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ISSN 1496-4309 (électronique)
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62 MathemAttic: No. 42

62 Problems: MA206–MA210

65 Solutions: MA181–MA185

69 Teaching Problems: No. 20 John Grant McLoughlin

73 Mathemagical Puzzles: No. 3 Tyler Somer

77 From the Bookshelf of . . . Rebecca McKay

79 Mathematics from the Web: No. 7

80 Olympiad Corner: No. 410

80 Problems: OC616–OC620

82 Solutions: OC591–OC595

89 Chebyshev Substitutions for Binomial Integrals Emilian Sega

95 Reading a Math Book: Solutions to No. 1 Yagub Aliyev

101 Problems: 4811–4820

105 Solutions: 4761–4770

Crux Mathematicorum
Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
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MATHEMATTIC
No. 42

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by April 30, 2023.

MA206. Place algebraic operations +; −; ÷; × between the numbers 1 to 9,
in that order, so that the total equals 100. You may also freely use brackets before
or after any of the digits in the expression and numbers may be placed together,
such as 123 and 67. Two examples are given below:

123+45−67+8−9 = 100 and 1+((2 + 3)× 4× 5)−((6− 7)× (8− 9)) = 100.

MA207. Suppose that the points E, F , G, H lie in the plane of the square
ABCD such that AEB, BFC, CGD, and DHA are equilateral triangles. If the
area of EFGH is 25, then find the area of ABCD.

A B

CD

E

F

G

H

MA208. Solve the following equation for 0 ≤ x < 2π:

23 cos x+3 − 22 cos x+2 − 2cos x+1 + 1 = 0.

MA209. Proposed by Aravind Mahadevan.

In ∆ABC, D is on BC. If ∠ADC = θ, prove that

BC cot θ = DC cotB −BD cotC.

Crux Mathematicorum, Vol. 49(2), February 2023
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MA210. Proposed by Neculai Stanciu.

Determine all triplets (x, y, z) of real numbers which satisfy:

2xy − (z + x− 1)2 = 2xy − (x+ y − 1)2 = 2zx− (y + z − 1)2 = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes dans cette section sont appropriés aux étudiants de l’école secondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 avril 2023.

MA206. Placer des symboles d’opérations algébriques +; −; ÷; × entre les
chiffres 1 à 9, dans cet ordre, de façon à ce que le résultat donne 100; pour ce faire,
il est permis d’utiliser des parenthèses avant ou après tout chiffre, et de regrouper
les chiffres, comme 123 ou 67. Deux exemples suivent:

123 + 45− 67 + 8− 9 = 100 et 1 + ((2 + 3)× 4× 5)− ((6− 7)× (8− 9)) = 100.

MA207. Supposons que les points E, F , G et H se trouvent dans le plan
engendré par le carré ABCD de telle sorte que AEB, BFC, CGD et DHA sont
des triangles équilatéraux. Sachant que l’aire de EFGH est 25, trouvez l’aire de
ABCD.

A B

CD

E

F

G

H
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MA208. Résoudre l’équation suivante, où 0 ≤ x < 2π:

23 cos x+3 − 22 cos x+2 − 2cos x+1 + 1 = 0.

MA209. Soumis par Aravind Mahadevan.

Dans ∆ABC, le point D est situé le long du segment BC. Si ∠ADC = θ, montrez
que

BC cot θ = DC cotB −BD cotC.

MA210. Proposé par Neculai Stanciu.

Déterminer tous les triplets de nombres réels tels que

2xy − (z + x− 1)2 = 2xy − (x+ y − 1)2 = 2zx− (y + z − 1)2 = 1.

Crux Mathematicorum, Vol. 49(2), February 2023
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(7), p. 372–374.

MA181. In still water Aoife swims at 2 kph. She is standing on the bank
of a river that is exactly 100 m wide. The river is flowing past at a speed of 1.2
kph. How long (in seconds) will it take her to swim in a straight line to the point
directly across from her on the other bank of the river?

Originally question 12 from the 2018 PRISM (Problem Solving for Irish Second
level Mathematicians) paper.

We received 4 submissions of which 3 were correct and complete. We present the
solution by Soham Bhadra.

