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cycle universitaire publiée par la Société mathématique du Canada. Principalement de nature éducative,

le Crux n’est pas une revue scientifique. Soumission en ligne:

https://publications.cms.math.ca/cruxbox/

The Canadian Mathematical Society grants permission to individual readers of this publication to copy articles for
their own personal use.

c© CANADIAN MATHEMATICAL SOCIETY 2023. ALL RIGHTS RESERVED.

ISSN 1496-4309 (Online)
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213 Problems: 4831–4840

218 Solutions: 4781–4790

Crux Mathematicorum
Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
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MATHEMATTIC
No. 44

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by June 15, 2023.

MA216. The circle x2 + y2 − 2ax = 1 cuts the x-axis at P and Q. If O is
the origin, show that OP ·OQ is a constant.

MA217. Prove that the alphanumeric, in which different letters represent
different digits, does not have a solution.

T W E N T Y

T W E N T Y

C R I C K E T

+

MA218. Consider a circle with centre C. There are n distinct points marked
on the circumference of the circle so that no two points are on opposite ends of
the same diameter. What is the smallest n so that, no matter where the points
are marked, it is possible to label two of the points A and B so that at least three
of the points lie on the smaller arc from A to B.

MA219. Solve the equation |x|+ |x− 1|+ |x− 2| = 4.

MA220. Proposed by Titu Zvonaru, Comăneşti, Romania.

Let ABC be a triangle with A = 30◦, B = 80◦. Let D be the orthogonal projection
of B onto the side AC. On the line DB we consider the point E such that
BE = BC and B lies between D and E. Prove that the triangle AEC is isosceles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juin 2023.

MA216. Le cercle x2 + y2 − 2ax = 1 rencontre l’axe des x en P et Q. Si O
dénote l’origine, démontrer que OP ·OQ est constant.

MA217. Dans l’alphanumérique qui suit, des lettres différentes représentent
des chiffres différents. Démontrer qu’il n’y a aucune solution.

T W E N T Y

T W E N T Y

C R I C K E T

+

MA218. Il y a n points distincts font partie d’un cercle, de façon à ce
qu’aucuns deux d’entre eux se trouvent sur un même diamètre. Quel est le plus
petit n pour que, quel que soit ce placement des points, il est possible d’en choisir
deux d’entre eux, les nommant A et B, de façon à ce qu’au moins trois points se
retrouvent dans le plus petit arc entre A et B.

MA219. Résoudre l’équation |x|+ |x− 1|+ |x− 2| = 4.

MA220. Proposé par Titu Zvonaru, Comăneşti, Romania.

Soit ABC un triangle tel que A = 30◦, B = 80◦ et soit D la projection orthogonale
de B vers le côté AC. Sur la ligne DB, soit E un point tel que BE = BC et tel
que B se trouve entre D et E. Démontrer que le triangle AEC est isocèle.

Crux Mathematicorum, Vol. 49(4), April 2023

https://publications.cms.math.ca/cruxbox/


MathemAttic /177

MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(9), p. 501–502.

MA191. The sum of the digits of a set of three consecutive two-digit integers
is 42. How many such sets of integers are there?

Originally problem #9 from 2003-2004 game #2 in ATOM Volume VIII: Problems
for Mathematics Leagues III, by Peter I. Booth, John Grant McLoughlin, and
Bruce L. R. Shawyer.

There were multiple different approaches to the problem. Unfortunately, many of
the submissions were incomplete as they were missing the border case with tens digit
changes. Only 8 out of 15 submissions were complete. We present the solution by
Catherine Jian.

Let x be the integer in the middle and let its tens digit be a and its ones digit be
b, i.e., x = 10a+ b. We have the following casework based on the value of b.

Case 1: b = 0.

x − 1 has tens digit a − 1 and ones digit 9. x + 1 has tens digit a and ones digit
1. The sum of digits is then

(a− 1) + 9 + a+ 0 + a+ 1 = 3a+ 9 = 42.

Solving this equation gives a = 11, which is not a valid digit.

Case 2: b = 9.

x − 1 has tens digit a and ones digit 8. x + 1 has tens digit a + 1 and ones digit
0. The sum of digits is then

a+ 8 + a+ 9 + a+ 1 + 0 = 3a+ 18 = 42.

Solving this equation gives a = 8, which corresponds to one set of three consecutive
integers (88, 89, 90).

Case 3: 1 ≤ b ≤ 8.

x − 1 has tens digit a and ones digit b − 1. x + 1 has tens digit a and ones digit
b+ 1. The sum of digits is then

a+ b− 1 + a+ b+ a+ b+ 1 = 3(a+ b) = 42.

Solving this equation gives a+ b = 14. Since 1 ≤ b ≤ 8, the possible solutions for
(a, b) are (9, 5), (8, 6), (7, 7), (6, 8), which correspond to 4 sets of integers.

Hence, in total there are 5 such sets of integers.

Copyright © Canadian Mathematical Society, 2023
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MA192. Suppose that a, b, p, q, r, s are positive integers for which

p

q
<
a

b
<
r

s

and qr − ps = 1. Prove that b ≥ q + s.

Originally problem 15/2 from ATOM Volume IV: Inequalities, by Edward J. Bar-
beau and Bruce L. R. Shawyer.

We received 7 correct solutions for this problem. We present 2 solutions.

Solution 1, by Prithwijit De.

Observe that aq − bp > 0, br − as > 0 and since they are positive integers each
must be at least 1. Therefore

b = b(qr − ps) = q(br − as) + s(aq − bp) ≥ q + s.

Solution 2, by Henry Ricardo.

The given conditions yield

1

qs
=

r

s
− p

q
=
(r
s
− a

b

)
+

Å
a

b
− p

q

ã
=
br − as
bs

+
aq − bp
bq

≥ 1

bs
+

1

bq
=

bq + bs

(bs)(bq)
=

q + s

bqs
,

which implies b ≥ q + s.

MA193. A forester wants to plant trees in a triangular field, which is fenced
as shown (the fences go from corners to the midpoints of the opposite sides). The
fields are called N , S, E, and W as shown.

S

N

W E

The field W will take 800 trees. How many trees will the field N take?

Originally problem 76 from Shaking Hands in Corner Brook and other Math Prob-
lems for senior high school students, Edited by Peter Booth, Bruce Shawyer, and
John Grant McLoughlin.

Crux Mathematicorum, Vol. 49(4), April 2023
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We received 8 correct submissions. We present the solution by Soham Bhadra,
supplemented by the editor.

Let us name vertices of the triangular field A,B,C and let the midpoints of AC,
AB and BC be D, E and F respectively. Point O is the intersection of BD and
CE.

Then BD and CE are the medians of 4ABC and so, O is the centroid. Also OD
and OE are the medians of 4OCA and 4OBA respectively.

As OD is a median of ∆OCA,

Area(∆OCD) = Area(∆ODA) =
1

2
Area(∆COA).

As OE is a median of ∆OBA,

Area(∆OAE) = Area(∆OEB) =
1

2
Area(∆BOA).

As AF is a median of ∆ABC, Area(∆ABF ) = Area(∆ACF ), and as OF is a
median ∆BOC, Area(∆BOF ) = Area(∆COF ).

Therefore Area(∆BOA) = Area(∆COA) and so Area(∆ODA) = Area(∆OAE).

Hence

Area(4OCD) = Area(4ODA) = Area(4OAE) = Area(4OEB).

Then

Area(ODAE) =Area(4ODA)+Area(4OAE) = 2·Area(4OEB) = 1600.

Therefore, the field N will take 1600 trees.

MA194. Let f1(x) = x−13
x+5 and fn+1(x) = fn (f1(x)). Determine the value

of f2022(x), assuming that x is in the domain of f2022(x).

Originally problem 6 from the NLTA Senior High Math League: Season 2009/2010,
Championship Game.

We received 9 solutions for this problem. The following is the solution by Catherine
Jian.

By applying the given function composition, we observe that

f2(x) =
−2x− 13

x+ 2
, f3(x) =

−5x− 13

x− 1
and f4(x) = x.

Therefore we have

f5(x) = f1(x), f6(x) = f2(x), f7(x) = f3(x), f8(x) = x, . . .

Since 2022 = 4 · 505 + 2, we have

f2022(x) = f2(x) =
−2x− 13

x+ 2
.

Copyright © Canadian Mathematical Society, 2023
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MA195. In equilateral triangle ABC of side length 2, suppose that M and
N are the mid-points of AB and AC, respectively. The triangle is inscribed in a
circle. The line segment MN is extended to meet the circle at P . Determine the
length of the line segment NP .

Originally problem 1.2 from Explorations in Geometry, by Bruce Shawyer.

We received 12 submissions, all correct. We present the solution by Vasile Teodor-
ovici.

Let us set a Cartesian coordinate plane system to be centered in the center of the
circle and with the y axis along the altitude from A. It follows that O = (0, 0),

A =

Ç
0,

2
√

3

3

å
, C =

Ç
1,
−
√

3

3

å
and N =

Ç
1

2
,

√
3

6

å
. Then the y coordinate of

P is also

√
3

6
. The circumradius is

2
√

3

3
and hence the equation of the circle is

x2 + y2 =
4

3
. From this equation, we have that the x-coordinate of P is

3
√

5

6
.

Finally, this implies that

NP =
3
√

5

6
− 1

2
=

√
5− 1

2
.

Editor’s Comments. The problem is based on the famous E3007 of American
Mathematical Monthly problem proposed by Odom and Coxeter in 1982.

Crux Mathematicorum, Vol. 49(4), April 2023
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SHAWYER CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(9), p. 522–524.

S1. Proposed by Bill Sands.

(a) Solve the alphametic

BRUCE +BRUCE + · · ·+BRUCE = SHAWY ER,

where there are exactly 94 BRUCEs. (As usual, different letters are replaced by
different digits, and no number starts with zero.)

(b)? Are there any solutions if 94 is replaced by some other positive integer?

We received 2 solutions, both of which were correct. Both solutions were computer
aided and found 68 solutions for part b) including the one in a). We present the
solution by Ulrich Abel and Vitaliy Kushnirevych.

(a) As can be seen in part (b), the only solution with factor 94 is

94 ∗ 84206 = 7915364,

i.e., BRUCE = 84206 and SHAWYER = 7915364.

(b) There are exactly 68 solutions. An exhaustive table in the format “Factor *
BRUCE = SHAWYER”, calculated by the aid of a computer, is given below:

19 * 57623 = 1094837 22 * 80425 = 1769350 22 * 98034 = 2156748 23 * 94508 = 2173684
28 * 78406 = 2195368 34 * 40675 = 1382950 38 * 94018 = 3572684 42 * 58019 = 2436798
43 * 82794 = 3560142 48 * 74208 = 3561984 52 * 92031 = 4785612 54 * 48507 = 2619378
58 * 58671 = 3402918 65 * 65831 = 4279015 70 * 30685 = 2147950 76 * 36941 = 2807516
77 * 53609 = 4127893 77 * 68924 = 5307148 85 * 50376 = 4281960 85 * 50916 = 4327860
92 * 64172 = 5903824 92 * 92761 = 8534012 94 * 84206 = 7915364 96 * 62307 = 5981472
116 * 82417 = 9560372 132 * 64932 = 8571024 148 * 24108 = 3567984 150 * 40925 = 6138750
152 * 46593 = 7082136 157 * 46198 = 7253086 158 * 38571 = 6094218 159 * 39541 = 6287019
160 * 30576 = 4892160 168 * 26107 = 4385976 183 * 32874 = 6015942 185 * 50716 = 9382460
205 * 35419 = 7260895 210 * 20761 = 4359810 212 * 18704 = 3965248 212 * 32051 = 6794812
214 * 10975 = 2348650 214 * 34051 = 7286914 237 * 16478 = 3905286 238 * 40825 = 9716350
252 * 16893 = 4257036 252 * 34512 = 8697024 264 * 34576 = 9128064 306 * 20975 = 6418350
310 * 10596 = 3284760 354 * 10925 = 3867450 390 * 20465 = 7981350 393 * 12894 = 5067342
410 * 10629 = 4357890 410 * 20476 = 8395160 410 * 20536 = 8419760 410 * 20619 = 8453790
410 * 20716 = 8493560 414 * 10625 = 4398750 435 * 10928 = 4753680 460 * 10768 = 4953280
524 * 16079 = 8425396 549 * 14536 = 7980264 610 * 10539 = 6428790 710 * 10539 = 7482690
744 * 12053 = 8967432 838 * 10375 = 8694250 860 * 10846 = 9327560 922 * 10675 = 9842350

Editor’s Comments. Titu Zvonaru provided a program in Basic used to confirm
the exhaustive set of solutions.

