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119 MathemAttic: No. 43

119 Problems: MA211–MA215

122 Solutions: MA186–MA190

127 Problem Solving Vignettes: No. 26 Shawn Godin

133 Fibonacci Sequence and Higher Order Golden Ratio
Doddy Kastanya

137 From the Bookshelf of . . . Trefor Bazett

139 Mathematics from the Web

140 Olympiad Corner: No. 411

140 Problems: OC621–OC625

143 Solutions: OC596–OC600

146 From the Lecture Notes of . . . Elyse Yeager

150 Focus On . . . : No. 55 Michel Bataille

156 Problems: 4821–4830

161 Solutions: 4771–4780

Crux Mathematicorum
Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
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MATHEMATTIC
No. 43

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by May 15, 2023.

MA211. Starting at coordinates (0, 0), a line 1000 units long is drawn as
indicated. This line then branches into two separate lines (which form a 90◦ angle,
as shown). Each of these lines is 60% the length of the previous segment. The
process continues. Find the (x, y) coordinates of the indicated point.

90◦

90◦

(x, y)

1000

(0, 0)

MA212. On a distant planet, railway tracks are built using one solid railway
bar. A railway is built between two towns 20 km apart on a big flat section of the
planet. Unfortunately the bar was made one metre too long and the constructor
decided to lift it in the middle to try to make the ends fit. Approximately how
high does he have to lift it in the middle?

MA213. A shopkeeper orders marbles made up of 19 identical packets of a
larger amount and 3 identical packets of a smaller amount. A total of 224 marbles
arrive loosely tossed in a container. How would you repackage the marbles properly
to satisfy the shopkeeper’s order? Justify your answer and show that it is unique.

Copyright © Canadian Mathematical Society, 2023
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MA214. Proposed by Neculai Stanciu.

Determine all pairs (x, y) of real numbers which satisfy√
x2 + 2x+ 1 +

√
x2 − 4x+ 4 +

√
y2 − 6y + 9 +

√
x2 − 2xy + y2 = 4.

MA215. Proposed by Aravind Mahadevan, Hong Kong.
In ∆ABC, ∠B = 2∠A and ∠C = 4∠A. Prove that 1

a = 1
b + 1

c where, a, b and c
denote the lengths of BC, CA, and AB respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2023.

MA211. À partir du point de coordonnées (0, 0), on trace un segment de
droite d’une longueur de 1 000 unités, comme indiqué. Ce segment de droite se
scinde alors en deux segments distincts (formant un angle de 90◦, tel qu’illustré).
Chacun de ces segments de droites est d’une longueur correspondant à 60% de
celle du segment de droite précédent. Le processus se poursuit de la même façon.
Trouvez les coordonnées (x, y) du point indiqué.

90◦

90◦

(x, y)

1000

(0, 0)
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MA212. La pratique sur une planète éloignée est de construire des chemins
de fer en se servant d’un seul rail. Or, le chemin de fer entre deux villages à
20 km de distance a malheureusement utilisé un rail un mètre de trop long et le
contremâıtre a décidé de corriger ceci en soulevant le rail dans son point milieu.
Environ à quelle hauteur le rail a-t-il besoin d’être soulevé?

MA213. Un commerçant soumet une commande de billes, comprenant 19
emballages identiques à un grand nombre de billes par emballage, puis 3 emballages
identiques à un plus petit nombre de billes par emballage. Or la commande lui
arrive comme 224 billes dans un même sac. Déterminer comment emballer les
billes de façon à répondre à la commande du commerçant. Justifier votre réponse
et montrer qu’elle est la seule solution possible.

MA214. Proposé par Neculai Stanciu, “George Emil Palade” School, Buzu,
Romania.
Déterminer tous les couples de nombres réels (x, y) tels que√

x2 + 2x+ 1 +
√
x2 − 4x+ 4 +

√
y2 − 6y + 9 +

√
x2 − 2xy + y2 = 4.

MA215. Proposé par Aravind Mahadevan, Hong Kong.
Dans triangle ABC, on a ∠B = 2∠A et ∠C = 4∠A. Démontrer que 1

a = 1
b + 1

c ,
où a, b et c dénotent les longueurs de BC, CA et AB respectivement.

Copyright © Canadian Mathematical Society, 2023
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(8), p. 444–446.

MA186. Consider a sequence of integers 1, 3, 2,−1, . . . , where each term is
equal to the term preceding it minus the term before that. What is the sum of
the first 2009 terms?

Originally question 1 from the 2009 Fifth Annual Kansas Collegiate Mathematics
Competition.

We received 12 submissions, 11 of which were complete. We present a solution
and a generalization.

Solution by Amy Zhai.

We are going to observe the pattern in the sequence. Notice that

−1− 2 = −3

−3− (−1) = −2

−2− (−3) = 1

1− (−2) = 3

So, in the sequence {1, 3, 2,−1, . . .}, six numbers 1, 3, 2,−1,−3,−2 will be re-
peated. We need to determine the number of times they repeated in the first 2009
terms. When 2009 is divided by 6, we get the quotient 334 with a remainder of 5.
This means that the first 2009 terms contain 334 groups of these six numbers and
the first five numbers of them. Since the sum of 1, 3, 2,−1,−3,−2 is zero, the sum
of the first 334× 6 = 2004 terms in the sequence is zero. The other five numbers
are 1, 3, 2,−1,−3 with a sum of 2. Therefore, the sum of the first 2009 terms is 2.

A generalization by Ivan Hadinata.

Lemma. Let (an)∞n=1 be a sequence in such a way that a1 = a, a2 = b, and
an+2 = an+1 − an for every n ∈ N. Then a1 + a2 + · · ·+ a2009 = b− a.

Proof. For every n ∈ N, we have

an+3 = an+2 − an+1 = (an+1 − an)− an+1 = −an
and then

an+6 = −an+3 = −(−an) = −an, ∀n ∈ N

Consequently,

a1 + a2 + · · ·+ a2009 = a1 + a2 +
2007∑
k=1

(an+1 − an)

= a1 + a2 + a2008 − a1 = a2 + a2008 = b− a

Crux Mathematicorum, Vol. 49(3), March 2023
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since a2 = b and a2008 = a2002 = a1996 = · · · = a10 = a4 = −a1 = −a.

By setting a = 1 and b = 3 in the lemma, we obtain the answer to the original
question, which is 2.

MA187. A 4 × 4 grid of points is uniformly distributed and a set of three
points is to be randomly chosen from the grid. Each three point set has the same
probability of being chosen. What is the probability that the three chosen points
lie on the same straight line? Write your answer as a fraction in simplest form.

Originally question 11 from the 35th University of Alabama High School Mathe-
matics Tournament: Team Competition (2016).

We received 3 submissions, 2 of which were correct. We present Catherine Jian’s
solution accompanied by Richard Hess’s diagram.

In total, there are
(
16
3

)
ways of choosing three points. Now we count how many

ways these three points can lie on the same straight line. Connecting dots in this
4× 4 grid, we can get 4 horizontal lines, 4 vertical lines and 2 main diagonal lines,
each of which has 4 dots. Note that there are also 4 partial diagonal lines (one
step off the main diagonal lines), each of which has 3 dots.

So in total there are 10 ×
(
4
3

)
+ 4 ×

(
3
3

)
ways of having three points on the same

line. Therefore the desired probability is

10×
(
4
3

)
+ 4×

(
3
3

)(
16
3

) =
44

560
=

11

140
.

Editor’s Comments. The incorrect solution only counted the horizontal, vertical,
and main diagonal lines, for an answer of 1/14. The problem is more complicated
for larger grids, because more slopes are possible. For instance, on a 5-by-5 grid,
one has to consider “steep” and “shallow” diagonals.

Copyright © Canadian Mathematical Society, 2023
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MA188. A farmer is selling all of her sheep, goats, and cows (she has some
of each). One man offers to pay her $100 for each sheep, $200 for each goat, and
$400 for each cow for a total of $4700. Another offers to pay her $135 for each
sheep, $265 for each goat, and $309 for each cow for a total of $5155. How many
sheep, goats, and cows does she have?

Originally question 12 from the 36th University of Alabama High School Mathe-
matics Tournament: Team Competition (2017).

We received 10 submissions, 9 of which were correct. We present the solution by
Catherine Jian.

Let the numbers of sheep, goats, and cows be s, g, and c, respectively. From the
given facts, we know that min(s, g, c) > 0 and can set up the following equations:

100s+ 200g + 400c = 4700,

135s+ 265g + 309c = 5155

Note that 135s + 265g + 309c = 5155 =⇒ 4c ≡ 0 (mod 5) =⇒ c ≡ 0 (mod 5),
i.e. c has to be a multiple of 5. Letting c = 5k where k ≥ 1, the original equations
can be simplified to

s+ 2g + 20k = 47, (1)

27s+ 53g + 309k = 1031. (2)

Multiplying the first equation by 27 and subtracting the second equation, we get

g + 231k = 238

which implies k can only be 1. Plugging k = 1, we further get g = 7, c = 5, s = 13.
Hence there are 13 sheep, 7 goats and 5 cows.

MA189. Proposed by Alaric Pow Ian-Jun.

Find the range of values of the constant k such that the equation

(x+ 1)(x+ 3)(x+ 5)(x+ 7) = k

has 4 distinct solutions for x.

We received 10 submissions, of which 8 were correct. We present (with mi-
nor amendments) the solution by the Missouri State University Problem Solving
Group.

Letting x = u− 4 and expanding, the equation becomes

u4 − 10u2 + 9 = k.

By the quadratic formula, the solution to this equation is

u = ±
»

5±
√

16 + k.

Crux Mathematicorum, Vol. 49(3), March 2023
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If the intent was for x to be real, then we must have 16 + k ≥ 0, i.e., k ≥ −16.
Since k = −16 only gives two values for u, it must be rejected. We must also have
5−
√

16 + k ≥ 0 or equivalently k ≤ 9. Since k = 9 only gives three values for u,
it must also be rejected. Thus the range for k is −16 < k < 9.

If the intent was for x to be complex, then k = −16 and k = 9 are the only values
that give fewer than four roots.

Editor’s Comments. Some solvers only considered real solutions; others included
complex solutions. Due to the ambiguity of the problem statement, both ap-
proaches were considered correct. The majority of solutions were purely algebraic,
like the one above. A few solvers (S. Bhadra, H. Choi, I. Hadinata) used calculus
instead, arguing in terms of the critical points of f(x) = (x+1)(x+3)(x+5)(x+7).
One solver, A. Mahadevan, appealed to the theory of the general quartic equation,
which supplies the following criterion: the equation

ax4 + bx3 + cx2 + dx+ e = 0

has 4 distinct roots (over the complex numbers) if and only if the discriminant

∆ = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e

− 27a2d4 + 144ab2ce2 − 6ab2d2e− 80abc2de

+ 18abcd3 + 16ac4e− 4ac3d2 − 27b4e2 + 18b3cde

− 4b3d3 − 4b2c3e+ b2c2d2

is nonzero. For us, the discriminant of

(x+ 1)(x+ 3)(x+ 5)(x+ 7)− k = x4 + 16x3 + 86x2 + 176x+ 105− k
is simply

∆ = −256(k − 9)(k + 16)2.

MA190. Proposed by Jakob Denes.

Given two parallel lines `1 and `2, the transversal `3 intersects them at points A
and B respectively. Two circles with centres O and Q lie between the parallel
lines on the left and on the right sides of the transversal such that the circles are
tangent to all three lines. Show that OQ = AB.

`1

`2

`3

O

B

A

Q

Copyright © Canadian Mathematical Society, 2023
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We received 9 solutions, all correct. The following is the solution by Mingshen
Zong.

O Q

l1

l2

l2

A

B

C D

E

F

G H

In the diagram above, let C,D,G,H be the points of tangency of circles O and Q
with lines l1 and l2. Denote E and F the points of tangency of circles O and Q
with line l3.

Connect OC and QD. Then both OC and QD are perpendicular to l1, therefore
making OC parallel to QD. Since radius OC = DQ, CDQO is a rectangle and
OQ = CD. Similarly, we can get OQ = GH.