Aoife can swim at 2 kilometres per hour in still water. The width of the river
is 100 metres. The river’s speed is 1.2 kilometres per hour. So if Aoife swims in
the river whose speed is 1.2 kilometres per hour in the direction indicated by the
question, then the speed of Aoife during that 100 metres will be

2 + 1.2

2
= 1.6 kph =

16 metres

36 seconds

Therefore the required time for Aoife to cross the river and reach the other bank
is 100

( 16
36 )

= 225 seconds.

MA182. Antonia, Dara and Tosia are identical triplet sisters in the same
class. Antonia always tells the truth, Dara always lies and Tosia sometimes lies
and sometimes tells the truth. One day one of them arrives late for class. The
teacher asks this late sister who she is. She answers “I am Tosia”. The teacher
cannot tell the girls apart so asks the other two sisters the name of the sister who
was late. One of them says: “Antonia was late”, and the other says: “Dara was
late”. Which sister was in fact late?

Originally question 20 from the 2015 PRISM (Problem Solving for Irish Second
level Mathematicians) paper.

We received 6 submissions, all of which were correct and complete. We present the
solution by Soham Bhadra, Vasiliki Lalioti, Aravind Mahadevan, and Emon Suin
(done independently).

Since Antonia always tells the truth, the sister who was late could not have been
Antonia as she would not have told the teacher that she is Tosia. This means that
Antonia must have been one of the other two sisters whom the teacher asked.

Copyright © Canadian Mathematical Society, 2023
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Again, the sister who replied that Antonia was late could not have been Antonia
as we have already established that Antonia was not the one who was late and
Antonia always tells the truth. This means that the sister who replied to the
teacher that Dara was late must have been Antonia. And since Antonia always
tells the truth, we can establish the fact that it is Dara who was late.

MA183. ABCD is a square of sides length 4, E is the midpoint of CD,
and AE ⊥ EF , as shown. If x and y are the measures of ∠EAD and ∠FAE
respectively, prove that x = y.

A

B C

D

E

F

x
y

Originally question 5 from the 17th Blundon Mathematics Contest, 2000.

We received 17 solutions for this problem. We present the solution by the Missouri
State University Problem Solving Group, which uses an auxiliary square.

Construct square CDHG, extend AE to AG, and let z denote the measure of
∠EGF as shown in the figure. Since AE = EG,EF = EF , and ∠AEF and
∠FEG are both right angles, 4AEF ∼= 4GEF . Therefore y = z. We also have
x = z by alternating interior angles and the result follows.

MA184. A unit circle is a circle of radius 1. Two circles are said to touch
if they have exactly one point in common. Three unit circles are drawn so that
each of them touches the other two. A fourth (larger) circle is drawn around these
three so that it touches each of the three unit circles. What is the radius of the
large circle?

Originally question 13 from the 2018 PRISM (Problem Solving for Irish Second
level Mathematicians) paper.

Crux Mathematicorum, Vol. 49(2), February 2023
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We received 10 complete and correct submissions. We present the one by Denes
Jakob, lightly edited.

A

M

B D C

O

Let A,B,C be the centres of the three circles of radius r = 1. Let O be the centre
of the large circle and M be the common point of the large circle and the circle
with centre A. Then O,A, and M lie on the same line and the radius of the large
circle is R = OM = OA+AM = OA+ 1.

∆ABC is an equilateral triangle with side length 2r = 2. By symmetry, the centre
of the large circle, O, is also the centroid of ABC.

Let AD be the median from A to BC. Then AD =
√

3 and AO = 2
3AD = 2√

3

and we obtain

R =
2√
3

+ 1.

MA185. Find the primes p, q, r, given that one of the numbers pqr and
p+ q + r is 101 times the other.

Originally question 2 from the 29th Nordic Mathematical Contest, 2015.

We received 11 submissions of which 11 were correct and complete. We present
the solution by Aravind Mahadevan.

Since, for any three primes p, q and r, their product is always going to be greater
than their sum

pqr = 101(p+ q + r).

Further, the above implies that 101 is a factor of pqr. This means that one of the
primes p, q, r must be equal to 101.

Copyright © Canadian Mathematical Society, 2023
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Without loss of generality, let us assume that p = 101. Then we have:

101qr = 101(101 + q + r),

qr = 101 + q + r,

q(r − 1) = 101 + r,

q =
101 + r

r − 1
,

q =
102 + (r − 1)

r − 1
,

q = 1 +
102

r − 1
. (1)

We can easily see that when r = 2, then q = 103 and when r = 103, we have
q = 2. No other prime values of r exist that satisfy (1) in a way that q is also
prime. Thus, the values of the primes p, q and r are 2, 101 and 103.