Copyright © Canadian Mathematical Society, 2023
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S2. Proposed by Shawn Godin.

A pair of two-digit numbers has the following properties:

1. The sum of the four digits is 25.

2. The sum of the two numbers is 97.

3. The product of the four digits is 864.

4. The product of the two numbers is 1972.

Determine the two numbers.

Note: This is a modification of problem M266 proposed by Bruce Shawyer [2006 :
32(7), 426] with featured solution by Geoffrey A. Kandall [2007: 33(7), 402].

We received 13 submissions, all correct. We present two solutions submitted by
Ivan Hadinata and these represent common approaches taken by other solvers.

Solution 1.

Let x and y be the desired pair of two-digit numbers. From the second and fourth
properties given, we have x + y = 97 and xy = 1972. By Viéta’s theorem, x and
y are the roots of the quadratic polynomial

P (a) = a2 − 97a+ 1972 = (a− 29)(a− 68).

Then (x, y) = (29, 68) or (x, y) = (68, 29). In fact, 29 and 68 satisfy all the given
properties. Therefore, the two numbers are 29 and 68.

Solution 2.

Note that 1972 = 22 · 17 · 29 and hence 1972 has only 5 two-digit positive divisors,
which are 17, 29, 34, 58, 68. In fact,

1972 = 116 · 17 = 68 · 29 = 58 · 34.

Consequently, the desired two-digit numbers are either 29 and 68 or 34 and 58.
However, 34 and 58 do not satisfy the first property. It can be readily checked
that 29 and 68 satisfy all the conditions. Therefore, the two numbers are 29 and
68.

S3. If α and β are the roots of x2 + 5x+ 7 = 0, find a quadratic equation with
roots 1

α2 and 1
β2 .

Originally problem 40 from ATOM Volume II: Algebra – Intermediate Methods,
by Bruce Shawyer.

We received 12 correct submissions. We present a standard solution approach
taken on by several solvers.

Crux Mathematicorum, Vol. 49(4), April 2023
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The quadratic equation with roots roots 1
α2 and 1

β2 is given by

(α2x− 1)(β2x− 1) = α2β2x2 − (α2 + β2)x+ 1 = 0.

Therefore,

x2 + 5x+ 7 = x2 − (α+ β)x+ αβ.

By Viéta’s formulas, we have αβ = 7 and α+ β = 5. Therefore,

α2β2 = 49

and

α2 + β2 = (α+ β)2 − 2αβ = 11.

As such, the corresponding quadratic equation is 49x2 − 11x+ 1 = 0.

S4. What is the 19th term in the sequence 4, 6, 14, 20, . . . determined by a
diagonal line (in red) in the following diagram:

1 2

34

5 6 7

8

9 10

11

12

13141516

17 18 19 20 21

22

23

...

We received 6 submissions, all correct. We present the solution by Missouri Prob-
lem Solving Group.

The paths below the diagonal (e.g., from 4 to 6 and from 14 to 20) increase by 4
steps with each iteration, so the path lengths would be 2, 6, 10, 14, . . .. The paths
above the diagonal (e.g. from 6 to 14 and from 20 to 32) also increase by 4 steps
with each iteration, so those path lengths would be 8, 12, 16, 20, . . .. Denote the
entries on the diagonal by a1, a2, a3, . . .. The lengths of the paths between entries
with odd indices are 2 + 8, 6 + 12, 10 + 16, . . . or 10, 18, 26, . . .. The kth term in
this sequence is 8k + 2 and

a2n+1 = a1 +
n∑
k=1

(8k + 2) = 2 + 8 · n(n+ 1)

2
+ 2n = 4n2 + 6n+ 4.

Therefore a19 = 4 · 92 + 6 · 9 + 4 = 382.

A similar argument shows that a2n = 4n2 + 2n.

Copyright © Canadian Mathematical Society, 2023
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S5. The diagram shows the densest packing of seven circles in an equilateral
triangle ABC.

Calculate the exact fraction of the area of ∆ABC covered by the seven circles.

Originally problem 14 from Shaking Hands in Corner Brook and other Math Prob-
lems for senior high school students, Edited by Peter Booth, Bruce Shawyer, and
John Grant McLoughlin.

We received 4 submissions, all correct. We present the solution by Brian Bradie.

AGFEDC

B

Let s denote the length of each side of the equilateral triangle, and r denote the
radius of each of the seven circles. The fraction of the area of ∆ABC covered by
the seven circles is then

7πr2

s2
√
3

4

=
28π√

3
· r

2

s2
.

From the diagram, AG = DC = r
√

3, FG = DE = r
√

3, and EF = 2r, so
s = r(2 + 4

√
3), or

r2

s2
=

1

4(1 + 2
√

3)2
=

1

4(13 + 4
√

3)
.

Thus, the fraction of the area of ∆ABC covered by the circles is
7π

12 + 13
√

3
.
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TEACHING PROBLEMS
No. 21

Nora Franzova and John Grant McLoughlin

Motivating Conceptual Learning Through Mathematical
Misconceptions

This issue’s Teaching Problems piece is reprinted with permission from the Pro-
ceedings of Sharing Mathematics: A tribute to Jim Totten (May 13-15, 2009), avail-
able at: unbscholar.lib.unb.ca/islandora/object/unbscholar%3A10293/datastream

The authors Nora Franzova and John Grant McLoughlin presented on the idea of
counterintuitive problems and their place in mathematical problem solving. We
are grateful to Rick Brewster for granting permission to reprint the article here in
the spirit of sharing mathematics.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abstract

Surprising results challenge us to think in novel ways. Intuition is a wonderful
thing and when the solution counters that intuition there is fertile ground for
learning. Counterintuitive results offer a rich avenue for teaching conceptual
ideas. The motivation for learning is enhanced through the engagement
emerging from being surprised. An example of such a problem is offered
here:

Suppose that a bin contains G green balls and R red balls. Two
balls are to be selected without replacement. It is known that the
probability of selecting one green and one red ball is exactly 1/2.
What do we know about the relationship between the number of
green and red balls?

It is not often that permission is given to simply try a variety of problems
knowing that the instinctive responses are likely to be wrong. That’s encour-
aged as we play with a range of elementary problems and discuss the mathe-
matics underlying the misconceptions. The pedagogical value of integrating
such examples into the teaching of mathematics will also be discussed. Of
course, there may be a problem with no surprises, but in this session you
may not trust your intuition on that one.

1 Introduction

Problem solving skills may be atop the list of what we hope our mathematics stu-
dents will master. For instructors, these skills are most frequently represented by
one’s ability to successfully apply the four steps made famous by George Pólya.
For students on the other hand, “problem solving” brings on the image of dreaded

Copyright © Canadian Mathematical Society, 2023
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186/ Teaching Problems

word problems and sections of textbooks that boast titles like modeling and ap-
plications.

When we solve problems we frequently do so without consciously thinking about
the four step process. The steps likely occur somewhere in the back of our mind.
Nevertheless, in many instances students are taught the steps; teaching may even
extend the steps and specify them for different groups of problems, or integrate
the teaching of key words as a guide to apply a certain set of steps that would
lead to the result. Rather than discussing the merits or flaws of common practices,
we take this opportunity to articulate a place for those “intuition undermining”
problems in the teaching and learning experiences associated with mathematical
problem solving.

We will begin with the inclusion of a few famous “tricky” problems. Then we
will reason that problems like these can play a significant role in an increasing
individual’s deeper understanding of the concepts at hand.

2 Five Problems

Problem 1

A man drives from home to work at a speed of 50 km/h. The return
trip from work to home is traveled at a speed of 30 km/h. What is the
average speed for the round trip?

Many of us know this problem, and first time around we were completely taken
aback by how simple, yet obviously tricky it is.

The main misconception here is a mistaken generalization caused by primarily
noticing and then locking in on the key word “average” without considering the
context. The concepts of the average of numbers and the average speed are quite
a bit apart from each other.

Once the problem is solved we know that the average speed is

2
1
50 + 1

30

= 37.5 km/h

which is not 40 km/h as the first guess might have been. A convenient (albeit
long) distance like 150 kilometres from home to work could alternatively have
been used to find a total distance traveled of 300 kilometres and a total travel
time of 3 + 5 = 8 hours, thus, giving the average of 37.5 km/h.

Seeing a problem like this once, and being intrigued by it, offers insight into a
concept that is unlikely to be acquired through another routine example. The
conceptual understanding can be strengthened with an extension of the concept
to another level. Such an extension is provided here.

Crux Mathematicorum, Vol. 49(4), April 2023
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Observe that the average speed (km/h) must be between 30 and 50. In fact, we
know that the average would be exactly in the middle if the same amount of time
had been spent at both speeds. Instead it was the distance at each speed that was
the same, and hence, more time was spent at the slower speed tipping the average
below the arithmetic mean of 30 and 50 (i.e. closer to 30 than 50). Note that
the ratio of time spent at 30 km/h to that spent at 50 km/h must be 5:3 since
the distances traveled were the same. Now we can apply a linear model to obtain
the average. Place 30 and 50 at the endpoints of a segment and then divide the
segment internally in a ratio of 3:5 to demonstrate the shift of the average toward
the 30, as shown in Figure 1. The segment will be split at 37.5.

30 5037.5

3 5

Figure 1: Partitioning the line segment [30, 50] into the ratio 3 : 5.

Problem 2

An old car has to travel a two mile route. The first mile is uphill and
the car (being an old one) can do a maximum of 15 mph on this uphill
part. The second mile is downhill and the car can go faster there, of
course. How fast does the car have to travel on this second mile to
achieve an average speed of 30 mph for the trip?

(Note: It is mentioned in Stewart’s College Algebra text that even Einstein once
considered this problem interesting. See Mathematical Intelligencer, Spring 1990,
page 41.)

The misconception in this problem is not based on the wording; it is more in the
curious build up of the problem.

Notice in the solution, we require a value of v to satisfy the equation

2
1
15 + 1

v

= 30

where v represents the speed of the car on the downhill part. This gives 2 = 2+ 30
v ,

and no such value of v exists.

Using a simpler (less technical) approach we can logically deduce it would have
to take the car zero time on the downhill part to end up with the desired average
velocity.

We can see that the numbers were chosen in a very specific way. This choice was
the trick. Is this then really a misconception or is this just a trick pulled from
the magician’s hat? There is a misconception in the sense that after reading the
problem most people believe that it of course can be done. The numbers look
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reasonable enough for all of us to believe we can drive so fast to achieve such
an average speed. Maybe again, the word “average” is misleading. Also, please
notice that if the question asked to achieve an average speed of 20 mph it would
be possible and one with the knowledge about average speed computation from
Problem 1 could readily solve this problem.

Problem 3

Here we will shift our attention from average speeds to another area of mathematics
that offers an abundance of intuition baffling problems, namely, probability. One
such problem is stated here in its original form.

Suppose I have two six-sided cubes. Each cube has a square on three
of its faces, a triangle on two of its faces and a circle on one face. If
the cubes are rolled 1000 times, what combination of shapes will occur
most often? (Kantowski, 1986, p. 431)

An adaptation (Problem 3) was shared in the presentation.

A standard die has a square on three faces, a triangle on two faces,
and a circle on one face. Two of these dice are rolled. What is the
most likely combination?

The quick answer “two squares” is entirely logical. Squares are most common and
hence, two squares seem to be an obvious choice. In fact, this response is so likely
that mathematicians themselves will usually exclaim this answer with confidence.
How wonderful? Everyone is motivated to learn by the surprise that this is not
the most likely combination. In fact, it is not even that close in that you are 1/3
(as in over 33%) more likely to get a square and a triangle. Try it. You can list
all 36 possible ordered outcomes. There are only 3× 3 = 9 that give two squares.
Note, that there are 12 or (3× 2) + (3× 2) that produce a square and a triangle.
The surprise makes sense when one imagines two dice landing in succession. If
you want two squares, there are 3 out of 6 faces that will eliminate you when the
first die lands. In contrast, only the one face with the circle makes it impossible
to obtain a square and a triangle.

