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Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L.R. Shawyer,

Shawn Godin

Crux Mathematicorum

with Mathematical Mayhem
Former Editors / Anciens Rédacteurs: Bruce L.R. Shawyer, James E. Totten, Václav Linek,
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MathemAttic /233

MATHEMATTIC
No. 45

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by July 30, 2023.

MA221. Without a calculator, determine which is larger 29
√

14 + 4
√

15 or
124.

MA222. A solid sphere is perfectly embedded in a cube where each side is 6
cm long. What is the amount of unoccupied space within the cube?

MA223. The standard form of a quadratic equation is f(x) = ax2 + bx + c
while the vertex form of a quadratic equation is f(x) = a(x− h)2 + k. Derive the
vertex (h, k) in terms of a, b, and c.

MA224. Proposed by Aravind Mahadevan, Hong Kong.

The area of a triangle is 10
√

3 and its perimeter is 20. If one of the angles is 60◦,
find the lengths of the sides of the triangle.

MA225. How many ways are there to assign the labels A, B, C, D, E, F to
the vertices of a hexagon so that none of the pairs AB, CD, or EF form an edge?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © Canadian Mathematical Society, 2023

https://publications.cms.math.ca/cruxbox/


234/ MathemAttic

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 juillet 2023.

MA221. Sans calculatrice, déterminer lequel de 29
√

14 + 4
√

15 et 124 est le
plus élevé.

MA222. Une sphère solide est parfaitement embôıtée dans un cube dont les
côtés mesurent 6 cm de long. Quelle est la quantité d’espace inoccupé dans ce
cube?

MA223. La forme générale d’une équation quadratique est f(x) = ax2+bx+c
tandis que la forme canonique d’une équation quadratique est f(x) = a(x−h)2+k.
Exprimez le sommet (h, k) en fonction des paramètres a, b et c.

MA224. Proposé par Aravind Mahadevan, Hong Kong.

La surface d’un certain triangle est 10
√

3 et son périmètre est 20. Si un des angles
égale 60◦, déterminer les longueurs des côtés du triangle.

MA225. Combien y a-t-il de façons d’assigner les étiquettes A, B, C, D, E
et F à chacun des sommets d’un hexagone de sorte qu’aucune des paires AB, CD
ou EF ne forme une arête ?
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(10), p. 584–586.

MA196. If a cue ball placed at the coordinates (22, 55) was evenly struck so
it hit the 1st wall at the point (44, 77), and bounced off with no spin, what are the
coordinates when the ball strikes the 6th wall?

(0,88)

(0,0) (44,0)

Originally question 10 from the 2019 Kansas City Area Teachers of Mathematics
High School Math Contest.

We received 5 submissions of which 5 were correct and complete. We present the
solution by Brian Bradie.

(22,55)

(44,77)

(33,88)

(0,55)

(44,11)

(33,0)

(0,33)

Assuming the cue ball has been struck sufficiently
hard to make repeated contact with the walls of
the table and that each time the cue ball bounces
off the wall it does so with no spin so that the an-
gle of incidence is equal to the angle of reflection,
the cue ball will follow the path indicated in the
figure above. The sixth contact with the wall will
occur at coordinates (0, 33). Interestingly, were the
ball to continue bouncing off the walls, it would
cycle through the points (44, 77), (33, 88), (0, 55),
(44, 11), (33, 0), and (0, 33).

Copyright © Canadian Mathematical Society, 2023
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MA197. A rectangle has length 4 and width 6. A new shape is formed by
taking the set of all points that lie within one unit of a point on the boundary of
the rectangle. Compute the area of this new shape.

Originally question 8 from the 34th University of Alabama High School Mathemat-
ics Tournament: Team Competition, 2015.

We received 4 submissions of which 2 were correct and complete. We present the
solution by Vishwesh Ravi Shrimali, edited.

In the figure below we show the 4 × 6 rectangle ABCD, and shade in the points
which are distance at most 1 unit from a point on the boundary of ABCD. This
is the shape whose area we want to calculate.

We use rectangles and circle quarters as indicated by the diagrams below:

The shaded area is equal to

2A1 + 2A2 − 4A3 + 4A4 = 2(2 · 6) + 2(2 · 4)− 4(12) + 4

Å
π · 12

4

ã
= 36 + π square units.

Crux Mathematicorum, Vol. 49(5), May 2023
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MA198. Two points P and Q are randomly selected in the interval [0, 2].
What is the probability that P and Q are within a distance of 1

3 from each other?

Originally question 2 from the 2016 Kansas MAA Undergraduate Mathematics
Competition.

We received 7 submissions, of which 5 are correct and 2 were incomplete. We
present the solution by Henry Ricardo.

We see that P and Q are independent random variables. Furthermore, the square
of side 2 given by {(P,Q) : 0 ≤ P ≤ 2, 0 ≤ Q ≤ 2} represents all the equally likely
possibilities of the values of P and Q.

The area A is bounded by the two lines y = x+ 1
3 and y = x− 1

3 , so that inside A
we have |P −Q| ≤ 1

3 . It follows that the distance between the points will be less
than or equal to 1/3 only if the point (P,Q) lies in region A. Thus the probability
we seek is given by the ratio of the area A to the area of the square:

4 − 2
(
25
18

)
4

=
11

36
.

MA199. Proposed by Aravind Mahadevan.

If a, b, and c are the roots of the equation x3 + 6x2−52x+ 8 = 0, find the value of

3
√
a+

3
√
b+ 3
√
c.

We received 13 submissions, of which 11 were correct and complete. We present
the solution provided by Bing Jian.

Note that equation x3 + 6x2 − 52x+ 8 = 0 can be rearranged as

(x+ 2)3 = x3 + 6x2 + 12x+ 8 = 64x

or equivalently
3
√
x =

x+ 2

4
.

Copyright © Canadian Mathematical Society, 2023
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Also note that by Viéta’s formula, we have a+ b+ c = −6, therefore

3
√
a+

3
√
b+ 3
√
c =

(a+ 2) + (b+ 2) + (c+ 2)

4
=
a+ b+ c+ 6

4
= 0.

MA200. Proposed by K. S. Bijesh.

In the figure below ABCD is a square. Arcs BD and AC intersect at E. Determine

the exact value of
AE

EC
.

A B

CD

E

We received 11 correct solutions. The following is the solution by Brian Bradie.

Let s denote the length of the side of the square. Then AE = s, and by symmetry,

AF =
s

2
and EC = ED

(see the figure below). Thus, ∠EAF = 60◦ and ∠DAE = 30◦. By the Law of
Cosines,

ED2 = 2s2 − 2s2 cos 30◦ = s2(2−
√

3),

or ED = s
√

2−
√

3. Finally,

AE

EC
=
AE

ED
=

1√
2−
√

3
=

»
2 +
√

3 =
1 +
√

3√
2

= 2 cos 15◦.

A B

CD

E

F

Crux Mathematicorum, Vol. 49(5), May 2023



Shawn Godin /239

PROBLEM SOLVING
VIGNETTES

No. 27
Shawn Godin

Some Square Roots

In the last column, we looked at three problems that had appeared on 2022 Cana-
dian mathematics competitions that I had come across while preparing a talk for
a professional development day. There is never a short supply of nice contest
problems, so in this issue we continue the same theme and look at another contest
problem from 2022.

The problem in question was problem 1 from the 2022 W.J. Blundon Mathematics
Contest. The W.J. Blundon Mathematics Contest is a 10 question, full solution
contest written in February and hosted by Memorial University. More information
and copies of past contests can be found on their website:
https://www.mun.ca/math/community/wj-blundon-contest/

Let
A =

√
19 +

√
99 and B =

√
20 +

√
98.

Determine which number is larger and justify your conclusion.

With a calculator, the problem is trivial. However, not surprisingly, calculators
are not allowed on this competition, so we need some insight in order to solve
this problem. Since A,B > 0, then if A > B, so must A2 > B2 and vice versa.
Squaring yields

A2 = 19 + 99 + 2
√

19× 99 = 118 + 2
√

1881

B2 = 20 + 98 + 2
√

20× 98 = 118 + 2
√

1960

and since 1960 > 1881, B2 > A2 and therefore B > A.

We can make sense of this result by observing that perfect squares get more “spread
out” as numbers get larger. That is,

42 = 16 < 19 < 20 < 25 = 52

and
92 = 81 < 98 < 99 < 100 = 102

Consider the function f(x) =
√
x. For 16 ≤ x ≤ 25, the function changes, on

average, by 1
9 each time x increases by 1. However, when 81 ≤ x ≤ 100, the

function changes, on average, by 1
19 for the same increase in x. Thus

1

19
≈
√

99−
√

98 <
√

20−
√

19 ≈ 1

9

Copyright © Canadian Mathematical Society, 2023
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and therefore
A =

√
19 +

√
99 <

√
20 +

√
98 = B.

The first thing that pops to my mind is, is there a way to generalize this? If we
set

A =
√
a+
√
b and B =

√
c+
√
d,

where a + b = c + d and the four values are distinct, can we decide which of A
and B is larger? The original problem corresponds to a = 19, b = 99, c = 20, and
d = 98.

The condition a+ b = c+ d forces one set of numbers to be between the other two
(why?). Thus, we can assume without loss of generality that a < c < d < b. If
we imagine a, b, c, and d are areas of squares, then

√
a,
√
b,
√
c, and

√
d are the

side lengths of the squares. Thus if we think of the situation as two sets of two
squares. In each set the total area is the same, however the squares are stacked
on top of each other, so we are deciding which stack is taller. For example, the
original problem in the form yields the diagram below.

A B

99 98

19 20

In this case, it is difficult to see which stack is taller.

If we consider all expressions of the form
√
x+
√
y, with x ≤ y, where

x+ y = a+ b = c+ d = k

for some constant k, then let’s observe what happens when we transform one
expression of this form into another. Suppose we are interested in

√
x′+
√
y′, with

x′ ≤ y′,
x′ + y′ = x+ y = k

and y′ < y. If we take our original stack, we can imagine taking a strip of constant
width off of the larger square of area y− y′, which would leave a square of area y′.
However, to keep the total area constant, that area must be added to the smaller
square to yield a square with area x′ = x+ (y − y′). Since y > x, the strip taken
off of the larger square is “too long” to fit on the smaller square. Nonetheless, if
the smaller square was placed on the strip on top of the “new” square, the height
of the stack made up of the square with area y′, the strip, and the square with
area x would be the same as the original stack as shown in the diagram.