It follows from the two tangent theorem that AC = AF and AD = AE. Since
AF = EF +AE, we get

CD = AC +AD = EF +AE +AD = EF + 2AE.

Similarly, we can get GH = EF + 2BF. Then the fact that CD = GH implies
that EF + 2AE = EF + 2BF and so AE = BF.

Since AB = EF + AE + BF and AE = BF, we have AB = EF + 2AE = CD.
Finally, the fact CD = OQ proves OQ = AB.

Crux Mathematicorum, Vol. 49(3), March 2023
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PROBLEM SOLVING
VIGNETTES

No. 26

Shawn Godin

Three Cute Contest Problems

I am a big fan of math contests. As a student I always looked forward to that one
day a year I would get to write the Junior Math Contest from the University of
Waterloo (I wrote the Descartes Contest in my last year of high school). When I
was a classroom teacher I often incorporated problems from math contests – either
in their original form or modified – into my class activities, homework assignments
and tests. The students in my math club wrote many different contests, so they
became a big part of our meetings. I have also had the good fortune to work on
teams creating contests at the local level, as well as with the Centre for Education
in Mathematics and Computing (CEMC) at the University of Waterloo, and with
the Canadian Mathematical Society (CMS).

On Friday February 17, I gave a talk Mining Math Contests for Problems at the
professional development day for my former board. It was nice to touch base with
so many old friends and colleagues that I haven’t seen for a couple of years while
I have been living the dream. In the process of preparing for the talk, I did all
Canadian mathematics contests that I could find online. I earmarked a long list
of problems that piqued my interest for one reason or another.

This column highlights three of those problems. On their own, I don’t think any
of them have enough meat for a full column. However, each one has something
worth looking at. It might be a clever trap left to catch those who are not being
careful. It may be an alternate solution that simplifies things or gives us some
insight. It may be the answer is surprising. I hope you enjoy these problems.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first problem is question 12 from Part I of the 2022–23 Alberta High School
Mathematics Competition. The Alberta High School Mathematics Competition
is hosted by the University of Alberta and is written in two parts. In November,
students write a 16 question multiple choice contest. Then in February, a selection
of students are invited to write a 5 question, full solution contest. More information
and past contests can be found on their website:

What is the number of integers m, 1 ≤ m ≤ 300 for which mm is a
perfect cube?

(A) 100 (B) 101 (C) 103 (D) 104 (E) 106

Copyright © Canadian Mathematical Society, 2023
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Careful thinking is needed for this problem. You may reason, if m = 3k then

mm = m3k =
(
mk
)3

which is a perfect cube. Thus, since 1 ≤ m ≤ 300 we must have 1 ≤ 3k ≤ 300 or
1 ≤ k ≤ 100, since m and k must be integers. So we may be tempted to pick (A).

However, if we think about it a bit more, we would see that if m = k3, then

mm =
(
k3
)m

= k3m = (km)
3

which is a perfect cube. Thus, since 1 ≤ m ≤ 300 we must have 1 ≤ k3 ≤ 300
or 1 ≤ k ≤ 6, since m and k must be integers. Thus there are 6 more cases and
we may be tempted to pick (E). However, if we think a bit more we realize that
k = 33 = 27 = 3 × 9 and k = 63 = 216 = 3 × 72 are counted in both groups, so
that the answer we are after is 100 + 6− 2 = 104, answer (D).

Counting questions should always be handled with care. It is often as easy to miss
cases as it is to count other cases multiple times. Problems regularly can be solved
in multiple ways using elementary techniques. So next time you see a counting
problem resist the impulse to rush through it because you “know how to do it”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Continuing, we will look at problem B4 from the 2022 Canadian Open Mathematics
Challenge. The Canadian Open Mathematics Challenge is written each November
and is hosted by the CMS. The contest consists of three sections with four problems
each. In sections A and B, students are rewarded full marks for a correct answer.
The work for incorrect answers is checked for possible partial credit. Questions
in part C are full solution. More information about the contest and past contests
can be found on the website:

Determine all integers a for which
a

1011− a is an even integer.

Let’s attack this one by setting

a

1011− a = 2k

for some integer k. Then

a = 2022k − 2ka

a(2k + 1) = 2022k

and so (2k + 1) | 2022k, since all numbers are integers. Since 2k + 1 is odd and
k and 2k + 1 are relatively prime (why?), we must have 2k + 1 | 1011. As the
divisors of 1011 are ±1,±3,±337,±1011 and a = 2022k

2k+1 we get

Crux Mathematicorum, Vol. 49(3), March 2023
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2k + 1 k a a
1011−a

−1 −1 2022 −2
1 0 0 0
−3 −2 1348 −4
3 1 647 2
−337 −169 1014 −338
337 168 1008 336
−1011 −506 1012 −1012
1011 505 1010 1010

Let’s take another look at this problem through a slightly different lens. If we let
d = 1011− a, then a = 1011− d and the expression in the problem becomes

a

1011− a =
1011− d

d
=

1011

d
− 1.

Since 1011 is odd, then the only way 1011
d − 1 can be an integer is if d | 1011, but

then d must be odd and 1011
d − 1 must be even! Thus all the divisors, d, of 1011

generate solutions and the sought for values of a are just 1011− d for all possible
integer divisors of 1011.

The technique makes the solution a bit more straightforward. Not so much to
make much of a difference in solving the problem. However, the alternate point of
view allows us to see far more:

• Each integer divisor, d, of 1011 generates a result.

• The corresponding values of a are just 1011− d.

• The result a
1011−a = 1011

d − 1 = d′ − 1, where d′ is also an integer divisor of
1011, with dd′ = 1011. That is all the results are one less than an integer
divisor of 1011.

From this we should be able to see that we can immediately generalize this method
to any case where 1011 is replaced by an odd integer. If we replace 1011 with
an even integer we can still come up with an easy general solution if we build
something in to rid ourselves of the evenness. I will leave the further exploration
of this problem to interested readers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lastly, let us look at problem 6(a) from the 2022 Euclid Contest. The Euclid Con-
test is a 10 question, full solution contest hosted by the CEMC at the University
of Waterloo. You can check out all the CEMC contests at their website:

A function f has the property that

f

Å
2x+ 1

x

ã
= x+ 6

for all real values of x 6= 0. What is the value of f(4)?

Copyright © Canadian Mathematical Society, 2023
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Functional equations are interesting because each seems to need a different method
of attack, although some general techniques exist. What makes this difficult is that
we are used to functions being defined explicitly. That is, we are usually given the
expression defining our function.

Let’s start by trying to dissect this function. Rewriting 2x+1
x = 2+ 1

x we can think
of how to turn this into x+ 6. Breaking it down into steps we get:

• Subtracting 2, yields
(
2 + 1

x

)
− 2 = 1

x .

• Taking the reciprocal gives us x.

• Adding 6 leaves us with the desired x+ 6.

So, starting with 4 we get

• 4− 2 = 2

• 1
2

• 1
2 + 6 = 13

2

There must be a nicer way! An insight is that since we want f(4), we need
2x+1
x = 4. We can the solve for x to get

2x+ 1 = 4x

1 = 2x

x =
1

2

which corresponds with our less elegant solution. Thus the desired value of the
function is f(4) = 1

2 + 6 = 13
2 .

That seems a bit better. However, let us try something else. Since we prefer
explicit function definitions, let’s try to get one. If we let y = 2x+1

x in f
(
2x+1
x

)
=

x+6, then we have f(y) = x+6. If we can relate x and y we are done. Rearranging
our definition of y yields

y =
2x+ 1

x
xy = 2x+ 1

x(y − 2) = 1

x =
1

y − 2

and thus

f(y) =
1

y − 2
+ 6.

Hence, as in the previous two solutions,

f(4) =
1

4− 2
+ 6 =

13

2
.

Crux Mathematicorum, Vol. 49(3), March 2023
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The last technique, known as a change of variables is useful in many situations
– for instance, the previous problem – and if you continue to study mathematics
you will come across it from time to time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I hope you enjoyed these three problems from mathematics contests. There is a
vast treasure trove of contest material available online for the contest writer or
problem solving enthusiast to play with. I strongly suggest you explore some of
these online contest collections, especially ones that you are not familiar with. I
leave the interested reader with a few more problems to play with.

1. In the diagram, ∆PQR is right-angled at R, PR = 12, and QR = 16.
Also, M is the midpoint of PQ and N is the point on QR so that MN is
perpendicular to PQ.

P

R QN

M

The area of ∆PNR is

(A) 21 (B) 17.5 (C) 36 (D) 16 (E) 21.5
(2022 Fermat Contest, #19)

2. What is the largest integer n with the properties that 200 < n < 250 and
that 12n is a perfect square?
(2022 Canadian Team Mathematics Contest, Individual Problems #5)

3. In an unnamed country, Donald and Joe are running for president. There
are 3 states. Each state consists of 3 counties. Each county has 3 cities, and
each city has 3 wards. Each ward has 3 electors who cast votes. To win a
ward, a candidate must win 2

3 of the electors; to win a city, one must win 2
3

of the wards; to win a county, one must win 2
3 cities; and to win a state, you

have to win 2
3 of the counties, and finally to win the election, you must win

2
3 of the states. Abstaining from voting is not allowed.
(a) What is the smallest number of elector votes Donald must receive to win
the election?
What percentage of the total popular vote is this?
(b) What is the smallest number of total votes Joe needs to guarantee a
victory?
(2022 W.J. Blundon Mathematics Contest, #8)
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4. Show that for any positive integer n the number

111 . . . 1︸ ︷︷ ︸
3n digits

consisting of 3n 1s, is divisible by 3n.
(2021–22 Alberta High School Mathematics Competition, Part II, #3)

5. An integer container (x, y, z) is a rectangular prism with positive integer side
lengths x, y, z, where x ≤ y ≤ z. A stick has x = y = 1; a flat has x = 1
and y > 1; and a box has x > 1. There are 5 integer containers with volume
30: one stick (1, 1, 30), three flats (1, 2, 15), (1, 3, 10), (1, 5, 6) and one box
(2, 3, 5).
(a) How many sticks, flats and boxes are there among the integer containers
with volume 36?
(b) How many flats and boxes are there among the integer containers with
volume 210?
(c) Suppose n = pe11 · · · pekk has k distinct prime factors p1, p2, . . . , pk, each
with integer exponent e1 ≥ 1, e2 ≥ 1, . . . , ek ≥ 1 and k ≥ 3. How many
boxes are there among the integer containers with volume n? Express your
answer in terms of e1, e2, . . . , ek. How many boxes with volume n = 8! are
there?
(2022 Canadian Open Mathematics Challenge, #C4)
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Fibonacci Sequence and Higher
Order Golden Ratio

Doddy Kastanya

The Fibonacci sequence is a sequence of numbers in which each number (starting
from the third number in the sequence) is formed by adding the two preceding
numbers. The sequence can then be formed recursively by employing the following
formula:

Fn+1 = Fn + Fn−1 (1)

for n ≥ 1, and F0 = F1 = 1. This is a typical textbook setup of a Fibonacci
sequence. An interesting thing about the Fibonacci sequence is the fact that as
the number of elements approaches infinity, the ratio between one element and the
preceding one approaches ϕ (the lowercase Greek letter “phi”) which has a value

of 1+
√
5

2 or approximately 1.618. This quantity is also called the Golden Ratio.

Let’s take a look at an elementary proof of this fact. The process starts by dividing
the left- and right-hand sides of Eq. (1) by Fn and taking the limit as n→∞.