Problem 4

Two boxes are filled with donuts. One box contains 5 chocolate donuts
and the other 5 basic glazed donuts. You want a chocolate one. You are
allowed to look into the boxes, shake the boxes, and transfer any number
of donuts from one to the other. After that you will be blindfolded, and
the boxes will be moved around. Then you will be asked to choose
randomly one box and then select a donut from it.

Even though we are still faced with only 5 chocolate donuts in the total of 10
donuts, our chances can be improved to about 72% by moving 4 of the chocolate
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donuts into the other box. This leaves one box with 1 chocolate donut and one
with 9 donuts including 4 of which are chocolate. That makes the probability of
choosing a chocolate donut

1

2
+

1

2
· 4

9
=

13

18
≈ 0.72.

Diagnosing the misconception may be a little more difficult here. It is related
to oversimplifying the situation and some form of false assumption based upon
believing that choosing a box and choosing a donut are similar. In fact, it would
be good to have students explain their own errant processes to shed further light
on the misconception. Such discussion would enrich the learning. Also, it is worth
extending the problem to exaggerate the improvements (increased percentages)
obtained by implementing the strategy with larger quantities such as 50 chocolate
and 50 glazed donuts. (Also see Kending (2008).)

Problem 5

Suppose that a bin contains G green balls and R red balls. Two balls
are to be selected without replacement. It is known that the probability
of selecting one green and one red ball is exactly 1/2. What do we know
about the relationship between the number of green and red balls?

The authors approached the problem in different ways, as summarized below with
the two expressions. As this problem appeared in the abstract, it turned out that
two attendees, namely, John Siggers and Gene Wirchenko, mentioned attempting
the problem beforehand. As with the authors, they solved the problem in these
two different ways. The first approach considers an ordering of one colour followed
by the other with the balls selected separately, whereas, the second considers the
selection as a whole. This latter way requires that one of each colour be selected
when the two balls are pulled out simultaneously. Both expressions lead to similar
mathematical results. Perhaps one of these approaches will more naturally appeal
to you.

1

2
=

R

R+G
· G

R+G− 1
+

G

R+G
· R

R+G− 1
(1)

1

2
=

(
R
1

)(
G
1

)(
R+G

2

) (2)

Developing the relationship between R and G and following with some investi-
gation and/or manipulation leads to the familiar triangular numbers making an
appearance. That is, we find R and G must be consecutive triangular numbers.
For example, if R = 1, then G = 3, but if R = 3, we could have G = 1 or 6 (the
preceding or subsequent triangular number).
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A result like this is extremely satisfying to mathematicians and math enthusiasts,
but what is there to intrigue an already struggling student?

Let us take a look from that position. Seemingly simple questions put the student
into uncomfortable situations; hard working students can feel that math is just an
endlessly losing game, since the moment one understands how to do one problem
a seemingly similar problem suddenly does not fit the mould. Adding all this up
it seems that math just undermines one’s intuition; thus, eroding trust in one’s
own ability, and bringing forth more and more frustration.

It is crucial to consider how and when we integrate counterintuitive questions into
our teaching. At this point the authors go in separate ways.

One of the authors suggests that we not use “tricky” conceptual questions as our
main tool, but use them only as we use “gourmet food”. We have all witnessed
something like the following: a small child in a very fancy restaurant asking for
Kraft dinner. It makes them feel safe and at home. This metaphor suggests to
us that we should only slowly introduce new “gourmet flavours” of the same old
problem. Then natural appreciation can occur.

The other author is more inclined to bring out the counterintuitive questions at
the outset. For example, Problem 3 may be used as an opening to provoke closer
examination of the topic of probability. The conflict between the expectation and
the actual result sparks a curiosity to better understand the principles.

It is not that one author’s choice is right and that of the other is not. Instead we are
challenged to reckon the balance of teaching, intention, beliefs, and context. While
the first approach takes a settling view followed by a jolt, the latter advocates for
the initial jolt as a motivation for learning and a means of unsettling any comfort.
It is how the teachers manage and work with the students through the big picture
of the course that will determine the merits of the path that is taken.

3 Conclusion

Counterintuitive results can be used as thought provoking, discussion opening
tools. Allowing students to discuss their intuition with peers can facilitate group
work. Desire to find one’s flaw in thinking develops the reasoning process. Argu-
ing constructively with peers will develop presentation abilities, and enhance the
need for proper structure in logical arguments, thus, ideally bringing the joy of
discovering and understanding.

When we approach problems we deeply rely on our intuition. One of many def-
initions of intuition from Wikipedia says: “Intuition – an incompletely founded
concept or perception formed from associations to similar models, contexts, or
scenarios, in humans frequently below the level of conscious iteration.”

Each new “tricky” problem, similar to those presented here or as in sources such
as [1, 3, 6], helps us to develop a better intuition. Mathematicians want this
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challenge and appreciate it. As Kending (2008) suggests, mathematicians set
out to find counterexamples, try to remove exceptions, look for symmetry, and
rejoice over a far-reaching generalization. It is our hope that students will also
benefit from us intentionally incorporating counterintuitive problems to build up
and enrich their problem solving skills.

The authors welcome comments, examples, or other insights on this topic.
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MATHEMAGICAL PUZZLES
No. 4

Tyler Somer

Molten Gold - IV

In the previous articles in this series, we have looked at some of the geometric and
arithmetic principles that govern puzzles with an apparent increase in area. Here,
we now examine some commercial puzzles that use these very principles of having
an extra piece “melt” into the tray. The reader is encouraged to determine the
dimensions of each tray and each basic building unit.

Disclosure: I have no financial incentive with any of the puzzles presented in
this article. I do own copies of these – or similar – puzzles. I am on friendly
terms with the various designers, builders, and suppliers. I am motivated to have
these individuals be successful, so that they can continue to design and produce
interesting puzzles.

I am grateful to Puzzle Master of Saskatchewan and Bill Cutler of Illinois for their
kind permission to use their stock photos and to discuss their products in this
article.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Puzzle Master is a Canadian business success story, based in Saskatoon. Here are
six melting-tile-style puzzles available through their web-store (puzzlemaster.ca).

From Vladimir Krasnoukov, a trio of puzzles produced by Recent Toys: Square +,
Triangle +, and Diamond +.

In Square +, all 7 + 1 pieces incorporate a variety of 45◦ and 90◦ angles. The
smallest piece to melt into the tray is a 45◦ − 45◦ − 90◦ triangle. Comparing this
smallest piece to the other 7, it appears that the basic triangular unit of the puzzle
is smaller still. The 7 main pieces include two different sizes of 45◦ − 45◦ − 90◦

triangles and five dissimilar quadrilaterals. Each of the five quadrilaterals can be
dissected into a rectangle and either one or two 45◦ − 45◦ − 90◦ triangles; and so,
presumably, they can be further dissected to some number of building units.

In Triangle +, the tray is an equilateral triangle. Two of the pieces are also
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equilateral triangles, including the smallest one to melt in. All 7 + 1 pieces can be
dissected to some number of 30◦ − 60◦ − 90◦ triangles.

Diamond + has a number of similarities with Triangle +. The tray is a diamond.
Two of the pieces are also diamonds, including the smallest one to melt in. All
9 + 1 pieces can be dissected to some number of 30◦ − 60◦ − 90◦ triangles.

Also from Vladimir Krasnoukov is the Fuji Puzzle, produced by Philos. The tray
is a 45◦ − 45◦ − 90◦ triangle, as is the basic building unit. The 49 + 1 triangular
components form 9 + 1 pieces. Half the pieces are convex while the other half are
concave.

From Dutch designer Niek Neuwahl, No Fit (circa 1990) is produced by Dave
Janelle of Creative Crafthouse. At first glance, I would be inclined to say that
Krasnoukov was inspired by this puzzle for his more recent Square + design. No
Fit uses 5 + 1 pieces, all with a variety of 45◦ and 90◦ angles, save for the smallest
square to insert.

With the Impossible Square (designer unknown), produced by Winshare Puzzles,
we have 16 + 1 pieces in a large square tray. This one is most reminiscent of the
Geometrex puzzles, mentioned in part II of this series [2022 : 48(10), 594-596]; and
is based on Fibonacci numbers, referenced in part I of this series [2022 : 48(8), 458-
461]. The eight triangles, four small and four large, appear to be 2-by-5 and 3-by-8
each, respectively. The other eight pieces are composed of glued-up rectangular
bits, but those bits appear to be these various combinations: (1, 5), (2, 2), (2, 3),
(2, 8). On this basis, the seventeenth piece is a 2-by-2 square.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next four puzzles are all designed by Bill Cutler, and are available from his
web-store (billcutlerpuzzles.com). Cutler has taken the basic “melting tile” idea
to the extreme. He has done this in many ways: with relatively large dimensions,
pieces with complex shapes, and by using parallelograms which are not rectangles.
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Squeeze Me In (2018): With this puzzle, Cutler has formed a tray which starts
with 90 rectangular units in an array of 9-by-10. The tray is apparently filled
with ten complex tiles, each composed of nine small rectangular units. The solver
must add a singleton rectangle, the ninety-first unit, to the tray. Readers are
invited to draw the relevant diagrams and solve the system that will determine
the dimensions of the tray and the singleton, similar to the procedures of part III
of this series [2023 : 49(2), 73-76].

Pentominoes-MB (2016): The suffix MB is a direct reference to the “melting
block” principle which inspired this design. Cutler starts with 11 of the 12 flat
pentominoes – a topic for another article. A “standard” pentomino has an area
of 5 square units, so the 11 pieces fill 55 square units, but it is clear these are
not square components. The added singleton brings the area to 56, but it is
not obvious whether this is composed of an array of rectangles 8-by-7 or 7-by-
8. Normally, setting up a rectangular array from 55 to 56 units, and solving the
associated system, would be sufficient to determine the dimensions of the pieces
which create a meaningful puzzle. Cutler then sheared the whole thing, so that
the geometry is not based on a rectangle, but rather a parallelogram, with the
deliberate obfuscation of deriving the 56 units. Readers are invited to determine
the answers for themselves.

Ten Irregular Heptiamonds, versions 1 and 2 (2019): Each of the ten large pieces
is composed of seven triangular bits, thus 70 area units in total. The singleton
to add in both cases is a parallelogram composed of two triangular bits. The two
variations are based on different size triangles. If we consider the trays to be based
on small parallelogram components rather than triangles, there are 35 parallelo-
grams set up in an array 7-by-5 to start. In the first variation, the evolution to 36
parallelograms is 6-by-6, while the evolution of the second variation is 9-by-4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When he was teaching, Tyler often had mechanical puzzles
in his classroom. As a freelancer, Tyler has worked with
numerous inventors and co-designers to bring dozens of
table-top solo-logic puzzle kits to market. He continues to
design puzzles, and he spends a good deal of time in his
woodshop, building his own and others’ puzzle designs.
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From the bookshelf of . . .
Doddy Kastanya

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

Coincidences, Chaos, and All that Math Jazz: Making Light of Weighty Ideas
by Edward B. Burger and Michael Starbird
ISBN 978-0-393-32931-5, 276 pages
Published by W. W. Norton & Company, New York, 2006.

The first time I bought this book was back in the spring of 2010 when I was at-
tending a workshop in Myrtle Beach, South Carolina. After a couple of days of
heavy-duty lectures and discussions around verification and validation for nuclear
system analyses, I needed a break. So, I went to a bookstore. After perusing
different types of books for an hour or so, I landed my eyes on this book. Skim-
ming through the book, I thought that this book should be enjoyable for some
light readings on various math related subjects. So, I bought it – and I was not
disappointed.