In general, if we have three primes such that one of them is 2 and the other two
are consecutive primes n and (n+ 2), then the product of these three primes will
be equal to n times their sum. So, for example, if 101 had been replaced by 41
in the given problem, the three prime numbers in question would have been 2, 41
and 43.

Crux Mathematicorum, Vol. 49(2), February 2023
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TEACHING PROBLEMS
No. 20

John Grant McLoughlin

Squares in Rectangular Grids: How many would you like?

A common mathematical challenge is to count the number of squares of any size
in a rectangular grid. For example, consider a 3× 4 grid, as shown.

The total number of squares in this grid is 20. An observation that is helpful to
note here is that it is not the area of the grid that principally makes the counting
challenging to organize. The determining factor in counting the squares is the
smaller of the two dimensions. In this example, the smaller number 3 restricts the
count to considering only 1× 1, 2× 2, and 3× 3 squares. Let us count these in a
systematic manner that will assist in the development of this article.

Dimensions Number of Squares
1× 1 3× 4
2× 2 2× 3
3× 3 1× 2

Let me explain the thinking behind the products on the right. The 3 × 4 grid
consists of 3 rows and 4 columns. For our purpose we will consider the number
of rows that are candidates to be the top row of a square of a given size and the
number of columns to the be the left-most column of the square. For example, all
three rows could be the top row of a 1×1 square. Likewise, all four columns could
be the left-most column. Hence, 3 · 4 = 12 unit squares appear in the grid. Do
you see that with 2× 2 squares the product of 2 · 3 follows? The numbers on the
product are each reduced by 1 as now the bottom row and the right-most columns
are not plausible candidates (for the top row and left-most columns respectively).
Continuing with this reasoning we can see that there are 1 · 2 possible squares of
size 3× 3. These figures illustrate the idea discussed here.

Reinforcing the earlier observation, determine how many squares appear in a 2×23
grid and also in a 5×6 grid. I will tell you that there are 70 squares in the 5×6 grid.
You can check this result particularly if you want to implement the organized count
as a sum of products. In contrast, the 2 × 23 example is much easier to consider

Copyright © Canadian Mathematical Society, 2023
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as only 1× 1 and 2× 2 squares need be considered. The 68 squares are accounted
for here.

Dimensions Number of Squares
1× 1 2 · 23
2× 2 1 · 22

Let us shift to a general case. Without loss of generality, we will assume the
dimensions are such that the number of rows is less than or equal to the number
of columns. The dimensions of the grid will be n × (n + k) where k, n are non-
negative integers.

n k

. . . . . .

. . . . . .

...
...

...

The squares in this grid will range from 1 × 1 to n × n in dimensions. Let us
consider an organized count of the total number of squares in the grid.

Dimensions Number of Squares

1× 1 n(n+ k) = kn+ n2

2× 2 (n− 1)(n+ k − 1) = k(n− 1) + (n− 1)2

3× 3 (n− 2)(n+ k − 2) = k(n− 2) + (n− 2)2

...
...

...
(n− 1)× (n− 1) [n− (n− 2)][(n+ k − (n− 2)] = k(2) + 22

n× n [n− (n− 1)][(n+ k − (n− 1)] = k(1) + 12

The total number of squares is

k(1 + 2 + · · ·+ n) + (12 + 22 + · · ·+ n2) = k

Å
n(n+ 1)

2

ã
+ n

Å
n(n+ 1)(2n+ 1)

6

ã
=

3kn(n+ 1) + n(n+ 1)(2n+ 1)

6

=
n(n+ 1)(3k + 2n+ 1)

6

Checking our 3× 4 example, as in using n = 3 and k = 1, gives 3(4)(3+6+1)
6 = 20,

as before.

The mathematics to this point has focused on counting the number of squares in
a grid. While the development of the formula is likely unfamiliar to most readers,
the earlier ideas are likely not. Now we move on to the twist that makes for a
teaching problem.

Crux Mathematicorum, Vol. 49(2), February 2023
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Tell me how many squares you want

Give me a number. Then the challenge becomes to identify all possible rectangular
grids that have exactly the given number of squares.