Crux Mathematicorum, Vol. 49(5), May 2023
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y

x

y′

x

y′

x

√
x+
√
y

However, the area of the strip must be added to the smaller square to create the
square with area x′ = x+ (y − y′). As the strip is too long, the extra area would
be used to make the strip wider, and thus the new stack is taller.

y′

x′

y′

x

y′

x

√
x+
√
y

√
x′ +

√
y′

Hence, if x′ + y′ = x + y and x < x′ < y′ < y, then
√
x′ +

√
y′ >

√
x +
√
y. In

other words, the closer in area the two squares are, the taller the stack (given the
total area of the two squares is constant).

If we go back to our original analysis in the general form we get

A2 = a+ b+ 2
√
ab

B2 = c+ d+ 2
√
cd.

Since a + b = c + d, the question is resolved by deciding which of
√
ab and

√
cd

is larger, which is equivalent to deciding which of ab and cd is larger. If we now
consider a + b = c + d = s, where s is the semiperimeter of a rectangle, we are
trying to decide which of two rectangles with the same perimeter has the largest
area. Most students will have seen this type of problem early in their high school
career when studying quadratics as well as later on when studying calculus. We
know that the area of a rectangle with fixed perimeter is maximized when the
rectangle is a square. Therefore in our case, the set of numbers that are closest
together will provide our maximum.

The problem could also have been resolved using Calculus or by looking at power
series. I will leave further exploration of the problem to interested readers.

Copyright © Canadian Mathematical Society, 2023
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It is always interesting to dig deeper into problems. It is one thing to be able
to answer a question, but it is another to understand why things are behaving as
they are in the given situation. Looking at problems under a different light often
reveals new insights. Although these are not things you would want to do while
writing a math contest, exploring a problem deeper will help you make connections
between concepts. In some cases, the extra time you spent on a problem outside
of contest time will help you with a problem you are faced during a contest. For
your amusement, below are a few more contest questions from 2022.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. (2022 Euclid Contest, #7 (b)) In the diagram, ∆ABD has C on BD. Also,
BC = 2, CD = 1, AC

AD = 3
4 , and cos(∠ACD) = − 3

5 . Determine the length
of AB.

C

A

DB

2. (2022 Pascal Contest, #20) A pizza is cut into 10 pieces. Two of the pieces
are each 1

24 of the whole pizza, four are each 1
12 , two are each 1

8 , and two
are each 1

6 . A group of n friends share the pizza by distributing all of these
pieces. They do not cut any of these pieces. Each of the n friends receives,
in total, an equal fraction of the whole pizza. The sum of the values of n
with 2 ≤ n ≤ 10 for which this is not possible is

(A) 31 (B) 35 (C) 40 (D) 39 (E) 36

3. (2022 Cayley Contest, #24) A cube with edge length 8 is balanced on one
of its vertices on a horizontal table such that the diagonal from this vertex
through the interior of the cube to the farthest vertex is vertical. When the
sun is directly above the top vertex, the shadow of the cube on the table
is a regular hexagon. The area of this shadow can be written in the form
a
√
b, where a and b are positive integers and b is not divisible by any perfect

square larger than 1. What is the value of a+ b?

Crux Mathematicorum, Vol. 49(5), May 2023
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The Third Marble
Geoffrey W. Brown and Adam C. Brown

A simple version of the following problem appears as Exercise 3.35 in Chapter 3
of [1]. We pose the following problem:

An urn contains n marbles, k of which are red and the remaining n−k
are black. You reach into the urn and draw out three marbles, one at
a time. What is the probability that the third marble drawn is red?

It is easy to calculate the probability that the first marble drawn is red. Thus:

P (1st marble drawn is red) =
k

n
.

We may also calculate the probability that the second marble drawn is red by
observing that the possibilities are “Red, Red” or “Black, Red” as a disjoint union.
Thus:

P (2nd marble drawn is red) = P (RR) + P (BR) =
k

n
· k − 1

n− 1
+
n− k
n
· k

n− 1

=
k2 − k + nk − k2

n(n− 1)

=
k(n− 1)

n(n− 1)
=
k

n
.

We may similarly calculate the probability that the third marble drawn is red by
summing over 4 possibilities as a disjoint union. Thus

P (3rd marble drawn is red) = P (RRR) + P (RBR) + P (BRR) + P (BBR)

can be written as

P (3rd marble drawn is red) =
k

n(n− 1)(n− 2)
[(k − 1)(k − 2) + (n− k)(k − 1)

+ (n− k)(k − 1) + (n− k)(n− k − 1)] (1)

Simplifying (1) involves a careful and thoughtful application of high school algebra.

(1) =
k

n(n− 1)(n− 2)
[(k − 1) [(k − 2) + (n− k)] + (n− k) [(k − 1) + (n− k − 1)]]

=
k

n(n− 1)(n− 2)
((k − 1)(n− 2) + (n− k)(n− 2))

=
k(n− 2)

n(n− 1)(n− 2)
((k − 1) + (n− k))

=
k(n− 1)(n− 2)

n(n− 1)(n− 2)

=
k

n
,

Copyright © Canadian Mathematical Society, 2023
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which is a rather remarkable result.

How do we explain this remarkable result? The basic idea is not to stop the
drawing at the 3rd marble, but rather to draw out all n marbles from the urn.
We now define some random variables related to drawing out all n marbles. For
1 ≤ i ≤ n, let Xi represent the colour of the ith marble drawn by letting

Xi =

ß
1 if the ith marble drawn is red
0 if the ith marble drawn is black

We are now interested in the probability P (X3 = 1). By the Law of Total Proba-
bility, we can write P (X3 = 1) as the following sum:

P (X3 = 1)

=
∑

i1,i2,i4,i5,...,in

P [X1 = i1, X2 = i2, X3 = 1, X4 = i4, X5 = i5, . . . , Xn = in] (2)

where ik ∈ {0, 1} for k = 1, 2, 4, 5, . . . , n. We can regard (2) as being the joint
probabilities of {X1, X2, . . . , Xn}, and therefore P (X3 = 1) is seen to be a marginal
probability.

We now ask the following fundamental question: Suppose we draw out all n mar-
bles from the urn. What is the probability that the first k marbles drawn are red,
and the next n−k marbles drawn are black? The answer is given by the following
product:ß

k

n
· k − 1

n− 1
· k − 2

n− 2
· · · 1

n− (k − 1)

™
·
ß
n− k
n− k ·

n− k − 1

n− k − 1
· · · 1

1

™
=
k!(n− k)!

n!

=
1Ç
n

k

å (3)

Now suppose we were to draw out all n marbles in a different order. We can ask
for the probability of drawing any permutation of k red and n− k black marbles.
If we inspect (3) closely, we see that the probability of any sequence would be
given by permuting the numerators of the factors that appear in (3). Thus we
have established the following result:

Theorem: The probability of drawing any sequence of k red marbles and n − k
black marbles is the same, and is therefore equal to

1(
n
k

) .

Thus our sample space consists of
(
n
k

)
equally likely points (or sequences), so we

may now compute P (X3 = 1) by counting the number of sequences (of k Rs and
(n− k) Bs) having an R in the third position, and then dividing this count by the
total number of sequences, which is

(
n
k

)
.

Crux Mathematicorum, Vol. 49(5), May 2023
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Now the number of sequences of k Rs and (n − k) Bs having an R in the third
position is just the number of permutations of (k − 1) Rs and (n− k) Bs. This is
given by

(
n−1
k−1
)
. Therefore, we compute P (X3 = 1) as the following ratio:

P (X3 = 1) =

(
n−1
k−1
)(

n
k

) =
n
k

(
n−1
k−1
)

n
k

(
n
k

) =

(
n
k

)
n
k

(
n
k

) =
1
n
k

=
k

n
,

the desired result.

We note from (2) that there is nothing special about the third position of the
sequence of length n, and we conclude that P (Xi = 1) = k

n for any i, 1 ≤ i ≤ n.
This completes our proof.
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From the bookshelf of . . .
John Grant McLoughlin

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

Those Fascinating Numbers
by Jean-Marie De Koninck
ISBN 978-0-8218-4807-4, 426 + xvii pages
Published by American Mathematical Society, 2009.

Prior to beginning commentary on the book, it is noted
here that the original 2009 English edition is a transla-
tion of Ces nombres qui nous fascinent that was pub-
lished by Ellipses in 2008. Relevant information con-
cerning a more recent 2018 edition of the French pub-
lication is provided here.

Ces nombres qui nous fascinent
by Jean-Marie De Koninck
ISBN 978-2340025143, 448 pages
Ellipses, 2018.

This book more closely resembles a dictionary than a
novel. That is, wherever you open the book to read an
excerpt there is something to be learned. Let me put
that to work here as I simply open the book somewhere
and find myself reading pages 156 and 157. The num-
ber 3465 is identified as the fifth odd abundant number
with a note in parentheses to see the number 945. Such
parenthetic references appear throughout the book as a
means of offering the reader insight into a term or con-
cept without having to be explaining terminology re-
peatedly. My familiarity with abundant numbers made
the reference in this case less significant. In contrast,
the number 3684 is identified as being the 13th Keith
number (see the number 197) where the reference ex-
plained unfamiliar terminology. So why is 197 or later 3684 a Keith number?

Begin a sequence of terms with the k separate digits that make up the number

Crux Mathematicorum, Vol. 49(5), May 2023



John Grant McLoughlin /247

where k ≥ 2. All subsequent terms represent the sum of the k preceding terms.
For example, with 197 the sequence begins 1, 9, 7. Taking sums of terms in sets of
three produces the sequence 1, 9, 7, 17, 33, 57, 107, 197, . . . . The appearance of the
original number 197 in the sequence makes 197 a Keith number. You may verify
that 3684 would also be a Keith number.

Minutes ago I did not know of Keith numbers. Rather the book was opened to a
spot and a browse of the pair of visible pages brought a new idea forward into my
mathematical lexicon. Primarily the book has served me in this manner by being
a source of ideas and curiousities for a mathematician who enjoys playing with
numbers. Occasionally the book has reminded me of topics that have not been
attended to for periods of time whether Catalan numbers or Kaprekar’s constant,
for example. The latter, Kaprekar’s constant, is one that has been integrated into
outreach in schools from time to time as illustrated by this example. Suppose that
we select four different digits like 2, 7, 4 and 9. Arrange these numbers to form the
largest and smallest four-digit numbers, as in 9742 and 2479. Subtract to get the
positive difference of 7263 and continue the process by evaluating 7632−2367, and
so on. The result will finally be 6174. That is the Kaprekar constant for four-digit
numbers. It is reasonable to try to figure out whether there is a Kaprekar constant
for three-digit numbers.