The book covers four major topics, each of which is ex-
panded into three very entertaining chapters. The first
topic roams through the world of uncertainties. The
authors provide plentiful day-to-day examples related
to coincidence (which can be viewed as things magi-
cally converging into an event), chaos (which can be
viewed as things unexpectedly diverging into seemingly
unconnected events), and statistics (which tries to fairly
measure the uncertain). The second topic explores the
world of numbers. How the secrets could remain secrets
with the help of numbers: big prime numbers; how big
numbers could actually get; and the search of pattern
in numbers which includes an introduction to the fa-
mous Fibonacci sequence, are some examples covered here. The authors took an
unexpected turn in the third part of the book where they present the artistic as-
pect of mathematics. They explore the world of fractals, discuss pleasing geometry
related to the golden ratio, and touch on some ideas from topology. Finally, the
book closes with a three-chapter part called Transcending Reality. The discussions
in this last part of the book are more abstract since they deal with the concept
of fourth dimension, infinity, and even stuff beyond infinity. The authors provide
somewhat tangible examples such as dealing with checking in at a hotel while
including a nice twist with the hotel having an infinite number of rooms and an
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infinite number of people who would like to check in. One of the things that I
like about the book is the fact that the authors have a unique way of guiding the
readers through each part of the book one step at a time into an acceptance of a
truly obscure concept like “infinities come in infinitely many sizes”.

The main thing that I like about this book is the way the authors humorously
present the materials. The concepts that could be really hard when explained with
formulas become more enjoyable when presented with more practical examples. As
a person who already read the book twice, I agree that the descriptions found at
the back cover of the book really capture what this book is all about.

“A book for the eternally curious, Coincidence, Chaos, and All That
Math Jazz fuses a professor’s understanding of the hidden mathemati-
cal skeleton of the universe with the sensibility of a stand-up comedian,
making life’s big questions accessible and compelling. Each chapter
opens with a surprising insight from which the authors leapfrog over
math and anecdote toward profound ideas about nature, art, and mu-
sic. Coincidence is a book for lovers of puzzles and posers of outlandish
questions, lapsed math aficionados and the formula phobic alike.”

At the beginning of this article, I mentioned “the first time I bought this book”.
It certainly was not a mistake. Recently, I ran into this book again at a Goodwill
store and bought the used copy for a buck. This time around it did not take
me much time to read through the book since I already had some ideas of what
would happen in the end. It was a nice refresher, nonetheless. Anyway, it was
still enjoyable, and I certainly hope that you would experience the same sentiment
once you are through with it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
Doddy Kastanya. Doddy is a math enthusiast working
as a nuclear engineer. The love of math and physics was
the reason for him to choose this field. In his spare times,
among other things he likes to solve math puzzles and
problems. In addition to Crux, the Project Euler has
provided him with enough challenges and enjoyment in
this area. Doddy and his family share their Oakville
home with their four cats: Luke, Lorelai, Lincoln, and
Lilian. Communications can be shared with the author
via email: kastanya@yahoo.com.
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MATHEMATICS FROM THE
WEB

No. 9

This column features short reviews of mathematical items from the internet that
will be of interest to high school and elementary students and teachers. You can
forward your own short reviews to mathemattic@cms.math.ca.

Nick’s Mathematical Puzzles
http://www.qbyte.org/puzzles/puzzle99.html

The link will take readers to an index of problems numbered up to 160 at the
time of publication. The numbered problems have names suggestive of the type of
problem in some cases. A problem selection will actually take one to the set of 10
problems containing the selection. For example, a selection of Problem 52 Floor
function sum or Problem 56 Partition identity would load the set of problems 51
through 60. The problems range over a wide variety of topics. All require a certain
ingenuity, but usually only pre-college math. Some puzzles are original.

The einstein tile
https://www.livescience.com/newly-discovered-einstein-tile-is-a-13

-sided-shape-that-solves-a-decades-old-math-problem

The recent discovery of a special tile called the einstein is worth learning more
about. This tile can be used infinitely to tile the plane without ever repeating a
pattern. This link is one of many that can shed light on the story. Teachers can
use this example in conjunction with ideas around tessellations or Penrose tilings,
links of which are also provided below in this issue.

Penrose tiles
http://www.ams.org/publicoutreach/feature-column/fcarc-penrose

This feature column from 2005 focuses attention on Penrose tilings. The article
entitled Penrose Tiles Talk Across Miles effectively uses a blend of visuals and
words to offer interested readers insight into the topic.

Math and the Art of M.C. Escher
https://mathstat.slu.edu/escher/index.php/Math and the Art of M. C. Escher

Anneke Bart and Bryan Clair, professors at Saint Louis University, authored a
book entitled Math and the Art of M.C. Escher. The website has plenty of mate-
rial suitable for the readership of MathemAttic whether one is interested in learning
more about the topic or finding teaching materials. Simply delving in, it is likely
that one will find paths they had not planned to be on as history of mathematics,
geometry and other surprises can be learned through this site.
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OLYMPIAD CORNER
No. 412

The problems in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by June 15, 2023.

OC626. Find all natural numbers a, b, c such that the number 2a! + 2b! + 2c!

is a perfect cube.

OC627. Professor Srinivasa built a supercomputer, which has a screen dis-
playing a number and two buttons. If you press the left button, the number x on
the screen gets replaced with the number x2−2. If you press the right button, the
number x on the screen gets replaced with the number x3−3x. How many distinct
numbers can the professor get after 10 button presses if his starting number is 2.5?
Justify.

OC628. Given a natural number n, let f(n) denote the sum of all natural
numbers less than n that are not prime. For example, f(10) = 1+4+6+8+9 = 28.

Find all natural numbers n which satisfy f(n) = 1 + n2

4 .

OC629. You invent a new chess piece called a chevalier. Its possible moves
are illustrated on the 8×8 chessboard: the black square is occupied by a chevalier
and squares marked with a black dot are all the squares the chevalier can attack.
How many chevaliers can you place on the chessboard so that none of them attack
each other?

OC630. For natural numbers n,m, let fn(m) = 12n + 22n + · · ·+m2n. For a
given n, prove that there exists only a finite number of pairs of natural numbers
(a, b) for which fn(a) + fn(b) is prime.
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juin 2023.

OC626. Déterminer tous les nombres naturels a, b, c tels que le nombre
2a! + 2b! + 2c! est un cube parfait.

OC627. La professeure Saurette a construit un superordinateur doté d’un
écran affichant un nombre, et muni de deux boutons. Si on appuie sur le bouton
à gauche, le nombre x à l’écran est remplacé par le nombre x2 − 2. Si on appuie
sur le bouton à droite, le nombre x à l’écran est remplacé par le nombre x3 − 3x.
Si le nombre à l’écran est 2.5 au départ, déterminer combien de nombres distincts
peuvent apparâıtre après avoir appuyé 10 fois. Justifier votre réponse.

OC628. À partir d’un nombre naturel n, la somme des naturels plus petits
que n et qui ne sont pas premiers est dénotée f(n). Par exemple, f(10) = 1 + 4 +

6 + 8 + 9 = 28. Déterminer tous les nombres naturels n tels que f(n) = 1 + n2

4 .

OC629. Une nouvelle pièce aux échecs ressemble au cavalier, mais elle n’est
pas capable d’attaquer les mêmes cases à partir d’où elle se trouve. Ceci est illustré
ci-dessous, où la case en noir dénote celle occupée par un nouveau cavalier et les
cases avec point noir sont celles attaquables par ce nouveau cavalier. Combien
de nouveaux cavaliers peuvent être placés sur un échiquier 8 × 8, de façon à ce
qu’aucun puisse attaquer aucun autre ?

OC630. Soit fn(m) = 12n + 22n + · · ·+m2n pour des nombres naturels m et
n. Pour n donné, démontrer qu’il existe seulement un nombre fini de paires de
nombres naturels (a, b) telles que fn(a) + fn(b) est premier.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(9), p. 535–536.

OC601. Let S be a set containing n2+n−1 elements, for some positive integer
n. Suppose that the n-element subsets of S are partitioned into two classes. Prove
that there are at least n pairwise disjoint n-element subsets in the same class.

Originally from the USAMO 2007, Problem 2.

We received 3 submissions, all of which were correct and complete. We present
the solution by Oliver Geupel, Germany.

The case n = 1 is by inspection. Next, assume that n ≥ 2. Suppose that the set
of n-element subsets of S is partitioned into two disjoint classes C1 and C2.

Let A be the class of (n+ 1)-element subsets, T , of S with the property:

Property 1: there exists two n-element subsets, T1 and T2, of T such that
T1 ∈ C1 and T2 ∈ C2.

Consider a subclass B of A with the following properties:

Property 2: the elements of B are pairwise disjoint subsets of S,

Property 3: for every T ∈ A \ B there exists an element U ∈ B such that
T ∩ U 6= ∅.

Let b be the cardinality of B and observe that

b ≤
õ
n2 + n− 1

n+ 1

û
= n− 1.

Let m = n2 + n− 1− b(n+ 1) and

V = S \
⋃
T∈B

T = {v1, v2, . . . , vm} .

If b = n − 1, then m = n, so that V is an n-element subset of A and therefore a
member of either C1 or C2, say, a member of C1. By properties 1 and 2, the n− 1
members of B yield n− 1 more elements of C1 which are pairwise disjoint subsets
of S, and we are done.

It remains to consider the case where b ≤ n − 2. We have m ≥ 2n + 1. There
is no loss of generality in assuming that {v1, v2, . . . , vn} ∈ C1. Next, we deduce
that {v2, v3, . . . , vn+1} ∈ C1. In fact, the hypothesis {v2, v3, . . . , vn+1} ∈ C2 would
contradict property 3. Similarly, we obtain

{v3, . . . , vn+2} , . . . , {vm−n+1, . . . , vm} ∈ C1.
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Thus we get
⌊
m
n

⌋
disjoint n-element subsets of V which are elements of C1. More-

over, every element of B yields one more element of C1. By construction, those⌊
m
n

⌋
+ b subsets are pairwise disjoint. Finally,⌊m

n

⌋
+ b =

õ
n− b+ 1− b+ 1

n

û
+ b ≥ (n− b) + b = n,

which completes the proof.

OC602. Let n be a positive integer. Consider 2n distinct lines on the plane,
no two of which are parallel. Of the 2n lines, n are colored blue, the other n are
colored red. Let B be the set of all points on the plane that lie on at least one
blue line, and R the set of all points on the plane that lie on at least one red line.
Prove that there exists a circle that intersects B in exactly 2n− 1 points, and also
intersects R in exactly 2n− 1 points.

Originally from the 2015 Asian Pacific Mathematics Olympiad, Problem 4.

We present the only solution we received, the solution by UCLan Cyprus Problem
Solving Group.

Pick a blue line `1 and a red line `2 such that the angle formed between them
is maximal. Consider the two half-lines `′1 and `′2 extended from the point of
intersection, forming this maximal angle.

Any other line intersects `′1 ∪ `′2 at precisely one point. If it intersects the union of
the two half-lines at two points, then it forms a larger angle with one of them. If it
doesn’t intersect them, then, since no two lines are parallel, it crosses the opposite
two half-lines at two points, again creating a larger angle.

For every t > 0, there is a unique circle Ct tangent to both `′1 and `′2 at a distance
t from their point of intersection.

Since every line, ` intersects `′1 ∪ `′2 at precisely one point, for any large enough t,
the circle Ct intersects ` at two points.

Thus, choosing t large enough, Ct intersects every other line (out of the finitely
many) at two points while it intersects `1 and `2 at one point each.

Each such circle intersects B and R at exactly 2n− 1 points.

OC603. Let ABC be an acute scalene triangle. Let X and Y be two distinct
interior points of the segment BC such that ∠CAX = ∠Y AB. Suppose that:

1) K and S are the feet of perpendiculars from B to the lines AX and AY
respectively;

2) T and L are the feet of perpendiculars from C to the lines AX and AY
respectively.

Prove that KL and ST intersect on the line BC.

Copyright © Canadian Mathematical Society, 2023
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Originally from the 2019 Balkan Mathematical Olympiad, Problem 3.

We received 7 submissions, of which 5 were correct and complete. We present the
solution by Theo Koupelis, Cape Coral, Florida, USA.

For the quadrilateral KTSL let point E be the intersection point of the sides KL
and ST, and point F be the intersection point of the diagonals SK and LT. The
quadrilaterals AKSB and ALTC are cyclic because ∠BKA = ∠BSA = ∠CLA =
∠CTA = 90◦. Thus, ∠KSA = ∠KBA = 90◦−∠BAK = 90◦−∠CAL = ∠ACL =
∠ATL, and therefore KTSL is cyclic.