Fn+1

Fn
=
Fn
Fn

+
Fn−1
Fn

(2)

lim
n→∞

Fn+1

Fn
= lim
n→∞

1 + lim
n→∞

Fn−1
Fn

(3)

Since we want to show that the ratio between an element and the preceding one
approaches a certain value as the number of elements approaches infinity, we can
assign limn→∞

Fn+1

Fn
= α, which also means that limn→∞

Fn−1

Fn
= 1

α where α is
just an arbitrary number at this point. So, we can rewrite Eq. (3) as:

α = 1 +
1

α
(4)

which can be rearranged into a quadratic equation:

α2 − α− 1 = 0. (5)

Since the elements of the Fibonacci sequence are positive, α must be the positive
root of this quadratic equation, namely,

α =
1 +
√

5

2
= ϕ (6)

Now, let’s perform some manipulations on the Fibonacci sequence. Begin by
pairing up two consecutive elements of the sequence as in F2n−1,F2n for n ≥ 1 and
create another sequence by adding the components of each group. Let’s call the
new sequence FS2 (for “2-element Fibonacci Sum”) and the Fibonacci sequence
F .

F = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .}
FS2 = {2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, . . .}
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An interesting observation was made when trying to, at first, numerically deter-
mine if the ratio of two consecutive elements of FS2 approaches a unique quantity
as n→∞. It turns out that

lim
n→∞

FS2,n+1

FS2,n
= ϕ2

Worrying that this is only a fluke, I extended the exercise to create FS3 through
FS6:

FS3 = {4, 16, 68, 288, 1220, 5168, 21892, 92736, . . .}
FS4 = {7, 47, 322, 2207, 15127, 103682, 710647, . . .}
FS5 = {12, 131, 1453, 16114, 178707, 1981891, . . .}
FS6 = {20, 356, 6388, 114628, 2056916, 36909860, . . .}

Examining the ratios of two consecutive elements of these sequences, I observed
that limn→∞

FS3,n+1

FS3,n
= ϕ3, limn→∞

FS4,n+1

FS4,n
= ϕ4, limn→∞

FS5,n+1

FS5,n
= ϕ5, and

limn→∞
FS6,n+1

FS6,n
= ϕ6. So, I would like to put out a conjecture that

lim
n→∞

FSξ,n+1

FSξ,n
= ϕξ

for ξ ≥ 1. Since I consider myself as an amateur mathematician, I am not well
equipped to perform the rigorous proof for this. Instead, I would like to conclude
this article by sharing a less rigorous proof for a lower value of ξ, namely ξ = 3.
However, this method generalizes for any exponent ξ. I leave this as an exercise
for the interested readers.

Let’s assume that the ratio of an element to its immediate predecessor in FS3

sequence approaches a certain value, β, as n → ∞. Recalling that each compo-
nent of the FS3 sequence is formed by adding three consecutive elements of the
Fibonacci sequence, we can write:

β = lim
n→∞

Fn+2 + Fn+1 + Fn
Fn−1 + Fn−2 + Fn−3

(7)

Dividing the numerator and denominator of Eq. (7) by Fn−4 gives us

β =

lim
n→∞

Fn+2

Fn−4
+ lim
n→∞

Fn+1

Fn−4
+ lim
n→∞

Fn
Fn−4

lim
n→∞

Fn−1
Fn−4

+ lim
n→∞

Fn−2
Fn−4

+ lim
n→∞

Fn−3
Fn−4

(8)

Before continuing with the proof, we need to use another property of the Fi-
bonacci sequence that could be simply derived from limn→∞

Fn+1

Fn
= ϕ, which is
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limn→∞
Fn+m

Fn
= ϕm. The proof for this assertion is given below.

lim
n→∞

Fn+m
Fn

= lim
n→∞

Å
Fn+m
Fn+m−1

× Fn+m−1
Fn+m−2

× · · · × Fn+2

Fn+1
× Fn+1

Fn

ã
=

Å
lim
n→∞

Fn+m
Fn+m−1

ã
×
Å

lim
n→∞

Fn+m−1
Fn+m−2

ã
× · · ·

×
Å

lim
n→∞

Fn+2

Fn+1

ã
×
Å

lim
n→∞

Fn+1

Fn

ã
Since each of the term on the right hand of the equation equals to ϕ and there are
m terms in total, one can write limn→∞

Fn+m

Fn
= ϕm .

Using this knowledge, Eq. (8) can be written as:

β =
ϕ6 + ϕ5 + ϕ4

ϕ3 + ϕ2 + ϕ
(9)

There are two possible paths for completing the proof. The first one is related
to recognizing that the numerator and denominator in Eq. (9) share a common
factor. Taking advantage of this fact, the conclusion of the proof will become
obvious.

β =
ϕ6 + ϕ5 + ϕ4

ϕ3 + ϕ2 + ϕ
=
ϕ4 × (ϕ2 + ϕ+ 1)

ϕ× (ϕ2 + ϕ+ 1)
=
ϕ4

ϕ
= ϕ3 (10)

For the second path to complete the proof, we need to recall an important property
of the Golden Ratio, which is:

ϕ2 = ϕ+ 1 (11)

It should be noted that this expression follows directly from Eq. (5) and Eq. (6).

Using Eq. (11), the following expressions can be derived:

ϕ3 = 2ϕ+ 1 (12)

ϕ4 = 3ϕ+ 2 (13)

ϕ5 = 5ϕ+ 3 (14)

ϕ6 = 8ϕ+ 5 (15)

It should be noted that Eq. (12) through Eq. (15) can be generalized as

ϕn = Fn−1ϕ+ Fn−2

for n > 1 (recall that the sequence starts with F0 not F1).

Substituting the expressions given in Eq. (11), and Eq. (12) through Eq. (15),
Eq. (9) can be written as:

β =
8ϕ+ 5 + 5ϕ+ 3 + 3ϕ+ 2

2ϕ+ 1 + ϕ+ 1 + ϕ
=

16ϕ+ 10

4ϕ+ 2
=

8ϕ+ 5

2ϕ+ 1
(16)
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Using Eq. (15) and Eq. (12), we can complete the proof:

lim
n→∞

FS3,n+1

FS3,n
=

8ϕ+ 5

2ϕ+ 1
=
ϕ6

ϕ3
= ϕ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doddy is a math enthusiast working as a nuclear engi-
neer. The love of math and physics was the reason for
him to choose this field. In his spare times, among other
things he likes to solve math puzzles and problems. In ad-
dition to Crux, the Project Euler has provided him with
enough challenges and enjoyment in this area. Doddy
and his family share their Oakville home with their four
cats: Luke, Lorelai, Lincoln, and Lilian. Communica-
tions concerning the article can be shared with the author
via email: kastanya@yahoo.com.
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From the Bookshelf of . . .
Trefor Bazett

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

Infinite Powers
by Steven Strogatz
ISBN 9780358299288, hardcover, 360 pages
Published by Mariner Books, 2020.

Calculus is a field that is both tremendously powerful in its enormous range of
applications while also being delightful in the puzzles it poses and answers. No
wonder calculus is a required subject for so many students in STEM fields. Yet
too often the joy of calculus is lost among a sea of memorized formulas and tedious
computations. Infinite Powers is an antidote to this, a book that helps reveal both
the power and beauty of calculus.

What I most appreciate about Infinite Powers is how
wide the potential audience is and how accessibly the
book is written. For a high school student who is
thinking they might want to take calculus someday, but
doesn’t even really know what that is about, this book
would be fantastic. For myself as someone who has lost
track of how many times I’ve taught a calculus course,
I still learned and grew a lot both in my understanding
of calculus but perhaps more importantly as an edu-
cator and mathematics communicator. And it would
be similarly excellent for anyone in between. While the
book isn’t a calculus textbook nor does it try to be,
the primary focus of the book is on building a robust
conceptual understanding of the big themes of calculus. It does an excellent job
deepening and augmenting your understanding of calculus no matter what your
relationship with calculus is.

At the core of the book is what Strogatz terms the Infinity Principle, the basic idea
of taking a phenomenon and reimagining “it as an infinite series of simpler parts,
analyze those, and then add the results back together to make sense of the original
whole” (pg xvii). While a typical calculus student might see this basic idea in,
for instance, the definition of the Riemann Integral, Strogatz weaves this principle
throughout the book from the ancient Greeks through to contemporary problems,
showing how the “Golem of Infinity” has puzzled and delighted humanity for
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millennia.

One aspect I really appreciated about the book was how it authentically con-
nected to the history and characters in the development of calculus. Today when
we study calculus with all of its details so fully fleshed out we can lose track of the
original motivations for why these problems were fascinating to begin with. Stro-
gatz doesn’t just go back to Newton and Leibniz, but more broadly to humanity’s
wrestling with the concept of infinity from Zeno to Archimedes to Galileo and Ke-
pler. These historical figures, and the problems that motivated them, come alive
on the page. I’m definitely going to sneak a few of these stories in the next time
I teach calculus.

As much fun as I had with tidbits of historical development, what I found really
fascinating was the many connections to applications that are relevant today. For
instance, Strogatz connected the methods that Archimedes used for the quadrature
of the parabola to only a few pages later a discussion of modern computer anima-
tions in movies and simulations of surgeries. With a wide range of applications in
physics, engineering, technology, and biology, the question of why a student should
study calculus is answered again and again and again. Infinite Powers even has a
final chapter on the future of calculus that connects challenges in calculus related
to things like nonlinearity and chaos to applications in the future such as artificial
intelligence and modelling DNA.

As an educator, I mentioned that I learned a lot about mathematical communica-
tion by reading several of Strogatz’ books, Infinite Powers included. Two specific
lessons learned are firstly the importance of story. Telling the story of calculus
together with both a cast of characters motivated by intriguing problems as well
as a rich array of modern applications draws us in to calculus, building that sense
of appreciation for its power and beauty as we go along. Secondly, I appreciated
the focus on the key concepts and emphasizing conceptual understanding without
relying solely on technical machinery. For instance, the Fundamental Theorem of
Calculus is explained through a “Paint-Roller Proof” (pg 175), a metaphor that
helps make the meaning of this triumph of calculus seem intuitive and clear.

Regardless of where you might be on your calculus journey, I highly recommend
you check out Infinite Powers!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
Dr. Trefor Bazett. Trefor is an Assistant Teaching Pro-
fessor at the University of Victoria and has been teach-
ing some flavour of calculus for over a decade. Trefor is
also a math YouTuber, dedicated to sharing the joys of
learning mathematics with millions of students around
the world.
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MATHEMATICS FROM THE
WEB

No. 8

This column features short reviews of mathematical items from the internet that
will be of interest to high school and elementary students and teachers. You can
forward your own short reviews to mathemattic@cms.math.ca.

The Lonely Runner Conjecture
http://www.openproblemgarden.org/op/lonely runner conjecture

Suppose k runners having distinct constant speeds start at a common
point and run laps on a circular track with circumference 1. Then for
any given runner, there is a time at which that runner is distance at
least 1

k (along the track) away from every other runner.

This conjecture is an example of an unsolved problem, one of hundreds from various
branches of mathematics, that appears in Open Problem Garden. The discussion
of this open problem mentions that the conjecture has been proven for values of k
up to and including seven. An extensive bibliography accompanies the problem.

The Quest to Find Rectangles in a Square
https://www.nytimes.com/2023/02/07/science/puzzles-rectangles-

mathematics.html

There are three ways to divide a square into three rectangles with the
same proportions.

MathemAttic readers may be interested in finding the three configurations them-
selves. This statement was used to ask the next logical question: How can you
divide a square up into four rectangles with the same proportions? The problem
was posted on Mathstodon, a community within the social network Mastodon. The
New York Times article discusses the solution techniques of several people as well
as providing the results, with illustrations, for three, four, five and six rectangles.
(Submitted by Rad de Peiza, Toronto Ontario)
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OLYMPIAD CORNER
No. 411

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by May 15, 2023.

OC621. Find all natural numbers n for which the number nn + 1 is divisible
by n+ 1.

OC622. An equilateral triangle with side length n is divided into n2 small
equilateral triangles of side length 1 (as in the picture for n = 10). At the start,
one small internal triangle (with no points in common with external sides of the
large triangle) is painted in blue, and the rest are painted yellow. In one move,
you can choose any of the n2 small triangles and swap its colour and the colours
of the triangles adjacent to it along its sides. Using such moves, is it possible to
make the entire board one colour?