The book is filled with intriguing facts about numbers and ideas that motivate
wonder about numbers. The prints of a number theorist are all over the book
as the mathematics is sophisticated in many places. Meanwhile many ideas are
simple enough to encourage deeper examination through inviting the reader to
explore further concepts at hand, or ask “What if . . . ”

The core 408 pages feature insights into numbers from 1 through to the Skewes
number, as in

1010
1034

.

Appendices follow with a list of prime numbers up to 9973, extensive references,
and an index. It is the opening sections of the book though that made an im-
pression upon this reader. Three separate sections, namely, Notations, The Main
Functions, and Frequently Used Theorems and Conjectures, offer rich mathemat-
ical information while providing easily accessible guide posts that support the
reader in understanding the text as a whole. If one is to read just a few pages,
the Preface merits attention. The flavour of the book is offered with some notable
“less famous” numbers including the selection offered here as a take off point for
interested readers.

• 37 is the median value of the second prime factor of an integer

• 480 is possibly the largest number n such that n(n+1) · · · (n+5) has exactly
the same distinct prime factors as (n+ 1)(n+ 2) · · · (n+ 6)

• 736 is the only three digit number abc such that abc = a+ bc

• 612 220 032 is the smallest number n > 1 for which the sum of its digits
equals 7

√
n
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Those Fascinating Numbers is one of those go-to books whether it is for a quick bit
of learning or an idea for a challenge to offer students. The book is lengthy though
much of its length comes from two of its strengths. First, the book is thorough
though no such book would ever be a complete version. Second, it is noteworthy
how reader-friendly the book is in terms of both font and presentation. Many
dictionary-style books have pages crammed with detail. A strength of this book
in terms of its accessibility is the ample spacing with the numbers being discussed
appearing in boxes and the subsequent details in easy-to-read bullet form. The
mathematical expressions and notations are presented in an invitational spirit.

Fittingly it seems appropriate to close with a challenge that has been shared by
me in many contexts with teachers and students. Here though the input of the
book is incorporated with a note that 40 585 is the largest number which is equal
to the sum of the factorials of its digits. That is, 40 585 = 4!+0!+5!+8!+5!. The
challenge here is to find the only three-digit number that shares this property.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
John Grant McLoughlin. John is a professor in the
Faculty of Education with a cross-appointment to the
Department of Mathematics and Statistics at Univer-
sity of New Brunswick. His professional interests extend
into community outreach, recreational mathematics, and
problem solving. John enjoys writing, birdwatching, out-
door recreation, and coffeeshop conversations.
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MATHEMATICS FROM THE
WEB

No.10

This column features short reviews of mathematical items from the internet that
will be of interest to high school and elementary students and teachers. You can
forward your own short reviews to mathemattic@cms.math.ca.

For the learning of mathematics
https://flm-journal.org

This journal is published under the auspices of the Canadian Mathematics Edu-
cation Study Group/Groupe Canadien d’Étude en didactique des mathématiques
(CMESG/GCEDM).

The journal aims to stimulate reflection on mathematics education at
all levels, and promote study of its practices and its theories: to gen-
erate productive discussion; to encourage enquiry and research; to pro-
mote criticism and evaluation of ideas and procedures current in the
field. It is intended for the mathematics educator who is aware that the
learning and teaching of mathematics are complex enterprises about
which much remains to be revealed and understood.

All articles aside from those in more recent volumes of the past couple of years are
fully accessible online. This issue of Mathematics from the Web draws attention
to three articles, from 1991, 2001 and 1996 respectively, that are likely to interest
the readership of MathemAttic.

Intuitively Misconceived Solutions to Problems
https://flm-journal.org/Articles/5D943808FF5510771CF17DF5457BEF.pdf

This article, by Shmuel Avital and Edward J. Barbeau, features 13 examples
of problems that are commonly answered incorrectly. Specifically the authors
provide analysis and consideration of the characteristics of these examples that
make them intuitively misleading. The authors suggest five sources for “such
misleading intuitive generators”, namely, lack of analysis, unbalanced perception,
improper analogy, improper generalizaton and false symmetry. Readers will gain
insights both in terms of the mathematical content and pedagogy. It is likely that
one or more of the problems will resonate as potential examples for future use in
illustrating mathematical concepts.

Looking at a Painting with a Mathematical Eye
https://flm-journal.org/Articles/556861A1941982BC67D75CA318A4C6.pdf

This article, by Marion Walter, brings together the author’s interests in prob-
lem posing and visual mathematics. The article focuses attention on Theo van
Doesburg’s painting Arithmetic Composition 1, a collection of squares with tilted
squares nested inside of the larger squares. Marion Walter utilizes this painting
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as a launching point for problem posing while articulating observations and com-
mentary in this piece written in memory of David Wheeler, the founding editor of
the journal. David’s interest in visual mathematics motivated the authorship of
this particular piece at the time.

In Fostering Communities Of Inquiry, Must It Matter That The Teacher
Knows ”The Answer”?
https://flm-journal.org/Articles/5226E38BEF5A8F9AA1A96FB4866A55.pdf

This piece by Alan H. Schoenfeld opens with gratitude to Sophie Haroutunian-
Gordon for an ongoing conversation that led him to compare and contrast the na-
ture and implications of teaching practices in Schoenfeld’s undergraduate courses
in mathematical problem solving and a graduate research group in mathematics
education.

Specifically, Sophie raised the following question in their discussions. ”Is there a
fundamental difference in the character or results of instruction when the teacher
is a co-explorer with students, covering new ground for him- or her-self, as opposed
to an ”expert” traversing very familiar territory?

The paper focuses on this question. Pertinent experiences, anecdotes and examples
from the research group and problem solving courses are drawn into the article as
means of comparison and discussion.
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OLYMPIAD CORNER
No. 413

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by July 30, 2023.

OC631. The point O is the circumcenter of the triangle ABC, and AH is its
altitude. The point P is the foot of the perpendicular dropped from the point A to
the line CO. Prove that the line HP passes through the midpoint of the segment
AB.

OC632. Triangle ABC is inscribed in a circle C(O, 1). Let G1, G2, G3 be
the centroids of triangles OBC,OAC and OAB, respectively. Prove that triangle
ABC is equilateral if and only if AG1 +BG2 + CG3 = 4.

OC633. Let n ∈ N, n ≥ 2. Prove that for all complex numbers a1, a2, . . . , an
and b1, b2, . . . , bn the following statements are equivalent:

(a)
∑n

k=1 |z − ak|2 ≤
∑n

k=1 |z − bk|2 for all z ∈ C;

(b)
∑n

k=1 ak =
∑n

k=1 bk and
∑n

k=1 |ak|2 ≤
∑n

k=1 |bk|2.

OC634. Prove that for infinitely many integers n > 1 the equation

(x+ 1)n+1 − (x− 1)n+1 = yn

has no integer solutions.

OC635. Let n ≥ 3 be an integer. Prove that for all positive real numbers
x1, . . . , xn,

1 + x21
x2 + x3

+
1 + x22
x3 + x4

+ · · ·+ 1 + x2n−1
xn + x1

+
1 + x2n
x1 + x2

≥ n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 juillet 2023.

OC631. Le point O est le centre du cercle circonscrit du triangle ABC, tandis
que AH est une de ses hauteurs; aussi, le point P est le pied de la perpendiculaire
de A vers la ligne CO. Démontrer que la ligne HP passe par le point milieu du
segment AB.

OC632. Le triangle ABC est inscrit dans le cercle C(0, 1). Soient alors G1, G2

et G3 les centröıdes des triangles OBC, OAC et OAB, respectivement. Démontrer
que le triangle ABC est équilatéral si et seulement si AG1 +BG2 + CG3 = 4.

OC633. Soit n ∈ N, n ≥ 2. Démontrer que pour tous nombres complexes
a1, a2, . . . , an et b1, b2, . . . , bn les deux énoncés suivants sont équivalents:

(a)
∑n

k=1 |z − ak|2 ≤
∑n

k=1 |z − bk|2 pour tout z ∈ C;

(b)
∑n

k=1 ak =
∑n

k=1 bk et
∑n

k=1 |ak|2 ≤
∑n

k=1 |bk|2.

OC634. Démontrer que l’équation

(x+ 1)n+1 − (x− 1)n+1 = yn

n’a aucune solution entière pour un nombre infini d’entiers n > 1.

OC635. Soit n un entier tel que n ≥ 3 et soient x1, . . . , xn des nombres réels
positifs. Démontrer que

1 + x21
x2 + x3

+
1 + x22
x3 + x4

+ · · ·+ 1 + x2n−1
xn + x1

+
1 + x2n
x1 + x2

≥ n.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(10), p. 611–612.

OC606. Determine the number of triples of positive integers (a, b, c) such
that

a+ ab+ abc+ ac+ c = 2017.

Originally from 2018 Czech-Slovakia Mathematics Olympiad, 4th Problem, Cate-
gory B.

We received 18 correct solutions. We present 2 solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

We have

(c+ 1)(ab+ a+ 1) = abc+ ac+ c+ ab+ a+ 1 = 2018 = 2 · 1009 .

Since 2, 1009 are primes, c + 1 > 1 and ab + a + 1 > 2, then c + 1 = 2 and
ab+ a+ 1 = 1009. So c = 1 and a(b+ 1) = 1008 = 24 · 32 · 7. Thus a is a positive
divisor of n = 1008.

The number n has exactly (4+1)(2+1)(1+1) = 30 positive divisors. Each positive
divisor d of n gives exactly one solution of a(b + 1) = n in positive integers with
a = d, namely a = d, b+ 1 = n/d, except in the case that d = n.

So we have 29 triples of positive integers satisfying the equation.

Solution 2, by Missouri State University Problem Solving Group.

Solving for c gives

c =
2017− a− ab
ab+ a+ 1

=
2018

ab+ a+ 1
− 1.

Therefore ab+a+ 1 must be a divisor of 2018, i.e., ab+a+ 1 = 1, 2, 1009, or 2018.
Hence

a(b+ 1) = 0, 1, 1008, or 2017.

The first two possibilities cannot occur if a, b > 0. If ab + a = 2017, then c = 0.
Thus, the only possibility is a(b+ 1) = 1008, which gives c = 1. Now b+ 1 can be
any divisor of 1008, except 1 and there are no restrictions on a. Since 1008 has 30
positive divisors, this gives 29 solutions.

A similar argument shows that, more generally, if n is a positive integer and f(n)
denotes the number of solutions to

a+ ab+ abc+ ac+ c = n,
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then

f(n) =
∑

d|(n+1)
d6=1,2,n+1

(τ(d− 1)− 1),

where τ(m) is the number of positive divisors of m.