For starters, let us return to the original count of 20 squares for a 3 × 4 grid. Is
that the only grid that will have exactly 20 squares? Reflecting momentarily it
becomes apparent the answer is “no” as a 1× 20 grid would also have 20 squares.
Are these the only such examples? Let us check.

We require
n(n+ 1)(3k + 2n+ 1)

6
= 20.

Hence,
n(n+ 1)(3k + 2n+ 1) = 120.

Since n < 3
√

120 < 5, we can check n = 1, 2, 3, 4.

n = 4 4(5)(3k + 9) > 180 no solutions

n = 3 3(4)(3k + 7) = 120 implies k = 1

n = 2 2(3)(3k + 3) = 120 implies k = 5

n = 1 1(2)(3k + 3) = 120 implies k = 19

There are three rectangular grids that provide counts of exactly 20 squares, namely,
3× (3 + 1), 2× (2 + 5), and 1× (1 + 19). We found a third grid with this method.
That is, a 2× 7 grid also has 20 squares.

With relatively small numbers, the quick observation concerning the cube root as
an upper bound is helpful. However, upon sharing this article with Shawn Godin,
he noted a significant improvement with respect to the need for checking values.
This makes a big difference when the numbers are larger.

Shawn Godin provides the argument below to show that in fact n is less than the
cube root of 3 times the number of squares, where S is the number of squares.
The mathematics appears below.

In general since
n(n+ 1)(3k + 2n+ 1)

6
= S

where S is the number of squares on the grid, then

n(n+ 1)
(
2
(
n+ 3

2k + 1
2

))
6

= S

n3 < n(n+ 1)

Å
n+

3

2
k +

1

2

ã
= 3S

n <
3
√

3S

Furthermore, many values of n can be eliminated from consideration when con-
sidering divisibility properties. For example, if n or (n + 1) is a multiple of 5,
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it becomes clear that say a resulting product which is not divisible by 5 would
be impossible to obtain. Readers may wish to consider prime numbers and other
divisibility properties in further reducing unnecessary values of n for consideration
while working out such problems.

Concluding comments and observations

Many readers will have been introduced to counting squares within square grids.
For instance, the number of squares in 1×1, 2×2, 3×3, and 4×4 grids respectively
would be 1, 5, 14, and 30. These numbers correspond to 12, 12+22, 12+22+32, and

12+22+32+42. How does this connect to our general formula of n(n+1)(3k+2n+1)
6 ?

In the case of a square grid, we have k = 0 that when substituted gives the resulting
sum of squares for the value of n.

The idea for my own examination of the problem grew out of seeing the opening
problem in Jim Totten’s Problems of the Week [1]. Most recently I shared the ideas
discussed here in a seminar [2] with colleagues in the School of Mathematical and
Statistical Sciences at University of Galway. Here is the problem as stated in [1].

Find the dimensions of all rectangles of size m×n which contain exactly
100 squares of all sizes, where each square has sides parallel to the
edges of the given rectangle and has its corners at the grid points of the
interior or boundary of the rectangle.

For example, a 2 × 3 rectangle would have 2 squares of size 2 and 6
squares of size 1, for a total of 8 squares.

The problem is left as a challenge for the reader. Indeed a 1 × 100 grid would
work. In fact, two other grid sizes will also satisfy the requirements.

Finally I close with two additional challenges.

(i) Show that no rectangular grid other than 1×18 will have exactly 18 squares.

(ii) An 8 × 8 checkerboard has 204 squares. Determine if any non-square rect-
angular grids, aside from the 1× 204 case, have exactly 204 squares.

References

[1] John Grant McLoughlin, Joseph Khoury & Bruce Shawyer (Eds.) (2013). Jim
Totten’s Problems of the Week. Singapore: World Scientific Publishing.

[2] John Grant McLoughlin. (2022). Mathematical Logic Puzzles on a Grid, School
of Mathematical and Statistical Sciences Seminar, University of Galway, Nov.
3, 2022.
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MATHEMAGICAL PUZZLES
No. 3

Tyler Somer

Molten Gold – III

The earlier articles of this series have illustrated several illusions of an increase in
area, by way of rearranging pieces of a geometric dissection. In the first article,
dissections of various squares and rectangles were rearranged into different shapes.
The second article introduced an apparent paradox, as the shape seemed unaltered.
This third investigation builds on the second.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider a rectangular tray with unknown dimensions, and it contains eight iden-
tical tiles. The eight tiles appear to fill the tray, with a small bit of room – the
play, once again – for the pieces to move within the tray. The mathematical ma-
gician presents a ninth tile, identical to the first eight, and declares that the tray
will accommodate this ninth tile!