OC623. Let B and C be two points on the circumference of a circle with
diameter AD such that AB = AC. Let P be a point on line segment BC and let
M,N be points on line segments AB and AC, respectively, such that PMAN is
a parallelogram. Suppose PL is an angle bisector of triangle MPN with L lying
on the line segment MN . If the line PD intersects MN in point Q, show that the
points B,Q,L and C lie on the same circle.

OC624. A series contains 51 not necessarily different natural numbers which
add up to 100. A natural number k is called representable if it can be represented
as the sum of several consecutively written numbers in this series (perhaps one
number). Prove that at least one of the two numbers k and 100−k is representable,
where 1 ≤ k ≤ 100.
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OC625. Does there exist a convex 2021-gon with vertices at points with
integer coordinates and such that the lengths of all its sides are equal?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2023.

OC621. Déterminer tous les nombres naturels n tels que nn + 1 est divisible
par n+ 1.

OC622. Un triangle équilatéral de côtés de longueur n est subdivisé en n2

petits triangles équilatéraux de côtés de longueur 1, tel qu’illustré ci-bas pour le
cas où n = 10. Au départ, un seul petit triangle est coloré bleu, ce petit triangle
étant interne, donc n’ayant aucun point en commun avec le grand triangle; tous
les autres petits triangles sont colorés jaune. Par la suite, on choisit un quelconque
des n2 petits triangles et on change sa couleur, ainsi que celles des triangles qui
lui sont adjacents en ayant un côté en commun. Continuant ainsi, est-il possible
que le tout devienne éventuellement d’une même couleur?

OC623. Deux points B et C sont placés sur la circonférence d’un cercle de
diamètre AD, de façon à ce que AB = AC. Soit alors P un point sur le segment
BC et soient M et N des points sur les segments AB et AC, respectivement, de
façon à ce que PMAN soit un parallélogramme. Enfin, PL bissecte le triangle
MPN , où L se trouve entre M et N . Si la ligne PD rencontre MN au point Q,
démontrer que les points B, Q, L et C se trouvent sur une même circle.
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OC624. Une série consiste de 51 nombres naturels, pas nécessairement dis-
tincts, dont la somme est de 100. Un nombre naturel k est alors dit représentable
s’il est la somme de nombres consécutifs de cette série (possiblement un seul nom-
bre). Pour un quelconque nombre k, 1 ≤ k ≤ 100, démontrer qu’au moins un de
k et 100− k est représentable.

OC625. Existe-t-il dans le plan un polygone convexe à 2021 côtés de longueurs
égales, dont tous les sommets ont des cordonnées entières ?
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SOLUTIONS
Statements of the problems in this section originally appear in 2022: 48(8), p. 462–463.

OC596. Let ABCD be a convex quadrilateral with pairwise non-parallel
sides. On the side AD, choose an arbitrary point P different from A and D. The
circumscribed circles of triangles ABP and CDP intersect at another point Q.
Prove that the line PQ passes through a fixed point independent of the choice of
point P .

Originally from the 2018 Moscow Math Olympiad, 4th Problem, Grade 9.

We received 6 correct solutions. We present the solution by Elmar Aliyev.

We know that CDPQ and ABQP are cyclic quadrilaterals. Hence, if ∠BAD = α
and ∠ADC = β, then

∠PQC = 180− β, ∠PQB = 180− α, ∠CQB = α+ β.

Draw a circle through Q, C and B. The radius of this circle is fixed, because BC
and ∠CQB are fixed. Let the line PQ intersect the circle BCQ at a point K. So,
BKCQ is a cyclic quadrilateral. Point K is fixed, because ∠CQK and ∠KQB
are fixed angles. As a result, the line PQ passes through K, which is independent
of the choice of point P .
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OC597. For a natural number n and for a column matrix

X =

Ü
x1
x2
. . .
xn

ê
∈Mn,1(Z),

let δ(X) be the greatest common divisor of numbers x1, x2, . . . , xn. Let n ∈ N, n ≥
2 and let A ∈Mn(Z). Prove that the following statements are equivalent:

(a) |detA| = 1;

(b) δ(AX) = δ(X) for all X ∈Mn,1(Z).

Originally from the 2018 Romania Math Olympiad, 1st Problem, Grade 11, Final
Round.

We received 3 solutions, all of which were correct. We present the solution by
UCLan Cyprus Problem Solving Group.

Assume first that |det(A)| = 1. If δ(X) = k, then each xi is a multiple of k.
Letting AX = (y1 y2 · · · yn)T , then each yi is an integer linear combination of the
xi’s and therefore also a multiple of k. Thus δ(AX) > k = δ(X). On the other
hand A−1 = 1

detAadj(A) = adj(A) is a matrix with integer entries and determinant
1. Thus the same proof shows that δ(X) = δ(A−1AX) > δ(AX). It follows that
δ(AX) = δ(X).

Assume now that |det(A)| 6= 1 and pick a prime p such that p|det(A). Then
det(A) ≡ 0 mod p so the columns c1, . . . , cn of A are linearly dependent over Fp.
So there are integers x1, . . . , xn not all multiples of p such that each entry of
AX = x1c1 + · · ·+ xncn is a multiple of A. So for this X we have δ(X) 6= δ(AX).

OC598. Let f : R → R be a function having the Darboux property. Prove
that if f is injective on R \Q, then f is continuous on R.

Originally from the 2018 Romania Math Olympiad, 3rd Problem, Grade 11, Final
Round.

We received 6 correct submissions. We present the solution by UCLan Cyprus
Problem Solving Group.

We will first prove that f is monotonic, so assume for contradiction that this is
not the case. Without loss of generality suppose that there are x < y < z such
that f(y) > f(x), f(z). We may further assume that f(z) > f(x). Since f has
the Darboux property, it takes every value in (f(z), f(y)) in the interval (y, z).
Furthermore, all but countably many of them are taken by irrational numbers
in (y, z). Similarly, all but countably many values in (f(z), f(y)) ⊆ (f(x), f(y))
are taken by irrational numbers in (x, y). Since (f(z), f(y)) is uncountable, it
means that there are two distinct irrationals w1 ∈ (x, y) and w2 ∈ (y, z) such that
f(w1) = f(w2), a contradiction.
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Since f is monotonic and has the Darboux property then it is well-known that it
is continuous. (Monotonic functions have left and right limits at each point a ∈ R
and the Darboux property guarantees that these are equal to f(a).)

OC599. Given the five-element subsets A1, A2, . . . , Ak of the set {1, 2, . . . , 23}
such that for all 1 ≤ i < j ≤ k the set Ai ∩ Aj has at most three elements, prove
that k ≤ 2018.

Originally from the 2018 Poland Math Olympiad, 5th Problem, Second Round.

We received 2 correct solutions. We present the solution by Nihat Mammadli.

Assume that k > 2000. Then we have at least 2000 5-element subsets of {1, 2, ..., 23}
such that no two have 4 common elements. If we choose any subset {x1, x2, x3, x4, x5}
its 4-element subsets are unique and are not subsets of any other 5-element subset.
The number of these 4-element subsets is

(
5
4

)
= 5. Since k > 2000, the number of

all 4-element subsets is at least 5×2000 = 10000. But {1, 2, ..., 23} has
(
23
4

)
= 8855

4-element subsets. So our assumption k > 2000 is wrong and k < 2000 < 2018.

OC600. Let k be a positive integer and let a1, a2, a3, . . . be a sequence whose
terms are in the set {0, 1, . . . , k}. Let

bn = n
√
an1 + an2 + · · ·+ ann

for all positive integers n. Prove that if in the sequence b1, b2, b3, . . . there are
infinitely many integer terms, then all the terms of the sequence are integers.

Originally from the 2018 Poland Math Olympiad, 6th Problem, Second Round.

We received 3 solutions, all of which were correct. We present the solution by
Oliver Geupel.

The set {an : n ∈ N} is a subset of the finite set {0, 1, . . . , k} and therefore finite,
so it has a maximum, which we will denote by M . There is an index q such that
aq = M . For every index n ≥ q, we have M ≤ bn ≤ n

√
n ·M . Observing that n

√
n

converges to 1 for n→∞, we obtain limn→∞ bn = M by the squeeze theorem.

As a consequence, almost all terms of the sequence b1, b2, b3, . . . lie in the open
interval (M −1,M +1). If there are infinitely many integer terms in the sequence,
then it follows that infinitely many terms are equal to M . Hence, for every index
j 6= q, there is an index n > max{j, q} such that an1 + an2 + · · · + ann = bnn = Mn,
which implies aj = 0. Therefore, all terms of the sequence a1, a2, a3, . . . , except
for aq, vanish. It follows bn = 0 for n < q and bn = M for n ≥ q. Because M is
an integer, all terms b1, b2, b3, . . . are integers.
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From the Lecture Notes of . . .
Elyse Yeager

In this feature of Crux, we share some of our favourite problems from first and sec-
ond year undergraduate courses. These problems are a bit non-standard, elegant or
unexpected. If you have a problem you would like to share (and it fits on one page),
please send it along with its solution and a description of the course/audience it
is intended for to crux.eic@gmail.com.

This month’s column is brought to you by Elyse Yeager.
Elyse is an Associate Professor of Teaching at the Uni-
versity of British Columbia. She is a co-author of the
open-source CLP series of calculus textbooks, and or-
ganized a social-sciences-flavoured remix of the integral
calculus textbook.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finding the demand for multiple goods, given their prices, is a satisfying and (rea-
sonably) intuitive example of constrained optimization. It involves a thoughtful
interpretation of which function is the constraint and which the objective, and it
provides an opportunity to understand first partial derivatives in real-world terms.

In addition to these “softer” model-interpretation skills, the utility function used
below offers students practice with using parameters (if you leave C and α as
they are) and algebraic manipulation of fractional powers. The optimization itself
can be solved with the method of Lagrange multipliers, or with elimination of
variables.

These examples are intended for students learning constrained optimization in
multivariable calculus, with an interest in business or economics. They were de-
veloped by Bruno Belevan, Parham Hamidi, Nisha Malhotra, and Elyse Yeager
for UBC’s commerce-focused second-semester calculus course.

Set-Up

Consider two goods. Each has its own unit price, and the utility to the consumer
depends on the amount consumed of each good. There are two competing desires:
to achieve a high utility (i.e. be made happy by your consumption) and to pay a
low price.

The Marshallian demand of two goods is the consumption of each that maxi-
mizes utility, subject to a fixed budget constraint. (Think about buying the tastiest
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meal possible, with only the cash you happen to have in your pocket.) Swapping
the constraint and the objective function gives us Hicksian demand, the con-
sumption that minimizes cost subject to a fixed utility. (For example, buying the
cheapest possible meal that will still make you feel full.) I particularly like this
feature of the problem: swapping the objective and constraint functions gives you
a different perspective on the same model.

Another nice feature is that we can investigate our answers further with partial
derivatives. The derivatives of demand with respect to price are the price effects:
how does the price of one good affect the optimal consumption of it and the others?
Does it lead to substituting one good for another, or just adjusting the quantity
of the good whose price has changed?

Marshallian demand depends on a budget constraint; the partial derivative with
respect to that variable describes how changes in budget lead to changes in con-
sumption. For a normal good, increasing budget leads to increasing consump-
tion. For an inferior good, increasing budget leads to decreasing consumption.
(For example, when you have more money for lunch, you might buy juice instead
of soda. An increased budget increases your consumption of juice, and decreases
your consumption of soda.)

Questions and Answers

Let X and Y be two goods, with unit prices px and py, respectively. The utility
of buying x units of X and y units of Y is given by the utility function, u(x, y).

We will use the utility function

u(x, y) = Cxαy1−α,

where C is a positive constant and α is a constant in the interval (0, 1). This
has nice properties for a utility function: u(0, y) = u(x, 0) = 0 gives a minimum,
so the optimal consumption does involve some of each good. Its first partial
derivatives are positive (“more is better”) and its second partial derivatives are
negative (“diminishing returns”).

1. Find the amounts xM of good X and yM of good Y that maximize the utility
function subject to the constraint pxx + pyy = I. That is: find the Marshallian
demand functions xM (px, py, I) and yM (px, py, I). (The superscript M stands
for “Marshallian,” and does not denote an exponent. I am assured that this is
standard notation in economics.)