For example, if 2017 is replaced by 2023, we have 49 solutions.

OC607. Find the largest possible number of integers that can be selected
from the set {1, 2, 3, . . . , 100} so that there are no two of them that differ by 2 or
by 5.

Originally from 2018 Czech-Slovakia Mathematics Olympiad, 6th Problem, Cate-
gory B, First Round.

We received 10 submissions, of which 7 were correct and complete. We present
the solution by UCLan Cyprus Problem Solving Group.

Let S be the set of all n ∈ {1, 2, . . . , 100} with n ≡ 1, 2, 5 (mod 7). Then

|S| = 3 · 14 + 2 = 44

and no two elements of S differ by 2 or 5.

So we can have 44 integers with the required property. We will show that this is
the maximum.

If we have 45 (or more integers) then at least 43 = 3 ·14+1 belong in {1, 2, . . . , 98}
and so at least 4 belong in one of the 14 sets

{1, 2, . . . , 7}, {8, 9, . . . , 14}, . . . , {92, 93, . . . , 98} .

Suppose that we have four elements in the set {x+ 1, x+ 2, . . . , x+ 7} and write
its elements in the order

x+ 1, x+ 3, x+ 5, x+ 7, x+ 2, x+ 4, x+ 6 .

Given four out of these seven elements, either we have two consecutive, or we have
the first and last one. In all cases, we have two elements with a difference of 2 or
5, a contradiction.

Editor’s Comment. S. Muralidharan used a similar argument and gave the follow-
ing generalization: let k be an odd positive integer, and let c, d be two numbers
such that c + d = k. Then, any subset of {a + 1, . . . , a + k} of size at least k+1

2
contains two elements that either differ by c or d. In our special case, c = 2, d = 5,
k = 7.
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OC608. Prove that 2−x + 2−1/x ≤ 1 for all real numbers x > 0.

Originally from 2018 Romania Mathematics Olympiad, 2nd Problem, Grade 11,
Final Round.

We received 12 submissions, of which 10 were correct and complete. We present
2 solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

Define f : (0,∞)→ R by f(x) = 2−x + 2−1/x. Since lim
x→0

f(x) = 1, then f extends

to a continuous function on [0,∞) which we will also call f . Since f(x) = f(1/x),
it is enough to show that f(x) 6 1 for x ∈ [0, 1]. Since f is continuous on [0, 1]
then it is maximized either at the endpoints (where we have f(0) = f(1) = 1) or
at an internal point. Since f is differentiable at (0, 1), if it has a maximum at an
internal point a, then f ′(a) = 0. We have

0 = f ′(a) = − log 2

Å
1

2a
− 1

a221/a

ã
=⇒ 2a = a221/a .

Then

f(a) =
1

2a
+

1

21/a
=

1

2a
+
a2

2a
=

1 + a2

2a
.

By Bernoulli inequality, since 0 < a < 1 and −1/2 > −1 we have

1

2a
=

Å
1− 1

2

ãa
6 1− a

2
=

2− a
2

.

Thus

f(a) =
1 + a2

2a
6

(1 + a2)(2− a)

2
=

2 + (2a2 − a− a3)

2
= 1− a(a− 1)2

2
6 1 .

This completes the proof.

Solution 2, by Paolo Perfetti.

The inequality is equivalent to

2x ≤ 21/x(2x − 1) ⇐⇒ 2x
2 ≤ 2(2x − 1)x ⇐⇒ 1

2
≤
Å

1− 1

2x

ãx
that is

− ln 2 ≤ x ln(1− 2−x)

Hence we have ln(1− x) ≥ −x and thus we prove

− ln 2 ≤ −x2−x ⇐⇒ 2x ≥ x/ ln 2 ⇐⇒ ex ln 2 ≥ x/ ln 2.

Now, ex ≥ 1 + x+ x2/2 for x > 0, so we prove

1 + x ln 2 +
x2 ln2 2

2
≥ x

ln 2
⇐⇒ x2 ln3 2 + 2x(ln2 2− 1) + 2 ln 2 ≥ 0.
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The last one is a quadratic inequality in x and the discriminant condition ∆/4 < 0
is equivalent to ln4 2 + 2 ln2 2 > 1 and this is true because ln4 2 + 2 ln2 2 ∼ 1.1.

OC609. Let n be a positive integer, n ≡ 4 (mod 8). The numbers

1 = k1 < k2 < . . . < km = n

are all positive divisors of n. Prove that if the number i ∈ {1, 2, . . . ,m− 1} is not
divisible by 3, then ki+1 ≤ 2ki.

Originally from 2018 Poland Mathematics Olympiad, 2nd Problem, Second Round.

We received 1 solution. We present the solution by UCLan Cyprus Problem Solving
Group.

Suppose n = 4n′ where n′ is odd and let 1 = d1 < d2 < . . . < dr = n′ be the
positive divisors of n′.

Then every divisor ki of n is of the form dj or 2dj or 4dj for some 1 6 j 6 r.

If ki = dj , then ki+1 6 2dj = 2ki. If ki = 2dj , then ki+1 6 4dj = 2ki.

So assume now that ki = 4dj . If ki+1 = 2d`, then d` < 4dj < 2d` and so
ki+1 = 2d` < 2 · 4dj = 2ki. Similarly, if ki+1 = 4d`, then 2d` < 4dj < 4d` and so
ki+1 = 4d` < 2 · 4dj = 2ki.

So we may assume that ki = 4dj and ki+1 = d`. Since 4dj+1 > ki and 4dj−1 < 4dj ,
then ` = j + 1. It follows that k1, . . . , ki are d1, 2d1, 4d1, . . . , dj , 2dj , 4dj in some
order. But then i is divisible by 3.

OC610. The perpendicular bisector of side BC intersects the circumcircle
of triangle ABC at points P and Q, with points A and P on the same part of
side BC. Point R is the orthogonal projection of point P on the straight line AC.
Point S is the midpoint of the segment AQ. Prove that points A, B, R and S lie
on a circle.

Originally from 2018 Poland Mathematics Olympiad, 3rd Problem, Second Round.

We received 6 correct solutions. We present 2 solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

Let D be the point of intersection of AQ with BC. It is well-known that AQ is the
angle bisector of ∠BAC. It follows that the triangles ABQ and ADC are similar
as ∠BAQ = ∠DAC and ∠AQB = ∠ACD. So letting M be the midpoint of AC
we have ∠ASB = ∠AMD. It is enough to show that BR ‖ DM as then we would
have ∠AMD = ∠ARB and the result will follow.

By the bisector theorem we have BD/DC = c/b and since MC = b/2, it is enough
to show that RM = c/2.
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We have

PC = 2R′ sin(∠PCB) = 2R′ sin

Å
180−A

2

ã
= 2R′ cos

Å
A

2

ã
,

where R′ is the circumradius of triangle ABC. We also have

∠PCA =
180−A

2
− C =

B − C
2

.

Thus

CR = 2R′ cos

Å
A

2

ã
cos

Å
B − C

2

ã
= R′

ï
cos

Å
A+B − C

2

ã
+ cos

Å
A−B + C

2

ãò
= R′ sin(C) +R′ sin(B) =

c+ b

2
.

The result follows.

Solution 2, by Theo Koupelis.

Let O be the center of the circumcircle of triangle ABC. Then the line OS is the
perpendicular bisector of the chord AQ.

Let E be the intersection point of the lines PR and OS; then the quadrilateral
AESR is cyclic because we have ∠ERA = ∠ESA = 90◦. If K is the center of
the circumcircle of AESR, then K is the midpoint of the segment AE because
AE is a diameter of circle (K). Also, points P,O,Q are collinear because the
perpendicular bisector of the chord BC passes through O. Thus, PQ is a diameter
of (O), OS ‖ AP (because ∠QAP = 90◦), OS = AP/2 (because points S,O are
the midpoints of AQ,PQ, respectively), and AQ is the angle bisector of ∠BAC
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(because ∠BOQ = ∠QOC). Thus, triangles KSO and EAP are similar because
KS = EA/2, SO = AP/2, and

∠KSO = ∠KSA+ ∠ASO = ∠KAS + 90◦ = ∠KAS + ∠SAP = ∠EAP.

Therefore,
∠SOK = ∠APE = ∠APR = ∠SAR,

because PR ⊥ AR and PA ⊥ AS.

Let N be the intersection point of OK and AB. Then

∠SON = ∠SOK = ∠SAR = ∠SAN,

because AS is the internal angle bisector of ∠BAC. Therefore, the quadrilateral
NAOS is cyclic and thus ∠ONA = ∠OSA = 90◦. Thus, OK is the perpendicular
bisector of AB. Therefore, EB ‖ KN because the points N,K are the midpoints
of AB,AE, respectively, and thus ∠EBA = ∠KNA = 90◦. Therefore point B is
on the circle (K), and thus points A,B,R, and S are concyclic.
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FOCUS ON...
No. 56

Michel Bataille

Solving from the construction of the figure

Introduction

In most problems of plane geometry, the figure is constructed just by following
the statement step by step. Yet, it may happen that some hypothesis blocks the
process and the would-be solver is reduced to a freehand doodling instead of an
exact corresponding diagram. And geometry software is of little help in that case!
Actually, such a situation adds some spice to the problem and the efforts made
to achieve the construction can be quite rewarding. Not only do they bring the
satisfaction of solving a side-problem, but they often naturally lead to a solution
of the posed problem. Various examples will help show this, also offering a good
opportunity to review some classical constructions and theorems.

With triangles

To illustrate the topic of this number, we start with an easy problem, namely
Problem 2857 [2003 : 317 ; 2004 : 311]:

Let O be an interior point of 4ABC, and let D,E, F , be the intersec-
tions of AO,BO,CO with BC,CA,AB, respectively. Suppose that P
and Q are points on the line segments BE and CF , respectively, such
that BP

PE = CQ
QF = DO

OA . Prove that PF ‖ QE.

Choosing O inside4ABC and obtaining D,E, F is straightforward. But where are
P and Q located? Clearly, the ratio DO

OA needs to be carried to the line segments
BE and CF . A short reflection brings the word ”projection” to mind and the
solution quickly appears: the parallel to BC through O projects O to U on AB
and to V on AC. Thus, DO

OA = BU
UA = CV

V A and we get P as the projection of U onto
BE by means of the parallel to AC through U . The point Q is similarly obtained
using V . See the figure below.
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Thus, the intermediary points U and V enable an easy construction. In addition,
they also give ideas for a solution to the problem. Two ideas in fact: first, we
can remark that 4PUF and 4EV Q are perspective from the point O so that
the intersections PU ∩ EV, UF ∩ V Q, PF ∩ QE are collinear (from Desargues’
theorem). Since PU ‖ EV and UF ‖ V Q, we must have PF ‖ QE. Alternatively,
we can use the homothety h with centre O which transforms U into V . Since
UP ‖ V E, we have h(P ) = E and since UF ‖ V Q, we have h(F ) = Q. Thus,
PF ‖ QE.

