadinata.

Clearly by Ceva’s theorem we have AE ·BF · CD = AF ·BD · CE.
Note that

[ADE] =
AE

AC
· CD
BC
· [ABC],

[BDE] =
BD

BC
· CE
CA
· [ABC],

[AEG] =
GE

DE
· AE
AC
· CD
BC
· [ABC],

[BDG] =
DG

DE
· BD
BC
· CE
AC
· [ABC].

Substitute these values into the expression(
[AEG]2 + [BDG]2

)Å 1

[ADE]2
+

1

[BDE]2

ã
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and observe that(
[AEG]2 + [BDG]2

)Å 1

[ADE]2
+

1

[BDE]2

ã
=

Å
GE2

DE2
· AE

2

AC2
· CD

2

BC2
+
DG2

DE2
· BD

2

BC2
· CE

2

AC2

ãÅ
AC2

AE2
· BC

2

CD2
+

BC2

BD2
· AC

2

CE2

ã
=

1

DE2

Å
DG2 + GE2 +

GE2 ·AE2 · CD2

BD2 · CE2
+
DG2 ·BD2 · CE2

AE2 · CD2

ã
=

1

DE2

Å
DG2 + GE2 + DG ·GE

Å
GE

DG
· AF

2

FB2
+
DG

GE
· FB

2

AF 2

ãã
=

1

DE2

(
DG2 + GE2 + DG ·GE

(
2 +

Ç
AF

FB
·
…
GE

DG
− FB

AF
·
…
DG

GE

å2))
.

By this and the fact that DE2 = DG2 +GE2 + 2DG ·GE, we have

1

[ADE]2
+

1

[BDE]2
=

1

[AEG]2 + [BDG]2
⇐⇒

Ç
AF

FB
·
…
GE

DG
− FB

AF
·
…
DG

GE

å2

= 0

⇐⇒ AF

FB
·
…
GE

DG
=

FB

AF
·
…
DG

GE

⇐⇒
Å
AF

FB

ã2
=
DG

GE
.

Editor’s Comments. One of the solvers asked for more information about the
geometry behind this very unusual area relation. The proposer informed us that
the equality is a special case of a more general fact that

1

[ADE]2
+

1

[BDE]2
≥ 1

[AEG]2 + [BDG]2
,

in which the equality case occurs if and only if
(
AF
FB

)2
= DG

GE . We leave the proof
of this inequality, which also follows from the above solution, as an exercise.

4819. Proposed by Daniel Sitaru.

Let f : [0, 1]→ [0, 1] be a continuous function and 0 < a ≤ b < 1. Prove that:

2

∫ a+b
2

2ab
a+b

tf(t)dt ≥
∫ a+b

2

2ab
a+b

f(t)dt

(∫ a+b
2

0

f(t)dt+

∫ 2ab
a+b

0

f(t)dt

)
We received 8 submissions and 7 of them were all complete and correct. We present
the solution by the majority of solvers.

Let x = 2ab/(a + b) and y = (a + b)/2. Clearly 0 < x ≤ y < 1. The desired
inequality is equivalent to

2

Å∫ y

0

tf(t) dt−
∫ x

0

tf(t) dt

ã
≥
Å∫ y

0

f(t) dt−
∫ x

0

f(t) dt

ãÅ∫ y

0

f(t) dt+

∫ x

0

f(t) dt

ã
.
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Thus, it suffices to show thatÅ∫ x

0

f(t) dt

ã2
− 2

∫ x

0

tf(t) dt ≥
Å∫ y

0

f(t) dt

ã2
− 2

∫ y

0

tf(t) dt.

Let

g(z) =

Å∫ z

0

f(t) dt

ã2
− 2

∫ z

0

tf(t) dt,

with z ∈ (0, 1). Since f is continuous, the Fundamental Theorem of Calculus gives

g′(z) = 2f(z)

Å∫ z

0

f(t) dt− z
ã
≤ 0

since f(t) ∈ [0, 1]. Thus, g(x) ≥ g(y), as required.

4820. Proposed by George Apostolopoulos.

Let ABCD be a square with side length a. Take interior points K,L on the sides
BC and CD respectively so that the perimeter of triangle KCL equals 2a. If the
diagonal BD intersects the segments AK, AL in points N , M respectively, prove
that the area of triangle AMN equals to the area of quadrilateral KLMN .

We received 17 submissions, all of which are correct, and we present here two
solutions.

Solution 1, by C.R. Pranesachar.

A

B C

D

K

L

N

M

x

y

Defining x := KC and y := CL, we have KL =
√
x2 + y2. As BK = a − x and

DL = a− y, since the perimeter of triangle KCL is 2a, we have

x+ y +
√
x2 + y2 = 2a,

that is √
x2 + y2 = 2a− x− y.

Squaring and simplifying, we have

2a2 − 2a(x+ y) + xy = 0.
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Since BD bisects ∠ABK as well as ∠ADL, we have by the angle bisector property
that

AN

AK
=

a

2a− x and
AM

AL
=

a

2a− y .

Hence
[ANM ]

[AKL]
=

1
2 ·AN ·AM · sin∠NAM
1
2 ·AK ·AL · sin∠KAL

=
AN

AK
· AM
AL

=
a

2a− x ·
a

2a− y

=
a2

2a2 + (2a2 − 2a(x+ y) + xy)
=

a2

2a2 + 0
=

1

2
.

This is enough to prove that [ANM ] = [KLMN ], which completes the proof.

Solution 2, by Christopher Linhardt, Cal Poly Pomona Problem Solving Group,
slightly modified.

We denote by x and y the lengths of segments CK and LC respectively and h
and f as the heights of triangles NAB and MDA respectively. From similarity of
right triangles ANi and AKB we find

h

a− x =
a− h
a
⇒ h =

a2 − ax
2a− x .

Thus

AreaNAB =
1

2

a(a2 − ax)

2a− x .

The same can be done with triangle MDA to find

AreaMDA =
1

2

a(a2 − ay)

(2a− y)
.
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The remaining portion of half of the square is triangle ANM , thus

AreaANM =
a2

2
− a

2

Å
a2 − ax
2a− x +

a2 − ay
2a− y

ã
=
a2

2

Å
ay + ax− xy

(2a− x)(2a− y)

ã
. (1)

Additionally from subtracting the areas of triangles ADL, LCK, ABK from the
whole square we are left with the area of AKL

AreaAKL = a2− a
2

(a−x)− a
2

(a−y)− xy
2

=
a

2
(x+y)− xy

2
=

1

2
(ax+ay−xy). (2)

It is given that the perimeter of KCL is 2a.

x+ y +
√
x2 + y2 = 2a⇒ 0 = 2a2 − 2ax− 2ay + xy ⇒ (2a− x)(2a− y) = 2a2.

We can substitute this into (1) to get

AreaANM =
a2

2

(ay + ax− xy
2a2

)
=

1

4
(ay + ax− xy). (3)

It can be seen from (3) and (2) that AreaAKL = 2AreaANM . Since we have
AreaAKL = AreaANM +AreaKLMN , we obtain AreaANM = AreaKLMN .

Editor’s Comments. The given property (namely, the perimeter of ∆KCL equals
2a) is equivalent to the condition that ∠KAL = 45◦ which, in turn, is equivalent
to the condition that the line segment KL is tangent to the circle through B and
D with the center at A. One of these variations appeared as problem M1895 in
Kvant 2004(4), page 26.
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