Let point D be the foot of the perpendicular from A to BC. Then ∠BSA =
∠BDA = 90◦, and ∠CTA = ∠CDA = 90◦, and thus point D is the second
intersection point of the circles AKSB and ALTC. Therefore, for the three cir-
cles AKSB,ALTC, and KTSL we have that the radical axes AD,SK, and LT
intersect at the same point, which is point F.

Let I be the center of the circle (KTSL), and M,N be the midpoints of segments
SL,KT, respectively. Then IM, IN are the perpendicular bisectors of SL,KT,
respectively; but IM ‖ BS ‖ CL, and IN ‖ CT ‖ BK, and thus I is the midpoint
of BC.

Finally, from Brocard’s theorem for the quadrilateral KTSL we have that I is the
orthocenter of 4AFE. Thus, EI ⊥ AF and therefore EI ‖ BI, and thus E is on
the line BC.
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OC604. Find all monic polynomials f with integer coefficients satisfying the
following condition: there exists a positive integerN such that p divides 2(f(p))!+1
for every prime p > N for which f(p) is a positive integer.

Originally from the 2016 Balkan Mathematical Olympiad, Problem 3.

We received 5 solutions, of which 4 were correct and complete. We present the
solution by Missouri State University Problem Solving Group.

If deg(f) > 1, then for all sufficiently large p, f(p) > p. Hence, 2(f(p))! + 1 ≡
0 + 1 6≡ 0 (mod p) and f cannot have the required property. Also, f cannot be
constant, for then p must divide the constant 2(f(p))! + 1, and there are only
finitely many such p. A linear polynomial f(p) = p+k for k ≥ 0 does not have the
required property. This is because f(p) ≥ p and 2(f(p))! + 1 ≡ 0 + 1 6≡ 0 (mod p).

Therefore, the remaining candidates are linear polynomials f(p) = p − k with
k > 0. Notice that (p− 1)(p− 2) = p(p− 3) + 2 ≡ 2 (mod p).

Let k = 3. We have

2(p− 3)! + 1 ≡ (p− 1)(p− 2)(p− 3)! + 1

≡ (p− 1)! + 1

≡ −1 + 1 (by Wilson’s theorem)

≡ 0 (mod p) .

Therefore, f(p) = p− 3 satisfies the condition of the problem.

Let k = 1. Then

2(p− 1)! + 1 ≡ 2(−1) + 1(by Wilson’s theorem)

≡ −1 (mod p) .

Therefore, f(p) = p− 1 does not satisfy the condition of the problem.

Let k = 2. We have

2(p− 2)! + 1 ≡ (p− 1)(p− 2)(p− 2)! + 1

≡ (p− 2)(p− 1)! + 1

≡ (−2)(−1) + 1 (by Wilson’s theorem)

≡ 3 (mod p) .

Only p = 3 satisfies this condition. Therefore, f(p) = p − 2 does not satisfy the
condition of the problem.

Assume there exists k > 3 that satisfies the condition of the problem. Then

2(p− k)! + 1 ≡ 0 (mod p) .

Multiply the above by (p− 3)(p− 4) · · · (p− (k − 1)) to get

2(p− 3)! + (p− 3)(p− 4) · · · (p− (k − 1)) ≡ 0 (mod p) ,
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204/ OLYMPIAD CORNER

or
−1 + (−3)(−4) · · · (−(k − 1)) ≡ 0 (mod p) .

The last congruence implies that infinitely many primes, p, divide the constant on
the left-hand side of the congruence, which is impossible.

We conclude that the only polynomial satisfying the condition of the problem is
f(p) = p− 3.

OC605. Let ABC be a scalene triangle with ∠B = 130◦. Let H be the foot
of altitude from B. D and E are points on the sides AB and BC, respectively,
such that DH = EH and ADEC is a cyclic quadrilateral. Find ∠DHE.

Originally from the 2017 St Petersburg Mathematical Olympiad, Grade 9, Problem
5.

We received 6 submissions, of which 2 were correct and complete. We present the
solution by Oliver Geupel, Germany.

We show that ∠DHE = 2 (180◦ − ∠B) = 100◦. It follows that H is the circum-
centre of triangle BDE.

Since the quadrilateral ADEC is cyclic, it holds

∠DEB = 180◦ − ∠CED = 180◦ − (180◦ − ∠A) = ∠A.

Similarly ∠BDE = ∠C. Let ϕ = ∠EDH = ∠HED. By the law of sines in the
triangles BHD and BEH, we have

sin(∠A+ ϕ)

sin (90◦ − ∠C)
=

sin∠HEB
sin∠EBH

=
BH

EH
=
BH

DH
=

sin∠BDH
sin∠HBD

=
sin(∠C + ϕ)

sin (90◦ − ∠A)
.

Hence

sin(2∠A+ ϕ)− sin(2∠C + ϕ)

= (sin(2∠A+ ϕ) + sinϕ)− (sin(2∠C + ϕ) + sinϕ)

= 2 sin(∠A+ ϕ) sin(90◦ − ∠A)− 2 sin(∠C + ϕ) sin(90◦ − ∠C) = 0.
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Observing that ∠A, ∠C, and ϕ are acute angles, we see that 0◦ < 2∠A+ϕ < 270◦

and 0◦ < 2∠C+ϕ < 270◦. Also, ∠A 6= ∠C by hypothesis. Therefore, the equation

sin(2∠A+ ϕ) = sin(2∠C + ϕ)

can hold only if
(2∠A+ ϕ) + (2∠C + ϕ) = 180◦,

that is,
ϕ = 90◦ − (∠A+ ∠C) = ∠B − 90◦.

Consequently,
∠DHE = 180◦ − 2ϕ = 2 (180◦ − ∠B) ,

which completes the proof.

Editor’s Comments. ABC being scalene is crucial for identifying the measure of
∠DHE. As Richard Hess pointed out, if ABC is isosceles, then the measure of
∠DHE is not unique. D and E can be selected at the intersection of any line
parallel to the base AC. Then DH = EH and ADEC is an isosceles trapezoid
and a cyclic quadrilateral. As the parallel line is arbitrary, the measure of ∠DHE
can be any value from (0◦, 180◦).
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Hales-Jewett theorem through
examples and exercises: Part I

Veselin Jungić

“Last year I went fishing with Salvador Dali. He was using a dotted
line. He caught every other fish.”

Steven Wright, an American comedian, actor and writer

1 Introduction

The Hales-Jewett theorem is another of the landmarks in the development of
Ramsey theory. The theorem was inspired by van der Waerden’s theorem [3, 4]
and a generalization of Tic-Tac-Toe, a well-known children’s game. Alfred Hales
and Robert Jewett published their paper Regularity and positional games [2] in
1963. Many years later Ronald Graham, Bruce Rothschild, and Joel Spencer in
their book Ramsey Theory explained: “The Hales-Jewett theorem strips van der
Waerden’s theorem of its unessential elements and revels the heart of Ramsey
theory” [1].

For the purpose of introducing an informal version of the Hales-Jewett theorem
we remind the reader about the game of Tic-Tac-Toe1 :

Two players are taking turns claiming the spaces in a 3× 3 grid with the goal to
claim a row, a column, or a diagonal.

× ×
×

×

Tic-Tac-Toe

⇒
× ×

×
×

It’s a draw!

⇔
31

11 12

22 23

13

32 33

21

13

Same but different

Hales-Jewett Theorem (Informal): In large enough dimensions, the game of
Tic-Tac-Toe cannot end in a draw.

It turned out that the publication of [2] was just the beginning of the Hales-Jewett
theorem’s long and happy mathematical life.

Alfred Washington Hales and Robert Israel Jewett, 1937-2022, are American math-
ematicians. Both of them had long and distinguished academic careers, Hales at
the University of California Los Angeles and Jewett at the University of Western

1 We will learn that the settings of the Hales-Jewett theorem exclude one of the diagonals.
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Washington.

When they submitted the Regularity and position games paper in 1961, Hales was
23 years old and Jewett was 24. Both were doctoral students at the time. Hales was
working under the supervision of Robert P. Dilworth at the California Institute
of Technology (Caltech) and Jewett was supervised by Karl Stromberg at the
University of Oregon. The pair knew each other from their time as undergraduate
students at Caltech.

In 1971, Hales and Jewett, together with Ronald Graham, Klaus Leeb, and Bruce
Rothschild, were the first recipients of the George Pólya Prize.

To state the Hales-Jewett we need to introduce the notion of a combinatorial line.
In what follows we will justify the line part in the name of these intriguing objects,
but also provide the evidence that a combinatorial line is something very different
than an Euclidean line.

2 Alphabets, Words, and Roots

In the rest of this note, for a natural number n we will denote the set {1, 2, . . . , n}
by [1, n].

Definition 1. For m ∈ N, any set A such that |A| = m is called an alphabet on
m symbols.

Example 1. Let A = {a, 1,4}. Then A is an alphabet on |A| = 3 symbols.

Definition 2. Let A be an alphabet on m symbols. For n ∈ N, any function
w : [1, n] → A is called a word of length n on the alphabet A. If w(i) = ai,
i ∈ [1, n], then we write w = a1 a2 · · · an. The set of all words of length n on the
alphabet A is denoted by An. We say that An is the n-dimensional cube on the
alphabet A.

Example 2. Let A = {a, 1,4} be an alphabet on three symbols. Then we have
that w = a 1 a 1 a 1 is a word of length 6 on the alphabet A. Here w : [1, 6]→ A
is defined as w(1) = w(3) = w(5) = a and w(2) = w(4) = w(6) = 1. Also,

Copyright © Canadian Mathematical Society, 2023
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A2 = {a a, a 1, a 4, 1 a, 1 1, 1 4, 4 a, 4 1, 4 4}.

Exercise 1. Let A be an alphabet on m symbols. How many words of length n
on the alphabet A are there?

Definition 3. Let A be an alphabet (on m symbols) and let ∗ be a symbol such
that ∗ 6∈ A (the symbol ∗ is commonly called a wildcard or an active coordinate).
We consider the alphabet A∗ = A ∪ {∗}. Any word on the alphabet A∗, i.e., any
element of (A∗)

n = An∗ , for some n ∈ N, that contains the symbol ∗ is called a root.

Example 3. Let A = {a, 1,4} be an alphabet on three symbols. Then we have
A∗ = A ∪ {∗} = {a, 1,4, ∗}. By definition, 1 ∗ 4 ∈ A3

∗ and a ∗ a ∗ ∈ A4
∗ are

roots and the word 1 1 4 ∈ A3
∗ is not.

For a root τ ∈ An∗ and a symbol a ∈ A we define the word τa ∈ An in the following
way. For i ∈ [1, n]

τa(i) =

ß
τ(i) if τ(i) 6= ∗,
a if τ(i) = ∗.

Example 4. Let A = {a, b, c} and let τ = ∗ b c b ∈ A4
∗ be a root. Then,

τa = a b c b, τb = b b c b, and τc = c b c b.

Example 5. Let A = [1, 4] and let τ = ∗ 1 3 ∗ 4 ∗ ∈ A6
∗ be a root. Then

τ2 = 2 1 3 2 4 2.

3 Combinatorial Lines

Definition 4. Let A be an alphabet, let n ∈ N, and let τ ∈ An∗ be a root. A
combinatorial line in An rooted in τ is the set of words Lτ = {τa : a ∈ A}.
We observe that, for any root τ ∈ An∗ , the combinatorial line Lτ is a subset of the
cube An.

Example 6. Let A = [1, 3] and n = 2. Find all combinatorial lines in A2.

Observe that the set of all roots in A2
∗ is given by

{τ = ∗ 1, σ = ∗ 2, θ = ∗ 3, ρ = 1 ∗ , χ = 2 ∗ , φ = 3 ∗ , µ = ∗ ∗}.
It follows that all combinatorial lines in A2 are given by: Lτ = {1 1, 2 1, 3 1},
Lσ = {1 2, 2 2, 3 2}, Lθ = {1 3, 2 3, 3 3}, Lρ = {1 1, 1 2, 1 3}, Lχ = {2 1, 2 2, 2 3},
Lφ = {3 1, 3 2, 3 3}, and Lµ = {1 1, 2 2, 3 3}.
Here is another view of all combinatorial lines in A2.