In our second example, problem 3014 [2005 : 105,108 ; 2006 : 119], a restricting
condition on the areas of some of the involved triangles leaves us stuck at the very
start.

Given a convex quadrilateral ABCD, let O be the intersection of the
diagonals AC and BD, and let M and N be the mid-points of AC
and BD, respectively. Suppose that [OAB] + [OCD] = [OBC], where
[PQR] denotes the area of triangle PQR. Prove that AN,DM, and
BC are concurrent.

If we draw an arbitrary convex quadrilateral, chances to fulfill the condition on
areas are weak. If θ = ∠AOB, the condition writes as |OA| · |OB| sin θ + |OC| ·
|OD| sin θ = |OB| · |OC| sin(180◦ − θ), that is,

AO

OC
+
DO

OB
= 1. (1)

(here and in the whole solution of this problem we use signed distances.)
We see that once we have drawn a triangle ABC and picked a point O on the side
AC, we can obtain a suitable point D by DO

OB = 1− AO
OC . Our side-problem is close

to the previous one: the point C ′ such that
−−→
CC ′ =

−→
OA satisfies OC′

OC = 1 − AO
OC ,

hence if C ′′ denotes its reflection about O, we have C′′O
OC = DO

OB and the location
of D follows by projecting C ′′ onto the line BO using a parallel to BC.
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The relation (1) also proves useful for a solution to the problem. Let AN meet
BC at P . From Menelaus’s theorem, we have

OA

AC
· CP
PB
· BN
NO

= −1 (2)

and similarly, if DM meets BC at Q,

OD

DB
· BQ
QC
· CM
MO

= −1. (3)

We are required to prove that P = Q that is, CP
PB = CQ

QB or (from (2) and (3))
u = v, with

u = AO ·DO ·MC ·NB, v = MO ·NO ·AC ·DB.

Now,

u = AO ·DO · (MO +OC) · (NO +OB)

·OC · 1

2
(BO +DO)

+AO ·DO ·OB ·OC

= AO ·DO ·MO ·NO +
1

2
AO ·DO · (AO ·OB +DO ·OC)

= AO ·DO ·MO ·NO +
1

2
AO ·DO ·OB ·OC (with the help of (1).)

In the same way, expanding v = MO · NO · (AO + OC) · (DO + OB) and using
(1) lead to v = AO ·DO ·MO ·NO + 1

2AO ·DO ·OB ·OC and u = v follows.

We conclude the section with a variant of solution to a problem proposed at the
Vietnamese Olympiad 2006-7 [2009 : 439 ; 2010 : 500].

Triangle ABC has two fixed vertices, B and C, while the third vertex
A is allowed to vary. Let H and G be the orthocentre and the centroid
of ABC, respectively. Find the locus of A such that the midpoint K
of the segment HG lies on the line BC.

We first show how to construct a suitable vertex A and then deduce the desired
locus from this construction.

We denote the midpoint and perpendicular bisector of BC by M and m, respec-
tively, and the circumcenter by O. We know that the reflection H ′ of H in BC
is on the circumcircle of 4ABC. Let J be the midpoint of HH ′. Recalling that−−→
OH = 3

−−→
OG, we readily see that the midpoint K of GH satisfies

−−→
KH = − 1

2

−−→
KO.

Since J is on BC, it follows that K is on BC if and only if
−−→
HJ = − 1

2

−−→
OM , that

is, if and only if
−−→
HH ′ = −−−→OM .

Note that O must be distinct from M (if O = M , then 4ABC is right-angled at
A and H ′ 6= H(= A)).
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Since
−−→
AH = 2

−−→
OM , we finally obtain that K is on BC if and only if

−−→
H ′A =

−−→
MO 6= −→0 .

Thus, a suitable point A can be constructed as follows: choose any point O on
m, with O 6= M ; draw the circle Γ with centre O and radius R = OB and the

image Γ′ of Γ under the translation with vector
−−→
MO. Then A can be either of the

common points of Γ and Γ′ (these circles do intersect since 0 = R − R < OO′ =
OM < OB < 2R where O′ is the centre of Γ′).

It is now easy to answer the problem. We introduce an orthonormal system of
axes with origin at M such that C(a, 0), B(−a, 0) where 2a = BC. If O(0, t)

with t 6= 0, then
−−→
OB(−a,−t), O′(0, 2t) and the circles Γ and Γ′ have equations

x2 + (y − t)2 = a2 + t2 and x2 + (y − 2t)2 = a2 + t2 . They intersect at the

points (
»
a2 + 3t2

4 ,
3t
2 ) and (−

»
a2 + 3t2

4 ,
3t
2 ) and the elimination of t yields the

conditions x2 − y2

3 = a2, y 6= 0 for the locus of these points. In conclusion, the
desired locus is the hyperbola with centre M , focal axis BC, eccentricity 2, and
vertices B and C (excluded).

With circles

We propose two examples involving the configuration called arbelos. The first one
was proposed at a Croatian competition in 1997 [2001 : 90 ; 2003 : 163].

Three points A,B,C are given on the same line, such that B is between
A and C. Over the segments AB,BC,AC, as diameters, the semicircles
are constructed on the same side of the line. The perpendicular from
B to AC intersects the larger circle at point D.

Prove the common tangent of the two smaller semicircles, different
from BD, is parallel to the tangent on the largest semicircle through
the point D.
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To draw the figure, we have to construct the common tangent to two externally
tangent circles. To this aim, we can use a classical construction: supposing AB ≥
BC and denoting by O,O1, O2 the centers and r, r1, r2 the radii of the semicircles
with diameters AC,AB,BC, respectively, we draw the tangent O2T from the
center O2 to the circle centered at O1 with radius r1 − r2. The desired tangent
EF is parallel to O2T with E on O1T .

Another construction is obtained in the wake of the following remark: the midpoint
I of EF satisfies IE = IF = IB, hence the triangle EBF is right-angled at B.
It follows that the triangle O1IO2 is right-angled at I (IO1 and IO2 are the
perpendicular bisectors of BE and BF , respectively). Thus, this point I is also
the intersection of the ray BD with the semicircle with diameter O1O2 and then
E,F are on the circle with center I, radius IB.

Now, IB is the altitude from I in 4O1IO2, hence IB2 = BO1 · BO2 = r1r2 and
DB is the altitude from D in right-angled triangle ADC, hence DB2 = BA ·BC =
4r1r2. It follows that I is the midpoint ofBD; therefore, BEDF is a parallelogram,
even a rectangle since EB ⊥ BF . We deduce that ∠CFD = ∠AED = 180◦,
meaning that E is on AD and F is on CD. Lastly, we have

∠ODA+ ∠DEF = ∠OAD + ∠EFB = ∠OAD + ∠BCF = 90◦,

so that OD is perpendicular to EF and the required result follows.

We conclude with another interesting problem about the arbelos: problem 10895
proposed in 2001 in The American Mathematical Monthly.

Given a point B on the segment AC, erect semicircles on diameters
AB,AC, and BC, all on the same side of AC. Let L be the line through
B perpendicular to AC. Let S be the largest circle that fits into the
region bounded by L and the semicircles on diameters AC and BC.
Let D be the point of tangency between S and the semicircle on BC.
Extend the diameter of S through D until it hits L at E. Prove that
AB and DE have the same length.
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Let Γ,Γ1,Γ2 be the circles on diameters AC,AB,BC and let r, r1, r2 be their
respective radii. Here the difficulty is to draw the circle S which is tangent to L,
externally to Γ2 and internally to Γ. Inversion appears as the appropriate tool.
Let L′ be the parallel to L through A. It is easy to draw the circle γ tangent to
L′ (at D′), externally to Γ (at F ′) and to L (at G′). Note that its center I is on
the perpendicular to AC at O1 and OI = r + r1. The inversion in the circle with
center C and radius 2

√
rr2 exchanges A and B, Γ and L, Γ2 and L′, hence γ and

S. This circle S is tangent to Γ2,Γ, L at the inverses D,G,F of D′, F ′, G′.

From the known properties of inversion, S is the image of γ under the homothety

h with center C and scale factor
4rr2

|CI2 − r21|
=
r2
r

(note CI2 = CO2
1 +OI2−OO2

1).

We deduce that h also transforms Γ into Γ2, hence F ′ into D. It follows that the
parallel to OI through O2 is the diameter of S through D as well as the line O2G

′

(since
−−→
IG′ =

−−→
OO2). Therefore G′ = E and OO2EI is a parallelogram. Thus,

O2E = OI and

DE = OI −O2D = r + r1 − r2 = 2r1 = AB.

Exercises

1. (Problem 3289 [2007 : 485,487 ; 2008 : 490])

Let ABC be a triangle for which there exists a point D in its interior such that
∠DAB = ∠DCA and ∠DBA = ∠DAC. Let E and F be points on the lines AB
and CA, respectively, such that AB = BE and CA = AF . Prove that the points
A,E,D, and F are concyclic. (First construct D satisfying the constraints.)
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2. (Problem 4620 [2021 : 98 ; 2021 : 368])

Consider the semicircles in the configuration below:

Prove that
1

x
=

1

a
+

1

b
.

(First construct the figure and then deduce a solution.)
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Reading a Math Book
No. 2

Yagub Aliyev

M.P. Chernyaev, Problems in synthetic geometry

In each appearance of this column, we feature one math book by collecting, com-
menting, and solving problems from it. We focus on books and authors which
are not well known in the English speaking world or have not been translated into
English. There will also be some problems at the end for you to solve and send us.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The book [1] that I am going to discuss here was first
published in 1954 and then republished with significant
extensions in 1961 by M.P. Chernyaev (other spellings
of the name are Chernyayev and Tschernjaeff). Before
this book, M.P. Chernyaev published many papers about
geometry in the 1930s [4]. The book is intended as a
workbook for a course in synthetic geometry, which is
also referred to as axiomatic geometry or pure geometry.
The term synthetic geometry was coined to differentiate
it from other ways of doing geometry, such as analytic ge-
ometry using coordinates, differential geometry using cal-
culus, algebraic geometry using group theory, etc. Syn-
thetic geometry is based on the axiomatic method and
uses traditional geometry tools such as straightedge-and-compass. Most of the
problems in the book are elementary in nature. So, these problems can be inter-
preted and solved as usual Euclidean geometry problems. That is what we are
going to do in the current paper. The problems in the book are divided into six
chapters:

1. Cross-ratio

2. Some problems of elementary geometry

3. Conic sections, Theorems of Pascal and Brianchon

4. Poles and polars

5. Involutional correspondence

6. Solid geometry (stereometry) problems

There is a short review of this book by V.G. Kopp [2]. Fun fact about the book
is that its name even made it to the archives of CIA, which mentioned it among
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other mathematical works of the author: https://www.cia.gov/readingroom/

docs/CIA-RDP86-00513R000308620012-9.pdf

I came across this book in my attempt to explore geometric inequalities. Some of
the geometric inequalities that I noticed are given as exercises supplementing the
solved problems below.