Answer. (We can solve this both with elimination of variables and with the
method of Lagrange multipliers.)

xM (px, py, I) =
α

px
I and yM (px, py, I) =

1− α
py

I

2. When the budget I increases, does the Marshallian demand of X resp. Y
increase or decrease?
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Answer. As the budget increases, the demand of both goods also increases since

∂

∂I
xM =

α

px
> 0 and

∂

∂I
yM =

1− α
py

> 0.

That is, both X and Y are normal goods.

3. Find the amounts xH of good X and yH of good Y that minimize the cost
pxx+pyy subject to the constraint u(x, y) = U for some constant U . That is: find
the Hicksian demand functions xH(px, py, U) and yH(px, py, U).

Answer.

xH(px, py, U) =
U

C

Å
pyα

px(1− α)

ã1−α
, yH(px, py, U) =

U

C

Å
px(1− α)

pyα

ãα
4. What happens to the demand of goods X and Y when the price of one good
changes? Does the answer change between Marshallian and Hicksian demand?

Answer. To think about the effects of price on demand, we find the signs of our
first partial derivatives with respect to px and py.

∂

∂px
xM < 0

∂

∂py
xM = 0

∂

∂px
yM = 0

∂

∂py
yM < 0

∂

∂px
xH < 0

∂

∂py
xH > 0

∂

∂px
yH > 0

∂

∂py
yH < 0

If our goal is to spend as little money as possible (Hicksian demand), then when the
price of a good drops, we will demand more of that good and less of the other. If
our goal is to be as happy as possible within our set budget (Marshallian demand),
then a price drop of one good will cause us to demand more of that good, but it
won’t change our demand for the other.

Classroom Experience

Last Spring semester (January - April 2022) was the first time I included Marshal-
lian and Hicksian demand in my course. Coming up with scenarios to differentiate
the two was quite fun for me and (I think) my students. (For example, if you want
to put together the most fabulous outfit that you can afford with the gift card
you got for your birthday, is that Marshallian or Hicksian demand?) Drilling into
the models in real-world terms with price effects is also quite satisfying, because
the abstract functions that come out of long computations suddenly have readily
understandable implications.

Many students exhibited difficulty working with fractional powers, even when I
substituted a number for α. Keeping the proper-noun vocabulary straight (i.e.
which one is Marshallian and which one is Hicksian) was predictably difficult, but
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the vocabulary wasn’t a priority in my learning goals, so I usually coupled the
names with an explicit description of what was being optimized subject to what.

There is some friction between the language used in economics and mathematics.
I mentioned that the superscripts M and H look like exponents, but are actually
just short for Marshallian resp. Hicksian. To further confuse things, the variable
I in Marshallian demand is short for “budget.” In economics it’s apparently often
called “income,” with the assumption that the entire income is spent on goods X
and Y.

References

[1] Belevan, Hamidi, Malhotra, Yeager, Optimal, Integral Likely , chapter 2.6, pp.
87–94, 2021.
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FOCUS ON...
No. 55

Michel Bataille
Summing an infinite series (II)

Introduction

In this second number on the infinite series, we continue to consider various meth-
ods of summation. We will present problems whose solutions resort to tools from
calculus (integrals, differential equations), often combined with familiar results
about power series.

With differential equations

Suppose that the series to be evaluated naturally writes as S =
∑
anx

n
0 , the value

at x0 of the power series f(x) =
∑
anx

n. An explicit expression of f(x) will
obviously provide more than wanted! In the two examples that follow, such an
expression is determined via a differential equation. First, we offer a variant of
solution to problem 3920 [2014 : 76 ; 2015 : 88]:

Evaluate
∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
.

Consider f : R → R defined by f(x) =
∞∑
n=0

x4n

(4n)! (the series converges for all real

numbers x by the ratio test). Differentiating this power series term by term three
times leads to

f ′(x) =
∞∑
n=0

x4n+3

(4n+ 3)!
, f ′′(x) =

∞∑
n=0

x4n+2

(4n+ 2)!
, f ′′′(x) =

∞∑
n=0

x4n+1

(4n+ 1)!

so that f(x) + f ′(x) + f ′′(x) + f ′′′(x) = ex. Thus, f is the maximal solution of
the differential equation y′′′ + y′′ + y′ + y = ex satisfying the initial conditions
y(0) = 1, y′(0) = y′′(0) = 0. The classical method leads to the general solution

x 7→ ex

4
+Ae−x +Beix + Ce−ix

(where A,B,C are complex constants). The initial conditions then give A = B =
C = 1

4 and we conclude that

f(x) =
1

4
(ex + e−x + eix + e−ix) =

1

2
(cosh(x) + cos(x)).

Now, since 16n2 + 20n+ 7 = (4n+ 2)(4n+ 1) + 2(4n+ 2) + 1, we see that

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
= f(1)+2f ′′′(1)+f ′′(1) = cosh(1)+sinh(1)+sin(1) = e+sin(1).
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Our second example goes back to 2001 with 2622 [2001 : 139 ; 2002 : 187]:

Find the exact value of

∞∑
n=0

2n+1

(2n+ 1)
(
2n
n

) .
It is readily checked that (2n+1)

(
2n
n

)
= (n+1)

(
2n+1
n+1

)
so we can write the proposed

series as f(2) where

f(x) =
∞∑
n=0

xn+1

(n+ 1)
(
2n+1
n+1

) .
(With the help of the ratio test, the reader will easily verify that the radius of
convergence of this power series is 4.)

Of course the factor xn+1

n+1 prompts us to differentiate:

f ′(x) =
∞∑
n=0

xn(
2n+1
n+1

)
and after possibly some trials and errors, we obtain that for x ∈ (0, 4),

(x− 4)f ′(x) +
2f(x)

x
= −2.

Therefore, f is a solution on (0, 4) of the linear differential equation x(x− 4)y′ +
2y = −2x.

The general solution is classically determined as

y(x) =

…
x

4− x
(
λ− 2 arcsin

(
1− x

2

))
for some constant λ. Since lim

x→0+

f(x)
x = 1, the function f is given by

f(x) =

…
x

4− x
(
π − 2 arcsin

(
1− x

2

))
and the desired result is f(2) = π.

With integrals

Integrals can intervene in various ways. In our first example, we reverse the order
of the preceding example, integrating instead of differentiating. The problem was
proposed by Mathematics Magazine in 2021:

Evaluate
∞∑
n=0

(
4n
2n

)
42n(2n+ 1)(2n+ 2)

.
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We introduce the power series

S(x) =
∞∑
n=0

Ç
4n

2n

å
x2n

(2n+ 1)(2n+ 2)
.

We leave as an exercise for the reader to prove thatÇ
4n

2n

å
1

42n(2n+ 1)(2n+ 2)
∼ 1

4
√

2π
· 1

n5/2

as n→∞ and that the series converges when x ∈ (− 1
4 ,

1
4 ]. From Abel’s theorem,

the required sum is just S( 1
4 ) = lim

x→1/4
S(x).

From the binomial theorem and the fact that (−4)n
(−1/2

n

)
=
(
2n
n

)
, we deduce that

∞∑
n=0

(
2n
n

)
xn = (1− 4x)−1/2 for x ∈ (− 1

4 ,
1
4 ) and so

∞∑
n=0

Ç
2n

n

å
xn+1

n+ 1
=

∫ x

0

dt√
1− 4t

=
1−
√

1− 4x

2
.

As a result, for x ∈ [0, 14 ), we have

1

2

Ç
1−
√

1− 4x

2
− 1−

√
1 + 4x

2

å
=
∞∑
n=0

Ç
4n

2n

å
x2n+1

2n+ 1

and by integration,

∞∑
n=0

Ç
4n

2n

å
x2n+2

(2n+ 1)(2n+ 2)
=

1

4

∫ x

0

(
√

1 + 4t−
√

1− 4t) dt =
(1 + 4x)3/2 + (1− 4x)3/2 − 2

24
.

We readily deduce that

∞∑
n=0

Ç
4n

2n

å
1

42n(2n+ 1)(2n+ 2)
=

4(
√

2− 1)

3
.

In our second example, problem 4687 [2021 : 450 ; 2022 : 237], an integral provides
a simple expression for the partial sum of the series.

Calculate

∞∑
n=1

Å
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
− ln 2 +

1

4n

ã
.

As a preliminary exercise, the reader will prove that

n∑
k=1

1

n+ k
= H2n −Hn =

2n∑
k=1

(−1)k+1

k
= ln 2−

∫ 1

0

x2n

1 + x
dx. (1)
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Let

un =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
− ln 2 +

1

4n
.

From (1), it follows that un = 1
4n −

∫ 1

0
x2n

1+x dx. Therefore, if N is an integer with
N > 1, we have

N∑
n=1

un =
HN

4
−
∫ 1

0

x2(1 + x2 + · · ·+ x2N−2)

1 + x
dx =

HN

4
−
∫ 1

0

x2(1− x2N )

(1− x)(1 + x)2
dx.

Since x2

(1+x)2(1−x) = 1
4

Ä
1

1−x + 2
(1+x)2 − 3

1+x

ä
, we obtain∫ 1

0

x2(1− x2N )

(1 + x)2(1− x)

=
1

4

∫ 1

0

(1 + x+ x2 + · · ·+ x2N−1) dx+
1

2

∫ 1

0

1− x2N
(1 + x)2

dx− 3

4

∫ 1

0

1− x2N
1 + x

dx

=
H2N

4
− 1

2

ï
1

1 + x

ò1
0

− 1

2

∫ 1

0

x2N

(1 + x)2
dx− 3

4
[ln(1 + x)]10 +

3

4

∫ 1

0

x2N

1 + x
dx.

Since

lim
N→∞

∫ 1

0

x2N

(1 + x)2
dx = lim

N→∞

∫ 1

0

x2N

1 + x
dx = 0

and lim
N→∞

(H2N −HN ) = ln 2, it follows that

∞∑
n=1

un = lim
N→∞

N∑
n=1

un =
− ln 2

4
− 1

4
+

3 ln 2

4
=

(ln 4)− 1

4
.

One of the sums in our next example (problem 4534 [2020 : 176 ; 2020 : 469]) can
be expressed as an integral. We propose a variant of solution that takes advantage
of this.

For n ∈ N, evaluate
∞∑
k=0

(−1)k
(n+k+1)!

∞∑
k=0

1
k!(n+k+1)

.

Let Un =
∞∑
k=0

(−1)k
(n+k+1)! and Vn =

∞∑
k=0

1
k!(n+k+1) . The key remark is

Vn =
∞∑
k=0

1

k!
·
∫ 1

0

xn+k dx =

∫ 1

0

xn

( ∞∑
k=0

xk

k!

)
dx =

∫ 1

0

xn · ex dx.

Now, an integration by parts gives

Vn = [xnex]10 − n
∫ 1

0

xn−1ex dx = e− n · Vn−1
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so that Vn
n! + Vn−1

(n−1)! = e
n! . It follows that

Vn
n!

+ (−1)n−1V0 =
n∑
k=1

(−1)n−k
Å
Vk
k!

+
Vk−1

(k − 1)!

ã
= e ·

n∑
k=1

(−1)n−k

k!

and using V0 = e− 1, a short calculation yields

Vn = (−1)n·en!

(
n∑
k=0

(−1)k

k!
− 1

e

)
= (−1)n+1·en!

∞∑
k=n+1

(−1)k

k!
= en!

∞∑
k=0

(−1)k

(n+ k + 1)!
,

that is, Vn = en! · Un and the required ratio is 1
en! .

Thanks to integrals, some well-oiled cogs seem in action in the solution we offer to
problem 5636 proposed in 2021 in School Science and Mathematics Association:

Prove that

∞∑
n=0

n!

Å
e− 1− 1

1!
− 1

2!
− · · · − 1

n!

ã2
= e

∞∑
n=1

1

n · n!
.

From the integral form of the remainder in Taylor’s formula, we have

e = 1+
1

1!
+

1

2!
+· · ·+ 1

n!
+

∫ 1

0

(1− t)n
n!