Lτ Lσ Lθ Lρ Lχ Lφ Lµ
1 1 1 2 1 3 1 1 2 1 3 1 1 1
2 1 2 2 2 3 1 2 2 2 3 2 2 2
3 1 3 2 3 3 1 3 2 3 3 3 3 3
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For yet another view of all combinatorial lines in A2 = [1, 3]2, we first observe the
one-to-one correspondence between the 2-dimensional cube on alphabet [1, 3] and
the set of points P = {(x, y) : x, y ∈ [1, 3]} in the xy–plane.

By this correspondence, each combinatorial line corresponds to a line segment in
the xy–plane that contains three points from the set P .

Observe that the south-east diagonal of the square determined by the set P does
not correspond to any of the combinatorial lines in [1, 3]2.

1 2 3 4

1

2

3

4

x

y

Lρ Lχ Lφ Lµ

Lθ

Lσ

Lτ

Finally, we observe that each of the combinatorial lines in [1, 3]2 corresponds to a
winning position in the Tic-Tac-Toe game.

× × ×

×

Tic–Tac–Toe: × wins!

×
×

×

Tic–Tac–Toe: • wins!

Again, observe that there is a winning position, the south-east diagonal, that does
not correspond to any of the combinatorial lines in [1, 3]2.

Exercise 2. Let A = {a, b, c, d}. List all combinatorial lines in A2.

Example 7. Determine combinatorial lines in [1, 3]3 rooted in τ = ∗ 2 3, σ =
∗ ∗ 3, and θ = ∗ ∗ ∗ ∈ [1, 3]3∗.
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By definition:

Lτ Lσ Lθ
1 2 3 1 1 3 1 1 1
2 2 3 2 2 3 2 2 2
3 2 3 3 3 3 3 3 3

(3, 1, 1) (2, 1, 1) (1, 1, 1)

(1, 3, 1)

(1, 3, 2)

(1, 3, 3)

(1, 2, 1)

Lθ

Lτ

Lσ

We observe that the points in R3 that correspond to the elements of the com-
binatorial line Lτ lie on the Euclidean line `τ with the parametric equations
x = t, y = 2, z = 3, t ∈ R. Similarly, the combinatorial line Lσ corresponds to a set
of points on the line `σ with the parametric equations x = t, y = t, z = 3, t ∈ R,
and Lθ corresponds to a set of points on the line `θ with the parametric equations
x = t, y = t, z = t, t ∈ R.

In general, for m ∈ N, the combinatorial line determined by a root µ = a1 a2 a3 ∈
[1,m]3∗ corresponds to a set of points on the Euclidean line `µ with the parametric
equations x = b1 + α1 · t, y = b2 + α2 · t, z = b3 + α3 · t, t ∈ R, where bi = 0 and
αi = 1 if ai = ∗, and bi = ai and αi = 0 if ai ∈ [1,m]. This set of points is
obtained for the values t ∈ [1,m].

The use of the term line in describing the set of words in A3 determined by a root
is justified by the fact that there is a one-to-one correspondence between this set
and a set of collinear points in R3. The reader should keep in mind that a word
w ∈ A3 is a function having the set [1, 3] as its domain and that the set A, its
codomain can be basically any finite set. Hence, as a mathematical object, a finite
set of words that we call a combinatorial line is much different than a Euclidean
line in R3.

Exercise 3. In the figure below you see four Euclidean lines passing through
points in a 4× 4× 4 cube. If a line corresponds to a combinatorial line in [1, 4]3,
list all of the elements of the combinatorial line and determine the root associated
with it. If a line does not correspond to a combinatorial line, briefly explain why.

(4, 1, 1) (3, 1, 1) (2, 1, 1) (1, 1, 1)

(1, 4, 1)

(1, 4, 2)

(1, 4, 3)

(1, 4, 4)

(1, 2, 1)

(1, 3, 1)

L3

L2

L1

L4
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Exercise 4. Let r ∈ N and let τ (1), τ (2), . . . , τ (r) ∈ [1,m]n∗ be r roots. We
say that the corresponding combinatorial lines are focussed at f ∈ [1,m]n if

τ
(1)
m = τ

(2)
m = · · · = τ

(r)
m = f . Let A = [1, 5]. Give an example of five focused

combinatorial lines in A5.

Exercise 5. In the May 1947 issue of The American Mathematical Monthly, A.
L. Rubinoff from the University of Toronto proposed the following problem. Sup-
pose that a noughts and crosses (i.e., a Tic-Tac-Toe game) are played on an n-

dimensional cube of sidem. Show that there are exactly (m+2)n−mn

2 rows, columns,
diagonals . . . on which a win may be scored [6].

Exercise 6. Let m,n ∈ N and let |A| = m, i.e., let A be an alphabet on m
symbols. Prove that the number of combinatorial lines in An is (m+ 1)n −mn.

4 Hints and solutions.

Exercise 1. mn.

Exercise 2. The set of all roots inA2
∗ is given by {∗ a, ∗ b, ∗ c, ∗ d, a ∗, b ∗, c ∗, d ∗, ∗ ∗}.

It follows that all combinatorial lines A2 are

a a a b a c a d a a b a c a d a a a
b a b b b c b d a b b b c b d b b b
c a c b c c c d a c b c c c d c c c
d a d b d c d d a d b d c d d d d d

Exercise 3. Observe that L2 = {1 2 4, 2 2 3, 3 2 2, 4 2 1}. Since the first and
third letter in each word change to different letters at different times, this set of
words cannot be obtained from a root. It follows that L2 is not a combinatorial
line. The remaining three Euclidean lines correspond to combinatorial lines:

Root Combinatorial line Euclidean Line
τ = ∗32 Lτ = {1 3 2, 2 3 2, 3 3 2, 4 3 2} L1

σ = ∗ ∗ ∗ Lσ = {1 1 1, 2 2 2, 3 3 3, 4 4 4} L3

θ = 24∗ Lθ = {2 4 1, 2 4 2, 2 4 3, 2 4 4} L4

Exercise 4. For example, consider the following five roots:

α = 1 ∗ ∗ ∗ ∗, β = 1 5 ∗ ∗ ∗ ,γ = 1 5 5 ∗ ∗, δ = 1 5 5 5 ∗ , ε = 1 ∗ 5 ∗ ∗.

The corresponding combinatorial lines are given by:
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L(α) L(β) L(γ) L(δ) L(ε)

1 1 1 1 1 1 5 1 1 1 1 5 5 1 1 1 5 5 5 1 1 1 5 1 1
1 2 2 2 2 1 5 2 2 2 1 5 5 2 2 1 5 5 5 2 1 2 5 2 2
1 3 3 3 3 1 5 3 3 3 1 5 5 3 3 1 5 5 5 3 1 3 5 3 3
1 4 4 4 4 1 5 4 4 4 1 5 5 4 4 1 5 5 5 4 1 4 5 4 4
1 5 5 5 5 1 5 5 5 5 1 5 5 5 5 1 5 5 5 5 1 5 5 5 5

Since L
(α)
5 = L

(β)
5 = L

(γ)
5 = L

(δ)
5 = L

(ε)
5 = 1 5 5 5 5, the combinatorial lines

L(α), L(β), Lγ), L(δ) and L(ε) are focused with the focus 1 5 5 5 5.

Exercise 5. Here is a solution by Leo Moser from 1948. Consider the “cube” of
side k inside a cube of side k + 2. Clearly, every win will determine exactly one
pair of surface elements, while each surface element determines exactly one win.
Hence the number of wins will be half of the number of surface elements, which is
the result stated [5].

Exercise 6. Observe that the number of combinatorial lines equals to the number
of roots in (A∪{∗})n. The number of all words of length n on the alphabet A∪{∗}
is (m+ 1)n. Since the number of all words of length n on the alphabet A is mn it
follows that

(# of combinatorial lines) = (# of roots in (A ∪ {∗})n) = (m+ 1)n −mn.

2
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by June 15, 2023.

4831. Proposed by Goran Conar.

Let p(x) = xn+an−1x
n−1 +an−2x

n−2 + · · ·+a1x+1 be a polynomial of degree n,
n even, with all roots positive. Prove that for every b ∈ N the following inequality
holds

bp(−b)c − (b+ 1)n ≥ 0,

(where bxc denotes the integer part of x).

4832. Proposed by Michel Bataille.

Let A ∈ Mn(C) and θ ∈ R. If Ak+1 = On for some positive integer k, prove that
the matrix

In + 2
k∑
j=1

cos(jθ)Aj

is invertible.

4833. Proposed by Mihaela Berindeanu.

Let ABC be an acute triangle, with the circumcircle Γ1 and the circumcenter
O. The circumcircle of 4AOB is Γ2, which cuts AC in P and BC in R. If
CO ∩AB = {Q} show that QP 2 +RC2 = PC2 +QR2.

4834. Proposed by Michael Friday, modified by the editorial board.

Given a triangle ABC with sides a = BC, b = CA, c = AB, prove that a point D
lies on the arc AC opposite B of its circumcircle if and only if

a

a′
+
b

b′
=

c

c′
,

where a′, b′, c′ are the lengths of the perpendiculars dropped from D to the lines
BC,CA,AB, respectively.

4835. Proposed by George Stoica.

Prove that the four complex numbers zi, i = 1, . . . , 4, are the consecutive vertices
of a cyclic quadrilateral (or are collinear) in the complex plane if and only if the

number
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
is real.
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4836. Proposed by Mohammad Bakkar.

Prove the following formula:

π3

32
=

∞∏
n=1,2n+1/∈P

4n(n+ 1)

(2n+ 1)2
,

where P is the set of prime numbers.

4837. Proposed by George Apostolopoulos.

Let ABC be a given triangle and let M,N be the interior points on the side BC
such that BM = CN . Prove that

(AB +AC) ·
Å

1

AM
+

1

AN

ã
> 4.

4838. Proposed by Daniel Sitaru.

Find: ∫ 1

0

2x− 1

e2x + 4x
dx

4839. Proposed by Byungjun Lee.

ABCDEFG is a regular heptagon, and a parabola Γ with directrix l is tangent to
four lines CD, EF , GA, and AB. Let CD∩Γ = P , GA∩Γ = Q, and EF ∩ l = X.
Prove the following statements:

i) The three points Q, B, and E are collinear.

ii) The three points P , Q, and X are collinear.
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4840. Proposed by Phan Ngoc Chau.

Prove that the following inequality

1 + a
√
bc

a+
√
bc

+
1 + b

√
ca

b+
√
ca

+
1 + c

√
ab

c+
√
ab
≥ 1 +

4

a+ b+ c

holds for all non-negative real numbers such that: ab + bc + ca = 1. When does
equality occur?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juin 2023.

4831. Soumis par Goran Conar.

Soit p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + 1 un polynôme de degré
pair n, tel que toutes les racines sont positives. Démontrer que pour tout b ∈ N,
l’inégalité suivante est vérifiée

bp(−b)c − (b+ 1)n ≥ 0,

(où bxc dénote la partie entière de x).

4832. Soumis par Michel Bataille.

Soient A ∈ Mn(C) et θ ∈ R. Si Ak+1 = On pour un certain entier positif k,
démontrer que la matrice

In + 2
k∑
j=1

cos(jθ)Aj

est inversible.
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4833. Soumis par Mihaela Berindeanu.

Soit ABC un triangle acutangle et soit O le centre de son cercle circonscrit Γ1. Le
cercle circonscrit de 4AOB, que l’on dénotera Γ2, rencontre AC en P et BC en
R. Si CO ∩AB = {Q}, démontrer que QP 2 +RC2 = PC2 +QR2.

4834. Soumis par Michael Friday, modifié par le comité de rédaction.

Soit un triangle ABC, les longueurs de ses côtés étant a = BC, b = CA, c = AB.
Soit alors D un point sur le cercle et soient a′, b′, c′ les longueurs des perpendic-
ulaires de D vers les lignes BC, CA, AB respectivement. Démontrer que D se
trouve sur l’arc AC opposé à B si et seulement si

a

a′
+
b

b′
=

c

c′
.