Solved Problems.

1. Let BD and CE be altitudes of a triangle ABC and let the line DE through
the feet of these altitudes intersect the line BC at F . Prove that the line through
the midpoint O of the side BC and the orthocenter H of 4ABC is perpendicular
to AF . (Problem 161 in [1])

Solution. The solution and the diagram below are given for the case when the
orthocenter lies inside the triangle. We will use the well-known result which says
that if G is the center of the circumscribed circle w1 of4ABC then |AH| = 2·|GO|
and AH ‖ GO (see e.g. Exercise 1, Sect. 1.8 of [3]). So, if we denote the midpoint
of the segment AH by I, then IHOG is a parallelogram and therefore GI ‖ OH.
On the other hand, if we draw the circle w2 with diameter AH and denote its
intersection with the circle w1 by X, then GI ⊥ AX. Since HX ⊥ AX, the points
X, H, and O are collinear. It remains to show that the points A, X, and F are
collinear, too. But this immediately follows from the fact that F is the radical
center of the circles w1, w2, and the circle with diameter BC.

The case when the orthocenter lies outside the triangle can be studied in a similar
way.

Exercise. Show that FH ⊥ AO.

Exercise. Let J be the foot of the altitude of 4ABC from vertex A. Show that
if ∠B and ∠C of 4ABC are acute then 4 · |JH| · |JA| ≤ |BC|2.

2. Prove that the ratio of distances from two arbitrary points to the center of a
circle is equal to the ratio of the corresponding distances from each one of these
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points to the polar of the other point with respect to the circle. (Problem 149 in
[1].)

Solution. Denote the two given points by A and B. We will assume that both of
them are outside of the circle. (The cases where one or both points lie inside the
circle may be treated similarly.) Let the radius of the circle be R. Suppose that
l1 and l2 are the polars of the points A and B, respectively, and let T be their
intersection point. Let us draw the perpendiculars AY and BX to the lines l1 and
l2, respectively. Let us also draw the perpendiculars OY1 and OX1 to the lines
AY and BX, respectively. Denote

∠Y AO = ∠Y TN = ∠MTX = ∠OBX = α.

Then |AY1| = |OA| · cosα and |BX1| = |OB| · cosα. On the other hand

|AY1| = |AY |+ |Y Y1| = |AY |+ |OM | = |AY |+
R2

|OB| .

Similarly,

|BX1| = |BX|+ |XX1| = |BX|+ |ON | = |BX|+
R2

|OA| .

We obtain that
|OA| · |OB| · cosα = |OA| · |BX|+R2

and
|OA| · |OB| · cosα = |OB| · |AY |+R2.

So, |OA| · |BX| = |OB| · |AY | or |OA|
|OB| =

|AY |
|BX| .

Exercise. Show that the second intersection point of the circles with diameters
OA and OB is on the line OT .

Crux Mathematicorum, Vol. 49(5), May 2023



Yagub Aliyev /269

3. Given are a circle and two parallel lines d and d1. An arbitrary point M is
chosen on the line d. Let the tangents MC and MD of the circle intersect the
line d1 at points A and B, respectively. Prove that as the point M changes, the
line joining point M with the midpoint K of the line segment AB passes through
a fixed point of the plane. (Problem 160 in [1])

Solution. Let us choose points L and N on the lines MC and MD, respectively,
so that the given circle is the incircle of 4LMN and the side LN is parallel to d.
By similarity of 4MAB and 4MLN , the line MK bisects the side LN . Let us
denote the midpoint of LN by P , the point where LN is tangent to the circle by Q,
the intersection of the perpendicular to the side LN through vertex M by R, and
the intersection of the line MP and the line perpendicular to the side LN at the
point Q by S. Denote also LM = a, MN = b, LN = c, MR = hc, ∠LNM = α,
and the radius of the circle by r. Without loss of generality, we can assume that
a > b. Then |PQ| = a−b

2 .

By the cosine law,

|RN | = b · cosα =
b2 + c2 − a2

2c
.

So,

|PR| = |PN | − |RN | = c

2
− b · cosα =

c

2
− b2 + c2 − a2

2c
=
a2 − b2

2c
.

By similarity of 4MPR and 4SPQ, we have

|MR|
|SQ| =

|PR|
|PQ| =

a2−b2
2c
a−b
2

=
a+ b

c
.
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We will now prove that a+b
c is constant. Note first that c · hc = (a + b + c) · r,

because both sides of this equation are equal to twice the area of 4LMN . We
obtain a+b

c = hc−r
r , which remains constant as M moves on d. Consequently, |QS|

is constant, and therefore the point S is fixed.

Exercise. Show that as M moves on d, the length of the line segment AB is
minimal when the points Q,S,M are collinear.

4. Given are two fixed points P and Q, and a fixed line d such that d ⊥ PQ.
Denote the intersection of d and the line PQ by O. Let the sides of a right angle
at the vertex P intersect the line d at points A and B. Prove that as the right
angle rotates about the vertex P , the perpendicular from the vertex A to the line
BQ passes through a fixed point of the plane. (Problem 145 in [1])

Solution. Let the perpendicular from the vertex A to the line BQ intersect PQ at
R. Let us show that the point R is fixed. Suppose also that the line AP intersects
BQ at S. Let us denote |OP | = a, |OQ| = b, and |OA| = x. First, note that since

|OB| · |OA| = |OP |2, |OB| = a2

x . Let us also denote ∠APO = α, ∠BQO = β,
∠ASB = γ, ∠RAS = φ, and ∠ARO = θ. Then

tan γ = tan (α+ β) =
tanα+ tanβ

1− tanα · tanβ
=

x
a + a2

bx

1− a
b

=
bx2 + a3

ax(b− a)
,

tanφ =
1

tan γ
=
ax(b− a)

bx2 + a3
,

tan θ = tan (α+ φ) =
tanα+ tanφ

1− tanα · tanφ
=

x
a + ax(b−a)

bx2+a3

1− x2(b−a)
bx2+a3

=
bx

a2
.

So, |OR| = x · cot θ = a2

b is constant, and therefore the point R is fixed.
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Exercise. Show that (a+ b) · cos γ ≤ b− a.

5. Denote by x and y the sides of an angle with vertex O and a designated point
P on x. A circle is tangent to x at A and to y at B; let the second tangent from P
touch that circle at C. Prove that the line BC passes through a fixed point of the
plane as A moves along x while B moves along y and P remains fixed. (Problem
39 in [1])

Solution. Let the center of the circle be M . Draw a perpendicular PD to the
line OM . Then the points A, P , D, C, M are concyclic. Therefore, ∠APM =
∠MPC = ∠CDM = ∠MDA. Denote this angle by α. If we can show that
∠BDM = α, then we can say that the points B,C,D are collinear. But this
follows directly from the fact that 4OAD = 4OBD. Since the point D is fixed
and the line BC passes through D, the proof is complete.

Exercise. Show that if the point M changes along the segment OD, then the
area of 4BMD is maximal when M is the midpoint of OD.

Problems to solve

Do you want to try some problems yourselves?

Submit your solutions at https://publications.cms.math.ca/cruxbox/ before
the 15th of July 2023. Feel free to also send us your opinion about the featured
book or your recommendations for future issues of this column.

S6. Prove that if the three vertices A, A′, A′′ of a changing triangle are moving
along three fixed and concurrent lines u, u′, u′′, respectively, and its two sides
A′A′′ and A′′A are rotating about two fixed points O and O′, respectively, then
the third side AA′ is also rotating about a fixed point O′′, which is on the line
OO′. ([1], Problem 51).
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S7. Prove that the lines joining a point on a circle with the endpoints of a chord
of the circle divide the diameter perpendicular to the chord harmonically. ([1],
Problem 32).

S8. Given are a fixed circle and two fixed points A and B on it. On the same circle
two arbitrary points C and D are chosen. Let M = AC ∩BD and N = AD∩BC.
Prove that as the points C and D change, the line MN passes through a fixed
point of the plane. ([1], Problem 162).

S9. Let the tangent lines of the circumcircle of 4ABC at the points B and C
intersect at point D. Through D draw the line that is parallel to the tangent
line of the circle at A. This line intersects lines AB and AC at points E and F ,
respectively. Show that D is the midpoint of the line segment EF . (Problem 159
in [1]).

S10. Given are a triangle ABC and its incircle touching the side BC at the
point D. From a point A1 on the side BC, a second tangent A1A2 of the incircle
is drawn and the tangency point A2 is connected with A by a line. The line AA2

intersects the side BC at D1. Prove that DB
DC · D1B

D1C
=
Ä
A1B
A1C

ä2
. ([1], Problem 35).

Remark. Some of the problems have fast and easy proofs using projective ge-
ometry. Such solutions are also welcome, but unlike [1], we will focus more on
elementary ones, similar to those given for Problems 1–5 above.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by July 30, 2023.

4841. Proposed by Aravind Mahadevan.

In triangle ABC, let a, b, c denote the lengths of the sides opposite angles A,B and
C, respectively. If

√
a,
√
b,
√
c are the lengths of the sides opposite angles A′, B′

and C ′, respectively, in triangle A′B′C ′, prove that

sin
A

2
sin

B

2
sin

C

2
= cosA′ cosB′ cosC ′.

4842. Proposed by Mihaela Berindeanu.

In non-equilateral 4ABC, let I be the incenter, G the centroid, IG ‖ BC and S
be a point chosen so that BSCG is a parallelogram. The parallel drawn through
S to BC cuts AI in D. Show that A, C, D, B are concyclic points.

4843. Proposed by Vasile Cirtoaje.

Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 3. Prove that»
(a+ 3b)(a+ 3c) +

»
(b+ 3c)(b+ 3a) +

»
(c+ 3a)(c+ 3b) ≥ 12.