·et dt = 1+
1

1!
+

1

2!
+· · ·+ 1

n!
+e

∫ 1

0

une−u

n!
du.

This remark leads to the desired result as follows:

∞∑
n=0

n!

Å
e− 1− 1

1!
− 1

2!
− · · · − 1

n!

ã2
= e2

∞∑
n=0

1

n!

Ç∫ 1

0

une−u du

å2

= e2
∞∑
n=0

1

n!

∫ 1

0

∫ 1

0

(uv)ne−(u+v) du dv

= e2
∫ 1

0

∫ 1

0

(
e−(u+v)

∞∑
n=0

(uv)n

n!

)
du dv

= e2
∫ 1

0

∫ 1

0

(e−(u+v) · euv du dv

= e

∫ 1

0

∫ 1

0

e(1−u)(1−v) du dv

= e
∞∑
n=0

Ç
1

n!

∫ 1

0

∫ 1

0

(1− u)n(1− v)n du dv

å
= e

∞∑
n=0

1

n!

Ç∫ 1

0

(1− u)n du

å2

= e
∞∑
n=0

1

n!

Å
1

n+ 1

ã2
= e

∞∑
n=0

1

(n+ 1)(n+ 1)!
= e

∞∑
n=1

1

n · n!
.
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To conclude, we show how to prove again Euler’s result
∞∑
n=1

Hn
(n+1)2 = ζ(3) in the

spirit of this number. We will make appeal to some frequently met integrals, easily
calculated by induction using integration by parts: if m, k are integers such that
k ≥ 0 and m ≥ 1, then ∫ 1

0

xk(lnx)m dx =
(−1)mm!

(k + 1)m+1
.

We also need the following result about power series: for x ∈ [0, 1), we have

[ln(1− x)]2 = 2
∞∑
n=1

Hn
n+1 x

n+1.

Indeed, for x ∈ [0, 1), let f(x) =
∞∑
n=1

Hn
n+1 x

n+1. Then f ′(x) =
∞∑
n=1

Hnx
n, hence

(1− x)f ′(x) = x+
∞∑
n=2

(Hn −Hn−1)xn = x+
∞∑
n=2

xn

n
= − ln(1− x)

We first deduce that f ′(x) =
Ä
−1
1−x

ä
ln(1−x) and then conclude that since f(0) = 0,

we have f(x) = 1
2 [ln(1− x)]2.

From this, we derive
∞∑
n=1

Hn
(n+1)2 x

n+1 = 1
2

∫ x
0

(ln(1−t))2
t dt and the desired sum now

follows from

2
∞∑
n=1

Hn

(n+ 1)2
=

∫ 1

0

(ln(1− t))2
t

dt =

∫ 1

0

(ln t)2

1− t dt

=

∫ 1

0

( ∞∑
n=0

tn(ln t)2

)
dt =

∞∑
n=0

∫ 1

0

tn(ln t)2 dt =
∞∑
n=0

2

(n+ 1)3
.

Exercises

1. (From Bulletin de l’APMEP in 2013) Calculate
+∞∑
n=0

n!
1×3×5×···×(2n+1) via a

differential equation satisfied by f(x) =
+∞∑
n=0

n!
1×3×5×···×(2n+1) · x2n+1.

2. (Problem 1195 of The College Mathematics Journal) Prove the following:

∞∑
k=1

Hk

k + 1

Å
π2

6
−Hk+1,2

ã
=
π4

90
,

where Hk =
∑k
i=1

1
i is the kth harmonic number and Hk,2 =

∑k
i=1

1
i2 is the kth

generalized harmonic number.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by May 15, 2023.

4821. Proposed by Corneliu Manescu-Avram.

Let k be a positive integer, n = 2k+1 and let N be the number of ordered solutions
in n-tuples of positive integers to the equation

1

x1
+

1

x2
+ · · ·+ 1

xn
= 1.

Prove that N − k is odd.

4822. Proposed by Anton Mosunov.

The n-th Chebyshev polynomial of the first kind is defined by means of the recur-
rence relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

Prove that for all n ≥ 2,

1

3
<

+∞∫
1

dx

Tn(x)2/n
<

1

3
n
√

4.

4823∗. Proposed by Michael Friday, modified by the editorial board.

Given four points A,B,C,D on a circle, define the Simson segment of A with
respect to the triangle BCD to be the smallest line segment containing the feet of
all three perpendiculars dropped from A to the sides of the triangle. For any four
points on a circle, prove that the Simson segments determined by each point with
respect to the triangle formed by the other three all have the same length.

4824. Proposed by George-Florin Şerban.

Find all prime numbers p for which there are integers x and y that satisfy the
conditions 11p = 8x2 + 23 and p2 = 2y2 + 23.
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4825. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Let On = 1 + 1
3 + · · ·+ 1

2n−1 , n ≥ 1. Calculate

∞∑
n=1

On
n(n+ 1)

.

4826. Proposed by Paul Bracken.

Let Hn is the n-th harmonic number Hn =
∑n
k=1 1/k. Evaluate the following

sum in closed form

S =
∞∑
k=1

Hk

k(k + 1)(k + 2)
.

4827. Proposed by Michel Bataille.

In the plane, two circles Γ1 and Γ2, with respective centres O1 and O2, intersect
at A and B. Let X be a point of Γ1 with X 6= A,B. The lines XA and XB
intersect Γ2 again at Y and Z, respectively. Prove that

Y Z =
AB ·O1O2

O1A
.

4828. Proposed by Narendra Bhandari.

Prove ∫ π
4

0

∫ π
4

0

sec(x+ y) sec(x− y)

secx sec y
dxdy =

∞∑
n=0

(−1)n/(2n+ 1)2.

4829. Proposed by George Apostolopoulos.

Let ABC be a triangle and K,L,M be interior points on the sides BC, CA, AB,
respectively. Let [XY Z] denote the area of a triangle XY Z.

a) Find the maximum value of the expression 
[ALM ]

[ABC]
+

 
[BMK]

[ABC]
+

 
[CKL]

[ABC]
.

b) Find the minimum value of the expression

[KLM ]

[ALM ]
+

[KLM ]

[BMK]
+

[KLM ]

[CKL]
.
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4830. Proposed by Goran Conar.

Let ai ∈ (0, 12 ), i ∈ {1, 2, . . . , n} be real numbers such that
∑n
i=1 ai = 1. Prove

that the following inequalities hold:

n

…
n− 1

n+ 1
≤

n∑
i=1

 
1− ai
1 + ai

< (n+ 1)

…
n− 1

n+ 1
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2023.

4821. Soumis par Corneliu Manescu-Avram.

Soient k un entier positif, n = 2k+1 et N le nombre de solutions positifs ordonnées
à l’équation

1

x1
+

1

x2
+ · · ·+ 1

xn
= 1.

Démontrer que N − k est impair.

4822. Soumis par Anton Mosunov.

Le n-ième polynôme de Tchebychev de la première sorte est défini par la récurrence

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) pout n ≥ 2.

Démontrer que pour tout n ≥ 2,

1

3
<

+∞∫
1

dx

Tn(x)2/n
<

1

3
n
√

4.

4823∗. Soumis par Michael Friday, modifié par le comité de rédaction.

Pour quatre points donnés A,B,C,D sur un cercle, on définit le segment de Simson
de A par rapport au triangle BCD comme étant le plus court segment incluant
les pieds des perpendiculaires de A vers les trois côtés du triangle. Démontrer,
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pour quatre points sur un cercle donné, que les segments de Simson, pour chacun
d’entre eux par rapport aux trois autres, sont de même longueur.

4824. Soumis par George-Florin Şerban.

Déterminer tous les nombres premiers p pour lesquels il existe des entiers x et y
répondant aux contraintes 11p = 8x2 + 23 et p2 = 2y2 + 23.

4825. Soumis par Ovidiu Furdui et Alina Ŝıntămărian.

Soit On = 1 + 1
3 + · · ·+ 1

2n−1 , n ≥ 1. Calculer

∞∑
n=1

On
n(n+ 1)

.

4826. Soumis par Paul Bracken.

Le n-ième nombre harmonique est défini par Hn =
∑n
k=1 1/k. Évaluer la somme

suivante, en forme close,

S =
∞∑
k=1

Hk

k(k + 1)(k + 2)
.

4827. Soumis par Michel Bataille.

Dans le plan, les cercles Γ1 et Γ2, de centres O1 et O2, se rencontrent en A et B.
Soit alors X un point sur Γ1 tel que X 6= A,B. Les lignes XA et XB rencontrent
Γ2 de nouveau en Y et Z respectivement. Démontrer que

Y Z =
AB ·O1O2

O1A
.

4828. Soumis par Narendra Bhandari.

Démontrer que∫ π
4

0

∫ π
4

0

sec(x+ y) sec(x− y)

secx sec y
dxdy =

∞∑
n=0

(−1)n/(2n+ 1)2.

4829. Soumis par George Apostolopoulos.

Soit ABC un triangle et soient K, L, M des points intérieurs des côtés BC, CA,
AB respectivement. La surface du triangle XY Z est dénotée [XY Z].

a) Déterminer la valeur maximale de l’expression 
[ALM ]

[ABC]
+

 
[BMK]

[ABC]
+

 
[CKL]

[ABC]
.
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b) Déterminer la valeur minimale de l’expression

[KLM ]

[ALM ]
+

[KLM ]

[BMK]
+

[KLM ]

[CKL]
.

4830. Soumis par Goran Conar.

Soient ai ∈ (0, 12 ), i ∈ {1, 2, . . . , n} des nombres reels tels que
∑n
i=1 ai = 1.

Démontrer que les inégalités suivantes tiennent

n

…
n− 1

n+ 1
≤

n∑
i=1

 
1− ai
1 + ai

< (n+ 1)

…
n− 1

n+ 1
.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 48(8), p. 483–486.

4771. Proposed by Michel Bataille.

Let I be an open interval containing 0 and 1 and let f : I → R be a differen-
tiable, strictly increasing, convex function. If f ′(1) < 2f(1), prove that there exist
positive real numbers a, b such that∫ 1

0

(f(x))2n+1 dx ∼ a · b
n

n
as n→∞

and express a and b as a function of f(1) and f ′(1).

We received 7 solutions, all of which were correct. We present the solution by Theo
Koupelis.

The function f(x) is strictly increasing and convex, and thus f ′(x) > 0, f ′′(x) > 0,
and f(1) > f ′(1)/2 > 0. Also, it has at most one zero in [0, 1); if f(x0) = 0, with
x0 ∈ [0, 1), then f(x) ≤ 0 in [0, x0], and f(x) > 0 in (x0, 1]. We have

I := lim
n→∞

∫ 1

0

(f(x))2n+1 dx = lim
n→∞

∫ x0

0

(f(x))2n+1 dx+ lim
n→∞

∫ 1

x0

(f(x))2n+1 dx.

Expanding f(x) around x0 and 1 we get

f(x) = f(x0)− (x0 − x)
f ′(x0)

1!
+ (x0 − x)2

f ′′(x0)

2!
− · · ·

= −(x0 − x) · f ′(x0)

ï
1− (x0 − x) · f

′′(x0)

2!f ′(x0)
+ · · ·

ò
,

and

f(x) = f(1)

ï
1− (1− x) · f

′(1)

f(1)

Å
1− 1− x

2!
· f
′′(1)

f ′(1)
+ · · ·

ãò
,

and thus

I ∼ (−1)2n+1 lim
n→∞

∫ x0

0

e(2n+1) ln[(x0−x)·f ′(x0)] dx+ lim
n→∞

∫ 1

x0

e
(2n+1) ln

î
f(1)

Ä
1−(1−x)· f

′(1)
f(1)

äó
dx

∼ − lim
n→∞

[f ′(x0)]
2n+1

∫ x0

0

(x0 − x)2n+1dx+ lim
n→∞

[f(1)]
2n+1

∫ 1

x0

e−(2n+1)
f′(1)
f(1)

(1−x) dx

∼ − lim
n→∞

[f ′(x0)]
2n+1

∫ 0

x0

y2n+1(−dy) + lim
n→∞

[f(1)]
2n+1

∫ 0

1−x0

e−(2n+1)
f′(1)
f(1)
·y (−dy)

∼ − lim
n→∞

[f ′(x0)]
2n+1 · x

2n+2
0

2n+ 2
+ lim
n→∞

[f(1)]
2n+1 · f(1)

(2n+ 1)f ′(1)

ï
1− e−(2n+1)

f′(1)
f(1)

(1−x0)
ò
.
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But x0 ∈ [0, 1) and thus

I ∼ lim
n→∞

[f(1)]2n+2

(2n+ 1)f ′(1)
∼ a · b

n

n
,

where a =
(f(1))

2

2f ′(1)
and b = (f(1))

2
. If f(x) has no root in [0, 1), the above analysis

still holds true by setting x0 = 0.