Figure 1

As with the examples presented in the earlier articles, the size of the tray and the
sizes of the pieces all matter. Further, these values can be uniquely determined.
To begin, realize that the pieces must be turned 90 degrees, so that they will all
fit in the tray, with less play.

Figure 2

Copyright © Canadian Mathematical Society, 2023
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If the play were to be reduced to zero, nine pieces would be too tight to fit the tray.
For the sake of a physical demonstration, a small amount of play is still required.
For calculations, the amount of play can be ignored.

The simplest way to calculate all the components – the tiles, the tray, the play – is
as follows. Assign variables x and y to the short and long dimensions, respectively,
of each tile. When only eight tiles are in the tray, define the play as 1 in both the
x- and y-dimensions. Thus, in Figure 1, the horizontal and vertical measurements
of the tray are (4x+ 1) and (2y+ 1), respectively. In Figure 1, note that the play
is distributed symmetrically around the perimeter, thus it appears to be 1

2 . With
the play reduced, as in Figure 2, these same measurements are equal to 3y and
3x, respectively. This provides a system of equations in two variables to solve:

3y = 4x+ 1

3x = 2y + 1

It should be a simple matter for the reader to determine and verify that
(x, y) = (5, 7). Each tile has an area of 35 square units. Eight tiles take up 280
square units of the tray, with plenty of play. Nine tiles, turned 90 degrees from
the original, take up 315 square units, with the amount of play greatly reduced.
The tray must be 21-by-15.

This simple example illustrates the principle, but a meaningful puzzle remains
to be developed. With so few components, it is difficult to create a challenging
puzzle. Still, a rudimentary puzzle might be composed of four double-tiles, two
each of 10-by-7 and 5-by-14, as presented in Figure 3. The additional piece can fit
the tray only one way (up to rotation or reflection), as presented in Figure 4. It
can be said that the additional tile “melts” into the tray.

Figure 3 Figure 4

Also note that Figure 3 does not represent a unique solution. For example, the
green and yellow pieces can be at opposite ends of the tray. Other rudimentary
designs may be developed, but most will fail to be unique for one or the other tray.

Crux Mathematicorum, Vol. 49(2), February 2023
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Figure 5 Figure 6

Consider an example with fewer pieces, as shown by Figures 5 and 6. Thee tiles,
plus plenty of play, can be shifted around to accommodate a fourth tile. A similar
assignment of the variables x and y leads to the system of equations:

2y = 3x+ 1

2x = y + 1

and its solution (x, y) = (3, 5). The tray is 10-by-6. Along with the trivial nature
of this example, the reader can see that the relative amount of play is high, so
much as to be labeled as sloppy.

Figure 7

Moving up to 15 and 16 tiles, as in Figures 7 and 8, the appropriate system of
equations is:

4y = 5x+ 1

4x = 3y + 1

with the solution (x, y) = (7, 9), and the tray dimensions are 36-by-28. There are
now enough component parts to create super-tiles, which could lead to a meaning-
ful puzzle. Along the x-dimension, the super-tiles could be any of {7, 14, 21, 28}
units, and similarly the y-dimension {9, 18, 27}. Most often, the super-tiles are
simply larger rectangles. Occasionally, zigzag or L-shaped pieces may be used,
but too many of them will reduce the challenge to a triviality, as shown.

Copyright © Canadian Mathematical Society, 2023
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Figure 8

Readers are encouraged to investigate the many other possible designs using these
15 + 1 component parts. Readers may wish to investigate larger trays with 24 + 1,
35 + 1, 48 + 1 components, and so on. Other rectangular trays may be interesting:
27 + 1, 44 + 1, 55 + 1, 70 + 2, 90 + 1, among others, for example. The designer’s
goal is to create a set of super-tiles that have a unique solution in both cases: n
components and n+ 1 components.

The main design benefit of using larger trays is that the relative amount of play is
significantly reduced. This can be quite effective when the mathematical magician
presents the seemingly-filled tray to a casual observer, then produces that extra
tile!