4835. Soumis par George Stoica.

Démontrer que les quatre nombres complexes zi, i = 1, . . . , 4, sont, dans l’ordre, les
sommets d’un quadrilatère cyclique (ou sont alignés) si et seulement si le nombre
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
est réel.

4836. Soumis par Mohammad Bakkar.

Démontrer la formule
π3

32
=

∞∏
n=1,2n+1/∈P

4n(n+ 1)

(2n+ 1)2
,

où P est l’ensemble des nombres premiers.

4837. Soumis par George Apostolopoulos.

Soit ABC un triangle et soient M , N des points intérieurs du côté BC, tels que
BM = CN . Démontrer que

(AB +AC) ·
Å

1

AM
+

1

AN

ã
> 4.

4838. Soumis par Daniel Sitaru.

Déterminer ∫ 1

0

2x− 1

e2x + 4x
dx
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4839. Soumis par Byungjun Lee.

SoientABCDEFG un heptagone régulier et Γ la parabole, de directrive l, tangente
aux quatre droites CD,EF,GA et AB. Soient CD ∩ Γ = P , GA ∩ Γ = Q, et
EF ∩ l = X. Démontrer les affirmations suivantes.

i) Les trois points Q, B et E sont alignés.

ii) Les trois points P , Q et X sont alignés.

4840. Soumis par Phan Ngoc Chau.

Montrer que l’inégalité

1 + a
√
bc

a+
√
bc

+
1 + b

√
ca

b+
√
ca

+
1 + c

√
ab

c+
√
ab
≥ 1 +

4

a+ b+ c

est vérifiée pour tous nombres réels non négatifs tels que ab+ bc+ ca = 1. Quand
avons-nous égalité?
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 48(9), p. 562–565.

4781. Proposed by Michel Bataille.

Let C denote the set of all pairs of coprime positive integers and let

d(m,n) = gcd{2m(m+ n), n(10m+ n), n2 + 10m2 + 2mn}.

Find {d(m,n); (m,n) ∈ C}.
We received 12 submissions and 11 of them were all complete and correct. We
present a solution by the majority of solvers.

Observe that

(10m+ 9n) · (n(10m+ n))− 50n · (2m(m+ n)) = 9n3,

and
(9m+ n) · (2m(m+ n))− 2m · (n(10m+ n)) = 18m3.

Therefore d(m,n) | gcd(9n3, 18m3). Since m and n are coprime, it follows that
d(m,n) must be a divisor of 18. As

d(1, 1) = 1, d(1, 4) = 2, d(2, 1) = 3, d(1, 2) = 6, d(4, 5) = 9, and d(5, 4) = 18,

the set we are looking for consists of all the positive divisors of 18.

4782. Proposed by Eugen J. Ionascu.

Let A be the set of all integers n such that 1 ≤ n ≤ 2022 and gcd(n, 2022) = 1.
For every nonnegative integer j, let S(j) =

∑
n∈A n

j . Show that

S(j) (mod 2022) ≡
®

0 if 336 6 |j,
672 if 336|j.

We received 8 submissions, 7 of which were correct and complete. We present the
solution by the Cyprus Group.

We have 2022 = 2 · 3 · 337 and |A| = 2 · 336 = 672. Furthermore, by the Chinese
Remainder Theorem,

• all elements of A are congruent to 1 mod 2,

• 336 elements of A are congruent to 1 mod 3 and the other 336 are congruent
to 2 mod 3,
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• for each m ∈ {1, 2, . . . , 336} exactly two elements of A are congruent to
m mod 337.

(i.e. the system x 6≡ 0 mod 2, x ≡ 1 mod 3, x 6≡ 0 mod 337 has 1 · 1 · 336 solutions
modulo 2022).

So, for any j we have

S(j) =
∑
n∈A

nj ≡
∑
n∈A

1 ≡ 672 ≡ 0 mod 2

and
S(j) =

∑
n∈A

nj ≡ 336(1j + 2j) ≡ 0 mod 3.

We also have

S(j) =
∑
n∈A

nj ≡ 2(1j + 2j + · · ·+ 336j) mod 337.

If 336 | j, then by Fermat’s Little Theorem nj ≡ 1 mod 337 for every n ∈
{1, 2, . . . , 336}, and thus S(j) ≡ 2 · 336 ≡ 672 mod 337. Since also S(j) ≡ 0 mod 2
and S(j) ≡ 0 mod 3, then S(j) ≡ 672 mod 2022.

Suppose now that 336 - j and let g be a primitive root modulo 337. Then gj 6≡
1 mod 337 and so

gjS(j) = gj + (2g)j + · · ·+ (336g)j ≡ S(j) mod 337

where the last congruence follows since 0, g, 2g, . . . , 336g are all incongruent mod-
ulo 337 and thus form a complete modulo system modulo 337.

Since gj 6≡ 1 mod 337 and gjS(j) ≡ S(j) mod 337, it follows that S(j) ≡ 0 mod
337. So in this case we have S(j) ≡ 0 mod 2022.

Editor’s Comments. What does it mean to know a number? The Chinese Re-
mainder Theorem says if you know an integer modulo several distinct primes,
then you know it modulo their product. This principle was universally adopted by
our solvers, all of whom showed (one way or another) that S(j) ≡ 0 mod 2 and 3
while S(j) ≡ −2 or 0 mod 337 depending on whether j is divisible by 336 or not.
But where are these numbers coming from? If we define

Sm(j) =
∑

1≤a≤m
gcd(a,m)=1

aj

then the key result is that

Snm(j) ≡ φ(n)Sm(j) mod m

whenever gcd(n,m) = 1. This is because the equation x ≡ a mod m has exactly
φ(n) solutions x mod nm. Using a computer, W. Janous determined Sm(j) com-
pletely for all 1 ≤ m ≤ 96 and asked a very interesting question: How large can
the set {Sm(j) mod m : j = 0, 1, 2, . . .} be?
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4783. Proposed by Mihaela Berindeanu.

Prove that the points A,B,C on the unit circle are the vertices of an equilateral
triangle if and only if the corresponding complex numbers a, b, c satisfy

a

2(b+ c)− a +
b

2(c+ a)− b +
c

2(a+ b)− c = −1.

We received 17 submissions, all of which were correct. Our featured solution comes
in two steps: almost everybody had a similar approach to the first step, while the
second step brought forth two approaches that are particularly simple.

Step 1. Prove that the given equation is equivalent to a+ b+ c = 0.
Note first that

a

2(b+ c)− a +
1

3
=

2(a+ b+ c)

3(2(b+ c)− a)
.

Therefore,

0 =
∑Å

a

2(b+ c)− a +
1

3

ã
=

2(a+ b+ c)

3

Å
1

2(b+ c)− a +
1

2(c+ a)− b +
1

2(a+ b)− c

ã
=

6(a+ b+ c)(ab+ bc+ ca)

(2(a+ b)− c)(2(b+ c)− a)(2(c+ a)− b) .

It follows that a + b + c = 0 or ab + bc + ca = 0. But the latter possibility is
equivalent to the former, as follows: Because |a| = |b| = |c| = 1,

ab+ bc+ ca = 0 if and only if 0 =
1

a
+

1

b
+

1

c
= ā+ b̄+ c̄,

and a complex number equals zero if and only if its conjugate, namely a + b + c,
equals zero.

Step 2. Prove that the points A,B,C on the unit circle are the vertices of an
equilateral triangle if and only if the corresponding complex numbers a, b, c satisfy
a+ b+ c = 0.

Here are two easy proofs:

Solution 1, independently provided by Michel Bataille, Mohamed Amine Ben Ajiba,
Aravind Mahadevan, Corneliu Manescu-Avram, Madhav R. Modak, and the pro-
poser.

The circumcenter of triangle ABC is represented by the origin, its centroid by
a+b+c

3 , and its orthocenter by a+ b+ c. Two of these points coincide if and only
if a+ b+ c = 0, if and only if all three points coincide, if and only if the triangle
is equilateral.
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Solution 2, independently provided by the UCLan Cyprus Problem Solving Group
and by Walther Janous.

We may assume (rotating if necessary) that a = 1. If b = x + iy, then we must
have c = −1− x− iy; since |b| = |c| then −1− x = ±x. This gives x = −1/2 and,
thus, y = ±

√
3/2. So a, b, c represent the vertices of an equilateral triangle.

4784. Proposed by Salem Malikic.

Given is a triangle ABC and point D on the extension of CA beyond A such that
AD = AB. Let E be the intersection point of the angle bisector of angle BAC
and side BC, and F the midpoint of AE. If CF intersects side AB at G, prove
that the points D, G, and E are collinear.

We received 23 submissions, all of which were correct, and we sample 4 of the
various types of solutions.

Solution 1, a composite of the eight submissions that were based on Menelaus’s
theorem.

By Menelaus’s Theorem applied to triangle ABE with line CG we have

AG

GB
· BC
EC
· EF
FA

= 1 ,

Because EF = FA it follows that

AG

GB
=
EC

BC
. (1)

Since AE is an angle bisector, then BE/EC = AB/AC, or because AB = AD
and A lies between D and C, it follows that DC = DA+AC and

BC

BE
=
DC

DA
. (2)

Note that G and E have been defined to lie in the interiors of the sides AB and
BC of triangle ABC, while D lies outside the triangle on the line AC. We can
therefore apply Menelaus’s theorem to triangle ABC and the pointe D,G,E:

AG

GB
· BE
EC
· DC
DA

=
EC

BC
· BE
EC
· BC
BE

= 1.

Thus, the points D,G,E are collinear.

Editor’s warning. Before applying Menelaus’s theorem (or, if you prefer, the
“converse” of Menelaus’s theorem) to a triangle and three points (one on each
side, possibly extended), one must first determine that exactly one or three of the
points lie outside the triangle. (Should zero or two points lie outside the triangle,
then the three points are the feet of concurrent or parallel cevians, and are certainly
not collinear.) Directed line segments are often used to emphasize the matter. If
the reader is one of the several correspondents who failed to establish that exactly
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one of the three given points was external, please slap yourself on the wrist and
promise never to do it again.

Solution 2 is a composite of the nine submissions based on properties of a trapezoid.

Because ∆DAB is isosceles,

∠BDA =
π − ∠DAB

2
=
π − (π − ∠BAC)

2
=

∠BAC
2

= ∠EAC.

Consequently, the lines DB and AE are parallel, and ADBE is a trapezoid. Let
K be the point where CF intersects BD. The result follows immediately for those
who know the theorem which says that the line that passes through the intersection
of the nonparallel sides of a trapezoid (namely C = AD ∩BE and the midpoints
of the parallel sides (namely F and K), passes also through the intersection of the
two diagonals (namely G = AB ∩ ED). For those who do not know the theorem,
here is a simple proof: The homothety with center C that takes A to D must take
E to B and, therefore, the midpoint F of AE to the midpoint K of DB. Denote
by G′ the intersection of the diagonals AB and ED of ADBE. The homothety
with center G′ that takes A to B must take E to D and, thus, the midpoint F
of AE to the midpoint K of BD. It follows that G′ is on the line FK which (by
definition) also contains C. But G was defined to be the point where CF intersects
AB, whence G and G′ must coincide, which proves that D,G, and E are collinear.

Solution 3, by Roy Barbara (and is typical of the five solutions that used cartesian
coordinates).
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Let A be the origin of the system of cartesian coordinates, and place E on the
positive y-axis at (0, 2); consequently F = (0, 1), as in the accompanying figure.
The positive x axis is chosen so that both coordinates of B = (b,mb) are positive.
Note that because AE bisects ∠BAC while AB = AD, the point D must be the
reflection of B in the x-axis; that is D = (b,−mb). The equation of

AB is y = mx, of AD is y = −mx, and of BE is y =
mb− 2

b
x+ 2.

Because C is the intersection of BE and AD, it must satisfy

C =

Å −b
mb− 1

,
mb

mb− 1

ã
.

It follows that CF is the line y = − 1
bx + 1, which meets the line AB (namely,

y = mx) at

G =

Å
b

mb+ 1
,

mb

mb+ 1

ã
.