4772. Proposed by Mihaela Berindeanu.

Find all functions f : (0,∞) −→ (0,∞) such that f(kx+ f(y)) =
y

k
· f(xy+ 1) for

all x, y ∈ (0,∞), where k > 0 is a real and fixed parameter.

We received 6 submissions and they were all complete and correct. We present a
solution by the majority of solvers, slightly modified by the editor.

It is easy to verify that f(x) = k
x is a solution to the given functional equation.

We show that this is the only solution.

Suppose there exist x, y > 0 such that kx + f(y) = xy + 1, then the functional

equation implies that y = k. Therefore, if y 6= k, then x = f(y)−1
y−k (so that

kx+f(y) = xy+ 1) must be non-positive. In other words, if y > k, then f(y) ≤ 1;
if y < k, then f(y) ≥ 1.

Let y > 1. Set x = y−1
y so that xy+ 1 = y. Then the functional equation becomes

f

Å
k − k

y
+ f(y)

ã
=
y

k
f(y).

We claim that f(y) = k
y . Indeed, if f(y) > k

y , then k − k
y + f(y) > k and thus we

have

1 ≥ f
Å
k − k

y
+ f(y)

ã
=
y

k
f(y) > 1,

a contradiction. Similarly, we can deduce that f(y) < k
y is impossible.

We have shown that f(y) = k
y whenever y > 1. Now let y be an arbitrary positive

number. Setting x = 1
k in the functional equation so that kx + f(y) > 1 and

xy + 1 > 1, we obtain that

k

1 + f(y)
= f(1 + f(y)) =

y

k
f
(y
k

+ 1
)

=
y

k
· k
y
k + 1

=
ky

y + k
.

Solving the above equation, we conclude that f(y) = k
y . This finishes the proof.

Editor’s Comment. Several solvers pointed out that this problem has appeared in
the Individual Competition of the 2012 Middle European Mathematical Olympiad
(MEMO) for the special case k = 1, and the solution for the case k = 1 extends
to all positive k naturally.
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4773. Proposed by George Stoica.

Suppose that x1, x2, . . . , xn, where n ≥ 3, are nonnegative real numbers such that
x1 + x2 + · · · + xn = 2 and x1x2 + x2x3 + · · · + xn−1xn = 1. Prove that at most
three of the xi’s are non-zero, and at least one of the xi’s equals 1.

We received 12 correct solutions. The strategy of the solution below was followed
by five solvers. Three proved the result by induction.

Let u =
∑{xi : 1 ≤ i ≤ n, i odd} and v =

∑{xi : 1 ≤ i ≤ n, i even}. Then
u+ v = 2. Since

4 ≥ (u+ v)2 − (u− v)2 = 4uv ≥ 4
n−1∑
i=1

xixi+1 = 4,

equality holds throughout, so that u = v = 1, uv =
∑n−1
i=1 xixi+1 and xixj = 0

when i and j have opposite parity and |i− j| ≥ 3.

Suppose that k is the smallest index for which xk 6= 0. Then xk+1+2i = 0 for
j ≤ −1 and j ≥ 1. It follows that xi = 0 whenever i and k+ 1 are distinct indices
with the same parity (so that the sum u or v containing xk+1 has a single nonzero
term). Thus xk+1 = 1, xk+2i = xk+1+(2i−1) = 0 for i ≥ 2, xk = x and xk+2 = 1−x
where 0 < x ≤ 1. The result follows.

4774. Proposed by George Apostolopoulos.

Let ABC be a triangle with inradius r. Let D,E, F be chosen on the sides
BC,CA,AB respectively, so that AD,BE and CF bisect the angles of ABC.
Prove that

FE2 + ED2 +DF 2 ≥ 9r2.

All but one of the 15 submissions were correct; we feature a composite of the
almost identical solutions submitted independently by Mohamed Amine Ben Ajiba,
by Nandan Sai Dasireddy, and by the proposer.

Let a = BC, b = CA, c = AB be the side lengths of triangle ABC, and let ∆, s, R
be its area, semiperimeter, and circumradius. We will use square brackets to
denote areas. Our goal is to apply Weitzenböck’s inequality to triangle DEF ,
which tells us that

FE2 + ED2 +DF 2 ≥ 4
√

3 · [DEF ]; (1)

see, for example, O. Bottema et al., Geometric Inequalities, formula (4.4), page
42. Because E and F are the feet of the bisectors of the angles at B and C, we
have

AE =
bc

c+ a
and AF =

bc

a+ b
,

whence

[AFE] =
1

2
AE ·AF sinA =

bc ·∆
(c+ a)(a+ b)

.
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Similarly,

[BDF ] =
ca ·∆

(a+ b)(b+ c)
and [CED] =

ab ·∆
(b+ c)(c+ a)

.

Thus,

[DEF ] = ∆− ([AFE] + [BDF ] + [CED]) =
2abc ·∆

(a+ b)(b+ c)(c+ a)
.

The AM-GM inequality implies that

(a+ b)(b+ c)(c+ a) ≤
Å

(a+ b) + (b+ c) + (c+ a)

3

ã3
=

64s3

27
,

while, with the help of the formulas abc = 4R∆, and ∆ = rs, Mitrinovic’s inequal-
ity (namely 3

√
3R ≥ 2s) implies that

[DEF ] ≥ 27

64s3
· 8Rr2s2 =

27Rr2

8s
≥ 3
√

3

4
r2.

Plugging this last inequality into (1) gives us

FE2 + ED2 +DF 2 ≥ 4
√

3 · [DEF ] ≥ 9r2,

as desired. Note that equality holds if and only if triangle ABC is equilateral.

Editor’s comments. About half the submissions were based on formulas for DE,
EF , FD as in last month’s featured solution to problem 4767 (and several earlier
problems) combined with considerable algebraic manipulations. Walther Janous,
with the help of his computer, proved the stronger estimate,

FE2 + ED2 +DF 2 ≥ 27Rr2(181R + 214r)

128s2
.

4775. Proposed by H. A. ShahAli.

Suppose that A and B are positive numbers such that A < B, A+B < π and let

f(x) = sin(xA) sin(A+ xB)− sin(xB) sin(B + xA)

be defined on 0 < x < 1/2. Prove that the graph of y = f(x) is never tangent to
the x-axis.

We received 8 solutions, of which five were correct, two were incomplete and one
was incorrect. We present 2 solutions.

Solution 1, by Walther Janous and Didier Pinchon (done independently).
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Let P = B − A and Q = B + A. Note that 0 < P < Q < π. Then, using the
product of sines to difference of cosines formula, we find that

f(x) = 1
2{[cos(Px+A)− cos(Qx+A)]− [cos(Px−B)− cos(Qx+B)]}

= 1
2{[cos(Px+A)− cos(Px−B)]− [cos(Qx+B)− cos(Qx+A)]}

= sin Q
2 sin(P ( 1

2 − x))− sin P
2 sin(Q( 1

2 + x)).

Differentiating twice yields

f ′′(x) = −P 2 sin Q
2 (sin(P ( 1

2 − x)) +Q2 sin P
2 (sin(Q( 1

2 + x)).

We have that f(0) = 0, f( 1
2 ) < 0 and f ′′(x) > 0 on [0, 12 ]. To see this, note

that x−2 sinx with derivative x−3(x−2 tanx) cosx is decreasing, on (0, π2 ) so that

P 2 sin Q
2 < Q2 sin P

2 . Therefore, the graph of y = f(x) lies below the line joining
(0, 0) = (0, f(0)) and (1

2 , f( 1
2 ), i.e. f(x) < 2f( 1

2 )x < 0 for 0 < x ≤ 1
2 .

Thus, there are no values of f(x) for which 0 < x ≤ 1
2 and f(x) = 0, so its graph

never crosses the x−axis.

Solution 2, by Kai-Wai Lau.

With the notation of Solution 1, the tangency of the graph of y = f(x) to the
x−axis is equivalent to

f(x) = sin(P ( 1
2 − x)) sin Q

2 − sin(Q( 1
2 + x)) sin P

2 = 0,

f ′(x) = −P cos(P ( 1
2 − x)) sin Q

2 −Q cos(Q( 1
2 + x)) sin P

2 = 0,

for some x ∈ [0, 12 ]. Considering this as a linear system with variables sin Q
2

and sin P
2 , we find, after converting the trigonometric products to sums, that its

determinant is equal to

h(x) = A sin(A+ 2Bx)−B sin(B + 2Ax).

Since h( 1
2 ) < 0 and

h′(x) = 4AB sin(Q(x+ 1
2 ) sinP ( 1

2 − x) > 0

on (0, 12 ), it follows that h(x) < 0 on [0, 12 ] and the linear system has only the

trivial solution. However, this is inconsistent with the fact that neither sin Q
2 nor

sin P
2 is zero.

Therefore the graph is y = f(x) is never tangent to the x−axis.

4776. Proposed by Nguyen Viet Hung.

For each positive integer n, findú
1

{
√
n2 + 3n+ 4}

ü
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where bac and {a} denote integer part and fractional part of a, respectively.

We received 32 correct solutions from 31 solvers. Nine of them provided the solu-
tion below.

Since n + 3
2 <

√
n2 + 3n+ 4 < n + 2, then b

√
n2 + 3n+ 4c = n + 1 and 1/2 <

{
√
n2 + 3n+ 4} < 1. Therefore

1 <
1

{
√
n2 + 3n+ 4}

< 2

and the answer is 1.

Comment from the editor. The majority of solvers started from

n+ 1 <
√
n2 + 3n+ 4 < n+ 2,

and then showed that√
n2 + 3n+ 4− (n+ 1) = (n+ 3)/(

√
n2 + 3n+ 4 + n+ 1)

lay between (n+ 3)/(2n+ 3) and (n+ 3)/(2n+ 2).

4777. Proposed by Goran Conar, modified by the Editorial Board.

Let n ∈ N and x1, x2, . . . , xn ≥ 1 such that
∑n
i=1

1
xi

= 1. Prove

n

1/2 + n2
<

n∑
i=1

1
1
2 + x2i

<
2

3
.

We received 17 submissions, and in most of them, it is noticed that the upper bound
is reached for n = 1 only (and x1 = 1), and the lower bound is reached when n ≥ 1
and xi = n, i = 1, . . . , n. Overall 11 submissions were correct and complete, and
we present two solutions.

Solution 1, by Brian Bradie.

For the case n = 1, x1 = 1 and

1

1/2 + 12
=

1∑
i=1

1
1
2 + x2i

=
2

3
;

that is,

n

1/2 + n2
=

n∑
i=1

1
1
2 + x2i

=
2

3
.

Suppose n ≥ 2. For each i = 1, 2, . . . , n, let yi = 1
xi

. Then 0 < y1, y2, . . . , yn ≤ 1,∑n
i= yi = 1, and the desired inequality becomes

n

1/2 + n2
<

n∑
i=1

2y2i
y2i + 2

<
2

3
.
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Moreover, the condition that each yi be positive combined with the condition that
the sum of the yi is equal to 1 implies that none of the yi can be equal to 1, so
0 < y1, y2, . . . , yn < 1. Let

f(y) =
2y2

y2 + 2
,

and start with the inequality on the right. For 0 < y < 1, f(y) < 2
3y, as this is

equivalent to
0 < 2y(y − 1)(y − 2).