Larger pieces and trays have the drawback that they can occupy a large space.
Puzzle designers might have to get creative. Woodworkers might reduce the size
of the pieces, but then precision might be lost in the process. For example, it is
much easier to tell apart pieces that are 15 or 16 cm long, versus those that are
15 or 16 mm. Improper cutting or sanding may render these small pieces as, say,
14.9 mm and 15.1 mm pieces, then a play of 1 mm is too much for such pieces.
Laser cutting will help with this, but acrylic sheets and other specialized materials
are expensive.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When he was teaching, Tyler often had mechanical puzzles
in his classroom. As a freelancer, Tyler has worked with
numerous inventors and co-designers to bring dozens of
table-top solo-logic puzzle kits to market. He continues to
design puzzles, and he spends a good deal of time in his
woodshop, building his own and others’ puzzle designs.
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From the Bookshelf of . . .
Rebecca McKay

This MathemAttic feature brings attention to books of potential interest to the
readers. Some of these will be reviews whereas others will be hearty recommenda-
tions from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

How to Bake π: An Edible Exploration of the Mathematics of Mathematics
by Eugenia Cheng
ISBN 978-0-465-09767-8, 288 pages
Published by Basic Books, 2015.

In 2022, my husband had an interesting idea. He proposed that various family
members read the same book, book-club-style, and then discuss. After a lot of
consideration, we finally decided on “How to Bake π” by Eugenia Cheng. It was
a book that we had both been intending to read (for context, my husband Neil
is also a mathematician) and seemed like a book that would both appeal to my
mother-in-law (who is a life-long talented baker) and would be accessible to the
non-mathematicians in the family. Although the books took a surprising amount
of time to reach family members across Canada, we have all received our copies
and most of us have finished reading it.

“How to Bake π” is an introduction to the idea of ab-
straction and logic and how it is used in mathemat-
ics. Cheng does this through comparisons in baking.
Each chapter starts with a recipe that is then used to
explain a general idea within mathematics. For exam-
ple, Chapter 2 is entitled Abstraction and starts with
a recipe for mayo or Hollandaise sauce. Cheng notes
that the two recipes are quite similar. She uses this to
explain how mathematicians look for situations where
objects are the same with a small exception. Another
example is in the chapter Axiomatization. This chapter
starts with a recipe for Jaffa cakes which lists among
the ingredients “small round flat plain cakes”. Cheng
uses this recipe as a springboard for discussing what constitutes a basic ingredient
and what needs to be made from more basic ingredients.

The book has two parts: “Math” and “Category Theory”. Part I is an engaging
introduction to the basics of abstraction and logic. Part II gently guides the reader
through exploring category theory. The chapter on Relationships starts with a
recipe for porridge with the ingredients all measured in cups. Cheng notes that
the important part of this recipe is not the quantity of the ingredients but rather
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the relationship between them and draws the comparison that category theory
emphasizes the relationships between mathematical objects rather than studying
the objects themselves.

Each chapter is broken up into short chunks where Cheng uses brief vignettes that
are easily understood by all audiences to explain a mathematical concept. For
example, in Principles, she uses a story of her learning to weld in high school to
illustrate the importance of learning the principles of something that you are using
so that you can get the best out of it and you have power when something goes
wrong.

I am an applied mathematician by training and mostly teach courses aimed at
engineering students. Despite having spent time with many category theorists
while at Dalhousie University, I had only the vaguest idea of what category theory
is (“There are arrows!” being my basic tool for discerning whether something was
category theory.) Eugenia Cheng finally gave me a general idea of what category
theory is and what category theorists study in a very tangible way.

What might you get out of the book? This book is written in easily digestible
pieces to make math accessible. Aimed at a general audience, anyone can read
this and gain an appreciation for abstract mathematical thinking. Even if you are
a mathematician who is very familiar with things mathematical, the connections
and presentation of the topics by the author make the book a worthwhile read. I
found that reading the book gave me ideas of how to present particular concepts
to undergraduate students (like the transitive property). I plan on adding other
books by Eugenia Cheng to my bookshelf soon.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
Rebecca McKay. Rebecca lives and works in Saint John,
New Brunswick and is a Teaching Professor at the Uni-
versity of New Brunswick. For the most part she teaches
various levels of calculus and linear algebra. Growing
up in Newfoundland, she attended Memorial University,
then moved on to Nova Scotia for graduate school, before
moving on to New Brunswick. She has been involved in
the mathematics community in Atlantic Canada for more
than 20 years.
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MATHEMATICS FROM THE
WEB

No. 7

This column features short reviews of mathematical items from the internet that
will be of interest to high school and elementary students and teachers. You can
forward your own short reviews to mathemattic@cms.math.ca.