We see that the vectors

−−→
ED = (b,−(mb+ 2)) and

−−→
EG =

Å
b

mb+ 1
,
−(mb+ 2)

mb+ 1

ã
have proportional coordinates, whence the points E,D,G are collinear.

Solution 4, by Michel Bataille. We use barycentric coordinates relative to (A,B,C).
With the familiar notation a = BC, b = CA, c = AB, we immediately see that
D(b + c : 0 : −c); we know that E = (0 : b : c). Furthermore, we have
F = (b+c : b : c) [since (b+c)(A+E) = (b+c)A+bB+cC] so that G = (b+c : b : 0).
Finally, ∣∣∣∣∣∣

b+ c b+ c 0
0 b b
−c 0 c

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b+ c 0 0

0 b b
−c c c

∣∣∣∣∣∣ = 0,

and, therefore, D,G,E are collinear.

4785. Proposed by George Apostopoulos.

Let ABCD be a cyclic quadrilateral with circumradius R and area F . Prove that∑
tan2 A

2∑
cos4 A2

≤ 16R4

F 2
,

where the sums are taken over all the angles of the quadrilateral.

We received 8 solutions for this problem. The following is the solution by UCLan
Cyprus Problem Solving Group.

Let h1 be the height of triangle ABD with base BD and h2 the height of triangle
CBD with base BD. We have BD = 2R sinA and h1 + h2 6 2R, thus

F 2 6 (2R2 sinA)2 = 16R4 sin2 A

2
cos2

A

2
.
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Since C = 180◦ −A then

F 2 tan2 C

2
= F 2 cot2

A

2
6 16R4 cos4

A

2
.

Summing up cyclically we obtain the required inequality.

4786. Proposed by Florică Anastase-Călăraşi.

In ∆ABC, prove that the following relationship holds:(∑
cyc

1

mamb

)(
4s+

∑
cyc

bc

a

)
≥ 54

s

We received 10 submissions, 9 of which are correct. We present here the solution
by Mohamed Amine Ben Ajiba.

If a, b, c are the lengths of the sides of the triangle ABC (a = BC, b = AC, c = AB),
and ma,mb,mc the lengths of its medians from vertices A,B,C, respectively, the
median formulas are

4m2
a = 2b2 + 2c2 − a2, 4m2

b = 2c2 + 2a2 − b2, 4m2
c = 2b2 + 2a2 − c2.

Therefore

(4mbmc)
2 = (2c2 + 2a2 − b2)(2b2 + 2a2 − c2)

= 4a4 + 2a2(b2 + c2)− (2b4 − 5b2c2 + 2c4)

= (2a2 + bc)2 − 2[(b+ c)2 − a2](b− c)2 ≤ (2a2 + bc)2,

the last inequality being true because b+ c > a, and

mbmc ≤
2a2 + bc

4
.

The equality holds if and only if b = c. In a similar way, we have

mamb ≤
2c2 + ab

4
, mcma ≤

2b2 + ac

4
,

and therefore ∑
cyc

1

mamb
≥
∑
cyc

4

2a2 + bc
.

Using 2s = a+ b+ c, we observe that

4s+
∑
cyc

bc

a
=
∑
cyc

2a2 + bc

a
,

and thus

2s

(∑
cyc

1

mamb

)(
4s+

∑
cyc

bc

a

)
≥
(∑
cyc

a

)(∑
cyc

4

2a2 + bc

)(∑
cyc

2a2 + bc

a

)
. (1)
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By Hölder’s inequality,(∑
cyc

a

)(∑
cyc

4

2a2 + bc

)(∑
cyc

2a2 + bc

a

)
≥
(∑
cyc

3

 
a · 4

2a2 + bc
· 2a2 + bc

a

)3

= 108,

and that with (1) is equivalent to the expected result.

Equality holds if and only if the triangle ABC is equilateral.

4787. Proposed by Toyesh Prakash Sharma.

Evaluate ∫ ∞
−∞

tan2 x

x2
· dx

4 + sec2 x
.

(Hint: use Lobachevsky Integral formula. Can you solve this using another method?)

We received 18 solutions using Lobachevsky’s Integral Formula, all of which were
correct. In addition, Abel, Barnette, and UCLan Problem Solving Group provided
alternative solutions not involving Lobachevsky’s Integral Formula. The first fea-
tured solution derives and applies Lobachevsky’s Integral Formula. The second
featured solution provides one of the alternative solutions.

Solution 1, by Yunyong Zhang.

Denoting the integral to be evaluated by I, and letting x = y + nπ, we have

I =
∞∑

n=−∞

∫ (n+1)π

nπ

sin2 x

x2(1 + 4 cos2 x)
dy

=
∞∑

n=−∞

∫ π

0

sin2(nπ + y)

(nπ + y)2(1 + 4 cos2(nπ + y))
dy

=
∞∑

n=−∞

∫ π

0

sin2 y

(nπ + y)2(1 + 4 cos2 y)
dy.

Using the known formula

π2 csc2(πx) =
∞∑

n=−∞

ï
1

(x− n)2

ò
,

and letting x = − y
π , we obtain

csc2 y =
1

π2

∞∑
n=−∞

ñ
1

( yπ + n)2

ô
=

∞∑
n=−∞

1

(y + nπ)2
.

Thus,

I =

∫ π

0

1

1 + 4 cos2 y
dy =

∫ π

0

sec2 y

5 + tan2 y
dy =

1√
5

arctan

Å
tan y√

5

ã ∣∣∣∣π
0

=
π√
5
.
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Solution 2, by Ulrich Abel and Vitaliy Kushnirevych.

We start from

J = 2

∫ ∞
0

sin2 x

x2
· dx

3 + 2 cos (2x)
.

The function

f(x) =
2

(3 + 2 cos (2x))

is an even π-periodic function that can be developed in a cosine-Fourier series:

f(x) =
2√
5

+
∞∑
k=1

ak cos (2kx)

with certain coefficients ak, k = 1, 2, 3, . . . . This Fourier series can be integrated
term by term (see, for example, Tom Apostol’s textbook Mathematical Analysis,
Theorem 11.16, part c)):

J =
2√
5

∫ ∞
0

sin2 x

x2
dx+

∞∑
k=1

ak

∫ ∞
0

sin2 x

x2
cos (2kx) dx.

It remains to show that

Ik :=

∫ ∞
0

sin2 x

x2
cos (2kx) dx = 0 for all k = 1, 2, 3, . . . .

Using

2
(
sin2 x

)
cos (2kx) = (1− cos (2x)) cos (2kx)

= cos (2kx)− 1

2
cos (2 (k − 1)x)− 1

2
cos (2 (k + 1)x)

and integrating by parts we obtain

Ik =
1

2

∫ ∞
0

cos (2kx)− 1
2 cos (2 (k − 1)x)− 1

2 cos (2 (k + 1)x)

x2
dx

=
1

2

∫ ∞
0

2k sin (2kx)− (k − 1) sin (2 (k − 1)x)− (k + 1) sin (2 (k + 1)x)

x
dx.

It follows from

∫ ∞
0

sin (βx)

x
dx =

π

2
for all β > 0 that

Ik =
1

2

(
2k · π

2
− (k − 1) · π

2
− (k + 1) · π

2

)
= 0.
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4788. Proposed by Albert Natian.

Solve
∞∑
k=0

(−1)
k

2k+1

Ä
x2

k

+ 1
ä2

= 0

for real x given that |x| < 1.

We received 21 solutions, all of which were correct. We present the solution by
Henry Ricardo.

We have

∞∑
k=0

(−1)k

2k+1

Ä
x2

k

+ 1
ä2

=
∞∑
k=0

(−1)k

2k+1

Ä
x2

k+1

+ 2x2
k
ä

+
∞∑
k=0

(−1)k

2k+1

=
∞∑
k=0

(−1)k

2k+1
x2

k+1

+
∞∑
k=0

(−1)k

2k
x2

k

+
1

3

=
∞∑
k=0

(−1)k

2k+1
x2

k+1

+ x +
∞∑
k=1

(−1)k

2k
x2

k

+
1

3

=
∞∑
k=0

(−1)k

2k+1
x2

k+1

+ x −
∞∑
k=0

(−1)k

2k+1
x2

k+1

+
1

3

= x +
1

3
= 0,

so that x = −1/3 is the only real solution.

4789. Proposed by Byungjun Lee.

Side BC of triangle ABC is divided by interior points D and E, so that 4BD =
4CE = BC. Circle Γ passing through A and tangent to the segment CD has center
O, and meets segments AB, AC, and AD again at X, Y , and Z, respectively.
Suppose that Γ and EX both bisect the segment CZ. Prove that points C, Y , Z,
and O are concyclic.

We received 2 solutions after publication of the problem, both of them correct. The
folowing is the original solution submitted by the author of the problem.
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Let W be the midpoint of CZ, then W lies both on Γ and EX. Let P = AD∩EX,
F = BC ∩ Γ, and G = BC ∩ YW . By applying Menelaus’ theorem to triangle
DEP and line CWZ, we have

DC

CE
· EW
WP

· PZ
ZD

= 1.

By applying Menelaus’ theorem to triangle DEP and line BXA, we have

DB

BE
· EX
XP

· PA
AD

= 1.

By multiplying equations (1) and (2), and given that DB = CE, DC = BE,
PZ · PA = WP ·XP , EW · EX = EF 2 and ZD ·AD = DF 2, we get

1 =
DB

CE
· DC
BE
· PZ · PA
WP ·XP ·

EW · EX
ZD ·AD =

EF 2

DF 2
,

which gives DF = EF = CE.

Assume that ZA and WY are not parallel, and let ZA ∩WY = Q.

By applying Menelaus’ theorem to triangle DGQ and line CY A, we have

DC

CG
· GY
Y Q
· QA
AD

= 1.

By applying Menelaus’ theorem to triangle DGQ and line CWZ, we have

DC

CG
· GW
WQ

· QZ
ZD

= 1.

By multiplying equations (4) and (5), and using GY ·GW = GF 2, AD·ZD = DF 2,
and QA ·QZ = Y Q ·WQ, we get

1 =
DC2

CG2
· GY ·GW
AD · ZD ·

QA ·QZ
Y Q ·WQ

=
DC2

CG2
· GF

2

DF 2
,

so
CG

GF
=
DC

DF
= 3.
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Since

DG = DF +GF =
1

2
CF +

1

4
CF =

3

4
CF =

1

2
CD,

G is the midpoint of CD, so ZA and WY are parallel, which contradicts to the
assumption. It follows that ZA and WY must be parallel, and AZWY becomes
an isosceles trapezoid. From CA = CZ and OA = OZ, triangles CAO and CZO
are congruent, so ∠OCY = ∠OCZ. Then O lies both on the bisector of ∠Y CZ
and the perpendicular bisector of Y Z, so we can conclude that points C, Y, Z, and
O are concyclic.

4790. Proposed by Aravind Mahadevan.

Find x and y such that

x cos3 y + 3x sin2 y cos y = 14 and x sin3 y + 3x cos2 y sin y = 13.

We received 29 submissions, of which 22 were correct and 7 were incomplete. We
present the solution by Brian Bradie.

Adding the given equations yields

x(cos y + sin y)3 = 27;

subtracting x sin3 y+ 3x cos2 y sin y = 13 from x cos3 y+ 3x sin2 y cos y = 14 yields

x(cos y − sin y)3 = 1.

From here,

cos y + sin y =
3
3
√
x

and cos y − sin y =
1
3
√
x
,

so

cos y =
2
3
√
x

and sin y =
1
3
√
x
.

Applying the fundamental trig identity,

1 = cos2 y + sin2 y =
5

3
√
x2
,

so
x = ±5

√
5.

For x = 5
√

5,

cos y =
2√
5

and sin y =
1√
5
,

which implies

y = arcsin
1√
5

+ 2nπ;

for x = −5
√

5,

cos y = − 2√
5

and sin y = − 1√
5
,
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which implies

y = arcsin
1√
5

+ (2n+ 1)π.

Thus, the solutions of the system of equations

x cos3 y + 3x sin2 y cos y = 14 and x sin3 y + 3x cos2 y sin y = 13

are

x = 5
√

5, y = arcsin
1√
5

+ 2nπ

and

x = −5
√

5, y = arcsin
1√
5

+ (2n+ 1)π

for any integer n.
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