Thus,
n∑
i=1

2y2i
y2i + 2

<
n∑
i=1

2

3
yi =

2

3

n∑
i=1

yi =
2

3
.

For the inequality on the left, note that equation of the line tangent to the graph
of f at y = 1

n is

t`(y) =
1

1/2 + n2
+

2n3

(1/2 + n2)2

Å
y − 1

n

ã
,

and

f(y)− t`(y) = 4
(ny − 1)2(2n2 − 2ny − 1)

(1 + 2n2)2(2 + y2)
≥ 0

for 0 < y < 1 with equality for y = 1/n. Therefore,

n∑
i=1

2y2i
y2i + 2

≥
n∑
i=1

Å
1

1/2 + n2
+

2n3

(1/2 + n2)2

Å
yi −

1

n

ãã
=

n

1/2 + n2
+

2n3

(1/2 + n2)2

(
n∑
i=1

yi − 1

)
=

n

1/2 + n2
.

Finally,

n

1/2 + n2
≤

n∑
i=1

1
1
2 + x2i

≤ 2

3
.

Equality holds on the right only for the case n = 1, but holds on the left for any
n when xi = n for each i = 1, 2, . . . , n.

Solution 2, by Oliver Geupel.

We fix the problem to show that

n
1
2 + n2

≤
n∑
i=1

1
1
2 + x2i

≤ 2

3
,

with equality in the left relation if and only if x1 = x2 = · · · = xn = n, whereas
equality in the right part holds if and only if n = 1. With the substitution yi = 1/xi
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we have 0 < yi ≤ 1,
∑n
i=1 yi = 1. Writing f(x) = x2

2+x2 , the desired inequalities
become

n

2n2 + 1
≤

n∑
i=1

f (yi) ≤
1

3
.

First, we prove the left inequality. If for some k ∈ {1, 2, . . . , n} it holds y2k ≥ 2/3,
then it follows that n ≥ 2 and

n

2n2 + 1
≤ 2

9
<

1

4
≤ f (yk) <

n∑
i=1

f (yi) ,

and we are done. So assume y2i < 2/3 for all i. Since the second derivative of the
function f(x) is f ′′(x) = 12

(2+x2)3

(
2
3 − x2

)
> 0 for 0 < x <

√
2/3, we see that f is

strictly convex, and it follows by Jensen’s inequality that

n

2n2 + 1
= nf

(
1

n

n∑
i=1

yi

)
≤

n∑
i=1

f (yi) .

Moreover, by the equality condition of Jensen’s inequality, equality holds if and
only if y1 = y2 = · · · = yn = 1/n. This completes the proof of the left inequality.

It remains to prove the right inequality. For n = 1, equality holds by inspection.
In the following suppose that n ≥ 2. For a, b ∈ (0, 1), we have

f(a+ b)− f(a)− f(b) =
ab
[
8− 4ab− a3b− 2a2b2 − ab3

]
(a2 + 2)(b2 + 2) ((a+ b)2 + 2)

=
ab
[
4(1− ab) + 4− ab(a+ b)2

]
(a2 + 2)(b2 + 2) ((a+ b)2 + 2)

> 0,

which yields f(a) + f(b) < f(a + b). By a straightforward induction we finally
obtain ∑

i=1

f (yi) < f

(
n∑
i=1

yi

)
=

1

3
.

The proof is complete.

4778. Proposed by Adnan Sadik, modified by the Editorial Board.

Let f(x) = 2x
2

. Prove that for any n ∈ N \ {1}, there exists a, b ∈ N \ {1} such
that

1. gcd(a, b) = 1,

2. n|φ(a) and n|φ(b),

3. a, b ≤ f(n),

where Euler’s totient function φ(n) is the number of positive integers less than n
and coprime to n.
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We received 6 submissions and they were all complete and correct. We present a
solution by Samuel Figueredo and the proposer (independently).

We first recall a classical statement from elementary number theory: for any a ∈
N−{1}, n ∈ N−{1}, we have n | φ(an− 1). Indeed, the order of a modulo an− 1
is clearly n, and Euler’s theorem states that

aφ(a
n−1) ≡ 1 (mod an − 1) .

The basic property of the order immediately implies that n | φ(an − 1).

Now, back to the problem. For a fixed n, we can take a = 2n−1, b = (2n−1)n−1 =
an − 1 and easily verify that they satisfy the 3 required conditions. Alternatively,
we can take a = 2n − 1 and b = 2n + 1. One can check n | φ(2n + 1) in a similar
way.

Editor’s Comment. The other five solutions we received more or less relied on
effective versions of Dirichlet’s theorem on the arithmetic progression {1 + kn},
which are overkill for this problem. In particular, these five solutions used either
Zsigmondy’s theorem or Bang’s theorem.

We remark that the assumption f(x) = 2x
2

can be significantly weakened using
Linnik’s theorem. Let a and d be coprime such that 1 ≤ a ≤ d− 1; we let P (a, d)
be the least prime in the arithmetic progression (a+kd)∞k=1. Linnik (1944) showed
that there exist positive constants c and L such that P (a, d) < cdL. The best-
known record on the constant L is due to Xylouris (2011), where he showed that
P (a, d) < Cd5, where C is an effectively computable constant.

Thus, if we take f(x) = Cx5 instead, the statement of the problem remains true.
Indeed, given an integer n ≥ 2, we can take a = n2 and b = P (1, n). Note that
if we write n =

∏
pαii in its prime factorization, then n | φ(a) =

∏
(pi − 1)p2αi−1i .

Since b is a prime and b ≡ 1 (mod n), it follows that gcd(a, b) = 1 and n | φ(b).

4779. Proposed by Marian Ursărescu.

Let 0 < a < b and let f : [a, b]→ R be continuous on [a, b], differentiable on (a, b)
and with f(a) = f(b). Prove that there exist distinct c1, c2 ∈ (a, b) such that

√
bf ′(c1) +

√
af ′(c2) = 0.

We received 9 submissions, of which 7 were correct and complete. We present two
solutions.

Solution 1, submitted independently by Henry Ricardo and the proposer.

Applying the Mean Value Theorem (MVT) on the subinterval [a,
√
ab] ⊂ [a, b], we

see that there is a point c1 ∈ (a,
√
ab) such that

f(
√
ab)− f(a)√
ab− a

= f ′(c1), or f(
√
ab)− f(a) =

√
a
Ä√

b−√a
ä
f ′(c1). (1)
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The MVT applied to the interval [
√
ab, b] yields c2 ∈ (

√
ab, b) such that

f(b)− f(
√
ab)

b−
√
ab

= f ′(c2), or f(b)− f(
√
ab) =

√
b
Ä√

b−√a
ä
f ′(c2). (2)

Adding (1) and (2) gives us

f(b)− f(a) =
Ä√

b−√a
ä Ä√

af ′(c1) +
√
bf ′(c2)

ä
= 0,

which implies that
√
af ′(c1) +

√
bf ′(c2) = 0 since

√
b 6= √a. Furthermore, since

(a,
√
ab) ∩ (

√
ab, b) = ∅, c1 and c2 are distinct.

Solution 2, by Didier Pinchon.

For x ∈ [a, b],
√
ax ∈ [a, b] and

√
bx ∈ [a, b]. So, let g be the function defined by

g(x) = f(
√
ax) + f(

√
bx).

On [a, b], g is a continuous function which is differentiable on (a, b), with

g′(x) =
1

2
√
x

Ä√
af ′(
√
ax) +

√
bf ′(
√
bx)
ä
.

As g(a) = f(a) + f(
√
ab) and g(b) = f(

√
ab) + f(b), g(a) = g(b) results from

f(a) = f(b). Using Rolle’s theorem for g, there exists c ∈ (a, b) such that g′(c) = 0.
This is equivalent to

√
af ′(
√
ac) +

√
bf ′(
√
bc) = 0. The result is therefore proven

with c1 =
√
ac and c2 =

√
bc, which are distinct because a < b.

4780. Proposed by Florică Anastase.

Let 0 < a < b,m = a+b
2 and f : [a, b]→ R differentiable with derivative continuous

on [a, b] such that f(m) = 0. Prove that

2a3
∫ a

−a
(f ′(x))

2
dx ≥ 3

Å∫ a

−a
f(x) dx

ã2
.

We received 8 submissions of which 5 were correct and complete. We present a
solution to a revised problem statement by Didier Pinchon.

A preliminary remark. We begin with two reformulations of the problem.

Statement 1 : Let a > 0 and f : [−a, a] → R be differentiable with continuous
derivative on (−a, a) and f(0) = 0. Prove that

2a3
∫ a

−a
(f ′(x))2 dx ≥ 3

Å∫ a

−a
f(x) dx

ã2
.

Statement 2 : Let 0 < a < b and f : [a, b] → R be differentiable with continuous
derivative on (a, b) and f

(
a+b
2

)
= 0. Prove that

(b− a)3

4

∫ b

a

(f ′(x))2 dx ≥ 3

Ç∫ b

a

f(x) dx

å2

.
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Both statements are equivalent to the following statement.

Statement 3 : Let g : [−1, 1] → R be differentiable with continuous derivative on
(−1, 1) and g(0) = 0. Prove that

2

∫ 1

−1
(g′(t))2 dt ≥ 3

Ç∫ 1

−1
g(t) dt

å2

.

To prove that statement 1 is equivalent to statement 3, the change of variable
x = at is used, with f(at) = g(t) and af ′(at) = g′(t).

To prove that statement 2 is equivalent to statement 3, the change of variable
x = a+b

2 + b−a
2 t is used, with f(x) = g(t) and b−a

2 f ′(x) = g′(t).

We are now ready for the solution.

For a function F (t), continuous on an interval [a, b], the notation [F (t)]
b
a designates

the increment F (b)− F (a) of F (t) between a and b.

Two integration by parts give, using g(0) = 0,∫ 0

−1
g(t) dt = [(t+ 1)g(t)]

0
−1 −

∫ 0

−1
(t+ 1)g′(t) dt = −

∫ 0

−1
(t+ 1)g′(t) dt,

and ∫ 1

0

g(t) dt = [(t− 1)g(t)]
1
0 −

∫ 1

0

(t− 1)g′(t) dt = −
∫ 1

0

(t− 1)g′(t) dt.

Therefore ∫ 1

−1
g(t) dt =

∫ 1

−1
h(t)g′(t) dt,

where the function h(t) on [−1, 1] is defined by

h(t) =

ß −(t+ 1), −1 ≤ t ≤ 0,
−(t− 1), 0 < t ≤ 1.

From the Cauchy–Schwarz inequality for integrals, it follows thatÇ∫ 1

−1
g(t) dt

å2

≤
∫ 1

−1
(h(t))2 dt ·

∫ 1

−1
(g′(t))2 dt.

Since ∫ 1

−1
(h(t))2 dt =

∫ 0

−1
(t+ 1)2 dt+

∫ 1

0

(t− 1)2 dt

=

ï
(t+ 1)3

3

ò0
−1

+

ï
(t− 1)3

3

ò1
0

=
2

3
,
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we have Ç∫ 1

−1
g(t) dt

å2

≤ 2

3

∫ 1

−1
(g′(t))2 dt,

which proves the statement.

Editor’s Comments. Raymond Mortini and Rudolf Rupp considered whether the
bound given in statement 2 was the best possible. They supplied the following
example which they noted is not a C1 function. Let

q(x) =


(x− a)2

2
− (b− a)2

8
if a ≤ x ≤ (a+ b)/2

(x− b)2
2

− (a− b)2
8

if (a+ b)/2 ≤ x ≤ b.

Then q is continuous on [a, b], q((a+ b)/2) = 0 and∫ b

a

(q′(x))2 dx =
12

(b− a)3

Ç∫ b

a

q(x) dx

å2

.

Theo Koupelis provided the following counterexample to the problem’s original

statement. If f(x) = x − 2 in [1, 3], then
∫ 1

−1 12 dx = 2 and
∫ 1

−1(x − 2)dx = −4.

Clearly 2 · 13 · 2 < 3 · (−4)2.
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