Knight’s Tour
https://mathlair.allfunandgames.ca/knightstour.php

The knights tour challenge is a familiar one to many readers. Basically the chal-
lenge is to create a path visiting every square on a square board exactly once
using the moves of a knight as in a regular chess game. Those unfamiliar with the
problem may wish to convince themselves quickly that such a tour is impossible
on a 3× 3 board. What about on a 4× 4 board?

The Bridges Conference
https://archive.bridgesmathart.org/#gsc.tab=0

The Bridges Conference connects mathematics with its various artistic dimensions
from fine arts to architecture to poetry and beyond. The 2023 conference will be
held in Halifax July 27 - 31. Proceedings of the conferences are housed in an
accessible online archive at the above link. A plethora of rich mathematical ideas
can be found here.

Decathlon: the Art of Scoring Points
https://sport.maths.org/content/decathlon-art-scoring-points-0

This website was launched in advance of the 2012 Summer Olympics in London
as part of the Millennium Project, which has existed since 1999. The site is a
collection of articles with focus on the place of mathematics in sports. One such
example relates to the scoring of decathlons. The following excerpt hints at the
challenge.

The most striking thing about the decathlon is that the tables giving
the number of points awarded for different performances are rather
free inventions. Someone decided them back in 1912 and they have
subsequently been updated on different occasions. Clearly, working
out the fairest points allocation for any running, jumping or throwing
performance is crucial and defines the whole nature of the event very
sensitively. Britain’s Daley Thompson missed breaking the decathlon
world record by one point when he won the Olympic Games 1984 but
a revision of the scoring tables the following year increased his score
slightly and he became the new world record holder retrospectively!
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OLYMPIAD CORNER
No. 410

The problems in this section have appeared in a mathematical Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by April 30, 2023.

OC616. Let a, b, c be integer side-lenghts of a triangle, gcd(a, b, c) = 1 and
all the values

a2 + b2 − c2
a+ b− c ,

b2 + c2 − a2
b+ c− a ,

c2 + a2 − b2
c+ a− b

are integers as well. Prove that

(a+ b− c)(b+ c− a)(c+ a− b) or 2(a+ b− c)(b+ c− a)(c+ a− b)
is a perfect square.

OC617. Consider a positive integer n, a circle of circumference 6n and 3n
points on the circle that divide it into 3n small arcs so that n of these arcs have
a length of 1, another n of these arcs have a length of 2, and the remaining arcs
have a length of 3. Show that among the considered points there are two that are
diametrically opposite.

OC618. Let n ∈ N, n ≥ 2. For all real numbers a1, a2, . . . , an denote S0 = 1
and

Sk =
∑

1≤i1<i2<...<ik≤n
ai1ai2 · . . . · aik

the sum of all the products of k numbers chosen among a1, a2, . . . , an, k ∈ {1, 2, . . . , n}.
Find the number of n-tuples (a1, a2, . . . , an) such that

(Sn − Sn−2 + Sn−4 − . . .)2 + (Sn−1 − Sn−3 + Sn−5 − . . .)2 = 2nSn.

OC619. Find all functions f : R → R that satisfy simultaneously the
following conditions:

(a) f(x) + f(y) ≥ xy for all real numbers x and y;

(b) for every real number x there is a real number y such that f(x) + f(y) = xy.

OC620. Given a trapezoid ABCD with bases AB and CD, with the circle
of diameter BC tangent to the line AD, prove that the circle of diameter AD is
tangent to the line BC.
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 avril 2023.

OC616. Les longueurs des côtés dun triangle sont dénotées a, b et c. Or, a,
b et c sont des entiers tels que gcd(a, b, c) = 1; de plus,

a2 + b2 − c2
a+ b− c ,

b2 + c2 − a2
b+ c− a ,

c2 + a2 − b2
c+ a− b

sont entiers. Démontrer que

(a+ b− c)(b+ c− a)(c+ a− b) ou 2(a+ b− c)(b+ c− a)(c+ a− b)
est un carré parfait.