4844. Proposed by Seán M. Stewart.

Suppose n is a positive integer. Show that the value of the improper integral∫ ∞
0

xn−1e−x√
x

(
n−1∑
k=0

Ç
2k

k

å
x−k

22k(n− k − 1)!

)
dx

is independent of n.

4845. Proposed by Ivan Hadinata.

Let ABC be an acute triangle and let l be a line that is tangent to the circum-
circle of ABC at point A. Suppose that X and Y are midpoints of AB and AC
respectively. Finally, suppose that D,E,D0, E0 are orthogonal projections of the
points X,Y,B,C to l respectively and M = DY ∩ EX, N = D0C ∩ E0B. Prove
that the lines MN,CD,BE are concurrent if and only if AB = AC.
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4846. Proposed by Michel Bataille.

The tangents to a parabola P at B and C intersect at A. Prove that the line
through the midpoints of AB and AC is tangent to P.

4847. Proposed by Todor Zaharinov.

Let 1 = d1 < d2 < · · · < dk = n be all divisors of a positive integer n. Find all n,
such that k ≥ 4 and

n = 2d2d3 + 3d3d4 + 4d4d2.

4848. Proposed by Antonio Garcia.

Let x, y, z all be non-negative real numbers such that x + y + z = 3. Prove that
for positive integers m and n we have

m
√
xy

n
√
z

1 + n
√
z

+ m
√
yz

n
√
x

1 + n
√
x

+ m
√
xz

n
√
y

1 + n
√
y
≤ 3

2
.

4849. Proposed by Daniel Sitaru.

Solve for real numbers:
x2 + y2 + z2 = 38
xy(x2−y2)+yz(y2−z2)+zx(z2−x2)

xy(x−y)+yz(y−z)+zx(z−x) = 10

x3 + y3 + z3 = 160

4850. Proposed by George Apostolopoulos.

Suppose that three concurrent Cevians intersect the side BC,CA,AB of a triangle
ABC in points A′, B′, C ′, respectively. Let r′ be the radius of a circle inscribed in
A′B′C ′; let r,R be the radii of inscribed and circumscribed circles of ABC. Prove
that

r + r′ ≤ 3

4
R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 juillet 2023.

4841. Soumis par Aravind Mahadevan.

Dans le triangle ABC, notons a, b et c les longueurs des côtés opposés aux angles
A,B et C, respectivement. Si les longueurs des côtés opposés aux angles A′, B′ et
C ′ sont respectivement

√
a,
√
b et
√
c, prouvez que dans le triangle A′B′C ′ on a

sin
A

2
sin

B

2
sin

C

2
= cosA′ cosB′ cosC ′.

4842. Soumis par Mihaela Berindeanu.

Dans le triangle non équilatéral ABC, désignons par I le centre du cercle inscrit
et par G le centröıde. Supposons que IG ‖ BC et soit S un point choisi de sorte
que BSCG soit un parallélogramme. La parallèle à BC passant par S coupe AI
en D. Montrez que A, C, D, B sont des points concycliques.

4843. Soumis par Vasile Cirtoaje.

Soient a, b et c des nombres réels non négatifs tels que ab+ bc+ ca = 3. Montrez
que »

(a+ 3b)(a+ 3c) +
»

(b+ 3c)(b+ 3a) +
»

(c+ 3a)(c+ 3b) ≥ 12.

4844. Soumis par Seán M. Stewart.

Supposons que n est un entier positif. Montrez que la valeur de l’intégrale impropre∫ ∞
0

xn−1e−x√
x

(
n−1∑
k=0

Ç
2k

k

å
x−k

22k(n− k − 1)!

)
dx

est indépendant de n.

4845. Soumis par Ivan Hadinata.

Soient ABC un triangle aigu et I une droite tangente au cercle circonscrit à ABC
au point A. Supposons que X et Y sont respectivement les milieux de AB et
AC. Enfin, supposons que D,E,D0 et E0 sont respectivement les projections
orthogonales des pointsX, Y , B et C sur I et queM = DY ∩EX etN = D0∩E0B.
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Montrez que les droites MN , CD et BE sont concourantes si et seulement si
AB = AC.

4846. Soumis par Michel Bataille.

Les tangentes à une parabole P en B et C se rencontrent en A. Montrez que la
droite passant par les milieux de AB et AC est tangente à P.

4847. Soumis par Todor Zaharinov.

Soient 1 = d1 < d2 < · · · < dk = n tous les diviseurs d’un entier positif n. Trouvez
tous les n tels que k ≥ 4 et

n = 2d2d3 + 3d3d4 + 4d4d2.

4848. Soumis par Antonio Garcia.

Soient x, y, z des nombres réels non négatifs tels que x+ y + z = 3. Montrez que,
pour m et n entiers positifs, on a

m
√
xy

n
√
z

1 + n
√
z

+ m
√
yz

n
√
x

1 + n
√
x

+ m
√
xz

n
√
y

1 + n
√
y
≤ 3

2
.

4849. Soumis par Daniel Sitaru.

Résolvez le système d’équations suivant pour x, y et z des nombres réels.
x2 + y2 + z2 = 38;
xy(x2−y2)+yz(y2−z2)+zx(z2−x2)

xy(x−y)+yz(y−z)+zx(z−x) = 10;

x3 + y3 + z3 = 160.

4850. Soumis par George Apostolopoulos.

Supposons que trois céviennes concourantes coupent les côtés BC,CA et AB d’un
triangle ABC aux points A′, B′ et C ′, respectivement. Soit r′ le rayon d’un cercle
inscrit dans A′B′C ′ ; soit encore r et R les rayons des cercles inscrit et circonscrit
de ABC, respectivement. Montrez que

r + r′ ≤ 3

4
R.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 48(10), p. 633–636.

4791. Proposed by George Stoica.

Let v1, . . . , vn be unit vectors in Cn. Prove that if u maximizes
∏n

i=1 |vi · u| over
all unit vectors in Cn, then for all i, |vi · u| ≥ 1√

n
.

It was brought to our attention that this problem and its full solution appear in “The
complex plank problem, revisited” by Oscar Ortega-Moreno, which can be found at
https: // arxiv. org/ pdf/ 2111. 03961. pdf . We apologize for the replication
of the material without proper attribution and thank our readers for pointing our
the discrepancy.

We remind our contributors that the guidelines for proposing problems can be found
at https: // cms. math. ca/ publications/ crux/ information-for-contributors/ .

4792. Proposed by George Apostolopoulos.

The interior bisectors of angles B and C of a triangle ABC with incenter I meet
AC at D and AB at E, respectively. Suppose that Area(BIC) = Area(AEID).
Prove that ∠A = 60◦.

There were 16 correct solutions, most following the approach below.

The respective lengths of AE and AD are bc/(a + b) and bc/(a + c). Where r is
the inradius, we find from [BIC] = [AEID] = [AEI] + [ADI] that

1
2ra = 1

2

Å
rbc

a+ b

ã
+ 1

2

Å
rbc

a+ c

ã
,

whence

0 = a(a+ b)(a+ c)− bc(a+ c)− bc(a+ b)

= a3 + a2(b+ c) + abc− 2abc− bc2 − b2c
= (a2 − bc)(a+ b+ c).

Therefore a2 = bc and

cosA =
b2 + c2 − a2

2bc
=
b2 + c2 − bc

2bc
=

1

2
+

(b− c)2
2bc

≥ 1

2
.

Hence ∠A ≤ 60◦, with equality if and only b = c, i.e., the triangle is equilateral.
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Comments from the editor. One solver used analytic geometry and two solvers
resorted to trigonometry, both approaches requiring considerable manipulation.
Vivek Mehra also proved a similar result, that when [BCDE] = 2[BIC], then
∠A = 90◦. This is a consequence of equating

[ADE] = [ABC]− [BCDE] = [ABC]− 2[BIC]

and
[ADE] = bc(a+ c)−1(a+ c)−1[ABC]

to obtain b2 + c2 = a2.

4793. Proposed by Corneliu Manescu-Avram.

Let a be an even positive integer and let p be an odd prime number such that

gcd(a2 − 1, p) = 1. Prove that an−1 − 1 is divisible by n, where n =
a2p − 1

a2 − 1
.

We received 3 submissions of which 2 were correct and complete. We present the
solution by the UCLan Cyprus Problem Solving Group.

By Fermat’s Little Theorem, a2p ≡ a2 mod p and since p - a2 − 1 it follows that

n =
a2p − 1

a2 − 1
≡ a2 − 1

a2 − 1
≡ 1 mod p ;

that is, n− 1 is a multiple of p.

Since a is even, n is odd and so n− 1 is a multiple of 2.

Since p is an odd prime it is thus the case that n− 1 is a multiple of 2p.

Hence a2p−1|an−1−1 and since n|a2p−1 we conclude that an−1−1 is a multiple

of n =
a2p − 1

a2 − 1
.

4794. Proposed by Abhishek Jha.

Let P (x) = x2 + bx + 1, where b is a non-negative integer. Define x0 = 0 and
xi+1 = P (xi) for all integers i ≥ 0. Find all polynomials P (x) such that there
exists a positive integer n > 1 which divides xn.

We received 3 solutions, all of which were correct. We present the solution by
UCLan Cyprus Problem Solving Group.

If b is even, then we have x1 = 1, x2 = b+ 2 and so 2|x2. We will show that if b is
odd then n - xn for every n > 1.

Let p be the minimal prime dividing n. Since xi is easily seen to be odd for each
i, then p > 2.

If p = 3 and b ≡ 0 mod 3, then the sequence (xn) modulo 3 is 0, 1, 2, 2, . . . so
n - xn. If p = 3 and b ≡ 1 mod 3, then the sequence (xn) modulo 3 is 0, 1, 0, 1, . . .
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so n - xn. Indeed if n|xn, then 3|xn and so n is even. But since xn is odd, then
n - xn. If p = 3 and b ≡ 2 mod 3, then the sequence (xn) modulo 3 is 0, 1, 1, 1, . . .
so n - xn.

So we may assume that p > 5. Since p is odd, there is a b′ such that 2b′ ≡ b mod p.
Then

P (x) ≡ (x+ b′)2 + (1− b2) mod p,

which takes at most p+1
2 < p− 1 distinct values modulo p.

So two out of x1, x2, . . . , xp−1 are congruent modulo p. Suppose xi ≡ xj mod p
where i < j < p. Then the sequence is eventually periodic with period j − i. If
none of xi, xi+1, . . . , xj−1 is a multiple of p, then p - xm for every m > i. So p - xn
and therefore n - xn.

Thus we may assume that xk ≡ 0 mod p for some k < p. We may assume that
k is the minimal positive integer such that xk ≡ 0 mod p. Then p|xn ⇐⇒ k|n.
Since x1 = 1, then k > 2. So k|n contradicts the fact that p is the minimal prime
dividing n. Thus p - xn and so n - xn.

4795. Proposed by Mihaela Berindeanu.

Let (xn) and (yn) be two sequences of natural numbers. If (xn) is defined by the

recurrence relation x1 =
1

9
and xn+1 = 9x3n, ∀n ≥ 1 and yn = 9x2n + 3xn + 1,

calculate:
lim

n→∞
y1 · y2... · yn

There were 15 correct and 2 incomplete solutions submitted. The solvers essentially
followed the same path.

By induction, it can be established that xn = 3−(3
n−1+1) for n ≥ 1, whereupon

limn→∞ xn = 0. Since

yn = 9x2n + 3xn + 1 =
1− (3xn)3

1− 3xn
=

1− 3xn+1

1− 3xn
,

we have

lim
n→∞

y1y2 · · · yn = lim
n→∞

1− 3xn+1

1− 3x1
= lim

n→∞

3

2
(1− 3xn+1) =

3

2
.

4796. Proposed by Vasile Cı̂rtoaje and Leonard Giugiuc.

Let a1, a2, . . . , an be positive real numbers less than 1 so that a1+a2+· · ·+an = 1.
Prove that

a21
(1− a1)2

+
a22

(1− a2)2
+· · ·+ a2n

(1− an)2
≥
Å

a1
1− a1

+
a2

1− a2
+ · · ·+ an

1− an
−
√
n√

n+ 1

ã2
.
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We received 7 submissions of which 6 were correct and complete. We present the
solution submitted by the proposers.

Using the substitution

xi =
ai

1− ai
, i = 1, 2, . . . , n ,

we need to prove that when

x1
x1 + 1

+
x2

x2 + 1
+ · · ·+ xn

xn + 1
= 1

we have

x21 + x22 + · · ·+ x2n ≥
Å
x1 + x2 + · · ·+ xn −

√
n√

n+ 1

ã2
.

Let S = x1 + x2 + · · ·+ xn. By the Cauchy-Schwarz inequality, we have[
n∑

i=1

xi(xi + 1)

](
n∑

i=1

xi
xi + 1

)
≥
(

n∑
i=1

xi

)2

,

and so,
∑n

i=1 x
2
i + S ≥ S2. Thus, it is sufficient to show that

S2 − S ≥
Å
S −

√
n√

n+ 1

ã2
,

which is equivalent to S ≥ n

n− 1
. To prove this, we rewrite the hypothesis in the

form
1

x1 + 1
+

1

x2 + 1
+ · · ·+ 1

xn + 1
= n− 1.

By the Cauchy-Schwarz inequality, we have[
n∑

i=1

(xi + 1)

](
n∑

i=1

1

xi + 1

)
≥ n2,

which is equivalent to (S + n)(n− 1) ≥ n2, and so, S ≥ n
n−1 .

Equality occurs when a1 = a2 = · · · = an =
1

n
.

4797. Proposed by Goran Conar.

Let x, y, z > 0 be real numbers. Prove the following inequality:

yz

x
+
zx

y
+
xy

z
≥ x+ y + z .

We received 41 submissions, 37 of which are correct. In only 13 solutions, it is
noticed that x = y = z is a necessary and sufficient condition to obtain an equality.
We present 2 different solutions proposed by a majority of solvers.
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Solution 1. From the usual arithmetic and geometric means comparison, we have

1

2

Å
yz

x
+
zx

y

ã
≥
…
yz

x
· zx
y

= z,

with equality if and only if
yz

x
=
zx

y
, i.e. x = y.

Adding the inequalities obtained by cyclic permutations of x, y, z gives the result,
with equality if and only if x = y = z.

Solution 2. Expanding the inequality

x2(y − z)2 + y2(z − x)2 + z2(x− y)2 ≥ 0,

and dividing by 2, gives

x2y2 + y2z2 + z2x2 ≥ xyz(x+ y + z),

The result is therefore obtained after a division by xyz. From the initial inequality,
it is evident that this is an equality if and only if x = y = z.

Editor’s Comments. We have forgotten to point out that this problem statement
has been modified by the Editorial Board, for which we ask our readers to accept
our apologies. Indeed, the original problem submitted by Goran Conar seemed
too sophisticated to us. (The current problem first appeared in Problem 7 of 2007
Irish Math Olympiad).

4798. Proposed by Jason Fang.

A point L is randomly selected inside circle ω, 6 points A1, A2, A3, B1, B2, B3

(As and Bs are in clockwise order) lie on ω such that ∠LA1A2 = ∠LA2A3 =
∠LB1B2 = ∠LB2B3. Prove that A1B3, A2B2, A3B1 are concurrent or parallel.
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We received 4 solutions, all complete and correct, and will feature the solution by
Theo Koupelis.

We shall use directed angles to construct a family of five circles that have the same
radical center (that is, there exists a point, possibly at infinity, common to the
radical axes of pairs of these circles taken two at a time). Let the circumcircle of
4A1LB1 intersect the line A1A2 for the second time at point D. From the circle
(A1LB1D) we get ∠LB1B2 = ∠LA1A2 = ∠LA1D = ∠LB1D and, thus, points
D, B1, B2 are collinear.

Let the circle (A1LB1D) intersect the circumcircle of4B2LA2 for the second time
at point G, and let the line DG intersect the circle (B2LA2G) for the second time
at point K. For the circle (LA1DG) we have

∠LB2B3 = ∠LA1A2 = ∠LA1D = ∠LGD = ∠LGK = ∠LB2K,

and, thus, points K, B2, B3 are collinear. From the circle (B2LA2GK) we get

∠LA2K = ∠LB2K = ∠LB2B3 = ∠LA2A3,

and thus the points A2, A3,K are colinear. But then

∠B1A3K = ∠B1A3A2 = ∠B1A1A2 = ∠B1A1D = ∠B1GD = ∠B1GK,

and, thus, points K, A3, B1, G are concyclic.

Let V be the point of intersection of B3A3 and LB2. Then

∠LV A3 = ∠LV B3 = ∠B2V B3 = ∠V B2B3 + ∠B2B3V

= ∠LB2B3 + ∠B2B3A3 = ∠LB1B2 + ∠B2B1A3 = ∠LB1A3

and, thus, points V , L, B1, A3 are concyclic.
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Let the circle (V LB1A3) intersect the circle (B2LA2GK) for the second time at
point P. Then ∠B3KP = ∠B2KP = ∠B2LP = ∠V LP = ∠V A3P = ∠B3A3P
and, thus, the points B3, P , A3, K are concyclic. We now have

∠B3PL = ∠B3PA3 + ∠A3PL = ∠B3KA3 + ∠A3B1L

= ∠B3KA3 + ∠A3B1B2 + ∠B2B1L = ∠B3KA3 + ∠A3B3B2 + ∠A2A1L

= ∠B3KA3 + ∠A3B3K + ∠A2A1L = ∠B3A3K + ∠A2A1L

= ∠B3A3A2 + ∠A2A1L = ∠B3A1A2 + ∠A2A1L = ∠B3A1L

and, thus, points B3, P , L, A1 are concyclic.

The circles (KA3B1G), (B2LA2GKP ), and ω intersect by pairs, whence their
radical axes

GK,B1A3, A2B2

intersect at the radical center, which could be at infinity. Similarly, the circles
(V LB1A3P ), (B2LA2GKP ), and ω intersect by pairs, whence their radical axes

LP,A2B2, B1A3

intersect at that same radical center. Finally, the circles ω, (B3PLA1), and
(B2LA2GKP ) intersect by pairs, whence their radical axes

A2B2, LP,A1B3

must intersect in that same radical center. Therefore, the lines GK, B1A3, A2B2,
LP , A1B3 intersect at a common point, which could be at infinity. In particular,
the lines A1B3, A2B2, A3B1 are concurrent or parallel.

4799. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Calculate

lim
n→∞

∫ 2

1

n

»
bxncdx,

where bxc denotes the floor of x ∈ R.

We received 17 solutions, all of which were correct. We present the solution by
Ulrich Abel and Vitaliy Kushnirevych.

We prove that

In :=

∫ 2

1

n

»
bxncdx→ 3

2
(n→∞) .

Since k/ (k + 1) ≤ btc /t ≤ 1, if k ≤ t ≤ k + 1 (k ∈ N), we have t/2 ≤ btc ≤ t, for
t ≥ 1. Hence,

n

…
1

2

∫ 2

1

x dx ≤ In ≤
∫ 2

1

x dx.

Since limn→∞
n
√

1/2 = 1, our claim is a consequence of the sandwich theorem.

Copyright © Canadian Mathematical Society, 2023



284/ Solutions

4800. Proposed by Michel Bataille.

Two circles Γ1,Γ2, with centres O1, O2 and distinct radii, intersect in A1 and A2.
Let C1 on Γ1 and C2 on Γ2 be such that the line C1C2 is parallel to O1O2 with
A1, A2, O1, O2 not on C1C2. Let lines C1O1 et C2O2 intersect at M and lines
MA1,MA2 intersect C1C2 in B1, B2, respectively. Prove that the circumcircles of
∆MB1B2 and ∆MC1C2 are tangent.

We received 5 submissions, all correct, and feature the solution by the UCLan
Cyprus Problem-Solving Group.

Let X be the other point of intersection of C1C2 with Γ1 and Y the other point of
intersection of C1M with Γ1. Then C1Y is a diameter of Γ1, so Y X ⊥ C1C2. We
also have A1A2 ⊥ O1O2, thus A1A2 ⊥ C1C2 and A1A2 ‖ XY . Because parallel
transversals intercept a circle in equal arcs, it follows that

∠C2C1A2 = ∠XC1A2 = ∠A1C1Y = ∠A1C1M

(using directed angles). Similarly we have ∠A2C2C1 = ∠MC2A1. It follows that
A2 is the isogonal conjugate of A1 with respect to the triangle MC1C2. So we also
have

∠C1MB2 = ∠C1MA2 = ∠A1MC2 = ∠B1MC2 .

This is enough to guarantee the final result. Indeed, let ωC be the circumcircle of
MC1C2 and let B′1 and B′2 be the other points of intersection of MB1 and MB2

respectively with ωC . Then ∠C1MB′2 = ∠B′1MC2 showing that B1B2 is parallel
to B′1B

′
2. Thus the homothety with center M mapping B′1 to B1 also maps B′2

to B2. Thus it maps ωC to the circumcircle ωB of MB1B2. Consequently, the
centres of ωB and ωC are collinear with M and the two circles are tangent at M .
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