OC617. Considérons un entier positif n, un cercle de circonférence 6n et,
enfin, 3n points divisant le cercle en 3n petits arcs de sorte que n de ces arcs ont
une longueur de 1, n autres de ces arcs ont une longueur de 2 et les arcs restants
ont une longueur de 3. Montrez que parmi les points considérés, il y en a deux qui
sont diamétralement opposés.

OC618. Soit n ∈ N, n ≥ 2. Étant donné des nombres réels a1, a2, . . . , an, on
pose S0 = 1 et

Sk =
∑

1≤i1<i2<...<ik≤n
ai1ai2 · . . . · aik ,

la somme de tous les produits de k nombres choisis parmi a1, a2, . . . , an, k ∈
{1, 2, . . . , n}. Trouvez le nombre de n-tuples (a1, a2, . . . , an) tels que

(Sn − Sn−2 + Sn−4 − . . .)2 + (Sn−1 − Sn−3 + Sn−5 − . . .)2 = 2nSn.

OC619. Trouvez toutes les fonctions f : R→ R qui satisfont simultanément
les conditions suivantes:

(a) f(x) + f(y) ≥ xy pour tous les nombre réels x et y;

(b) pour tout nombre réel x, il existe un nombre réel y tel que f(x) + f(y) = xy.

OC620. Etant donné un trapèze ABCD de bases AB et CD, dont le cercle
de diamètre BC est tangent à la droite AD, montrez que le cercle de diamètre AD
est tangent à la droite BC.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(7), p. 405–406.

OC591. Let abcd be a four-digit number, where a 6= 0 and c 6= 0 such that

√
abcd√

ab+
√
cd

is a rational number. Find all possible value(s) of abcd.

Originally from 2022 Indonesia International Mathematics Competition Keystage
3 Individual Contest Section B (Invitational World Youth Mathematics Intercity
Competition), Problem 3.

We received 8 submissions, all of which were correct and complete. We present
the solution by the UCLan Cyprus Problem Solving Group.

We show that 1681 is the only solution. First, it is easy to verify that 1681 satisfies
the condition. Next, we establish a general result.

Let r, s, t be positive natural numbers. Then
√
r√

s+
√
t

is a rational number if and

only if there is a natural number k such that r/k, s/k, t/k are all perfect squares.

Indeed, if there exists a natural number k such that r/k, s/k, t/k are perfect

squares, then it is trivial to establish that
√
r√

s+
√
t

is a rational number. Assume

now that
√
r√

s+
√
t

is rational. Then the squareÇ √
r√

s+
√
t

å2

=
r

s+ t+ 2
√
st

is rational, as is
√
st. Thus there exist a square-free natural number k and natural

numbers m, n such that s = km2 and t = kn2. As

√
r√

s+
√
t

=

√
r/k

m+ n

is rational, it follows that
√
r/k is also rational. However, k is square-free, so r/k

must be a perfect square.

Let x = ab and y = cd. Then abcd = 100x + y. From the general result we
must have that x = km2 and y = kn2 for some m,n ∈ {1, 2, . . . , 9}. Then
100x+ y = k(100m2 +n2), hence we must have 100m2 +n2 = `2 for some natural
number `.
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If m = 1, then 100 < 100m2 + n2 < 200 so ` ∈ {11, 12, 13, 14}. But then we have
`2 ∈ {121, 144, 169, 196} and n2 ∈ {21, 44, 69, 96} which is impossible. If m = 2,
we get ` ∈ {21, 22} which gives ` ∈ {41, 84} which is again impossible. If m = 3,
then ` = 31 which is rejected while if m = 4 then ` = 41 and n = 9. Finally the
cases m = 5, 6, . . . , 9 are rejected because then

(10m+ 1)2 = 100m2 + 20m+ 1 > 100m2 + 100.

Hence (10m)2 < `2 < (10m+ 1)2 which is impossible.

Hence the only solution is m = 4, n = 9, ` = 41. Since y = kn2 = 81k is a
two-digit number, we must have k = 1. These give 1681 as the unique solution.

OC592. For all positive integers n, k, let f(n, 2k) be the number of ways an
n × 2k board can be fully covered by nk dominoes of size 2 × 1. (For example,
f(2, 2) = 2 and f(3, 2) = 3.) Find all positive integers n such that for every
positive integer k, the number f(n, 2k) is odd.

Originally from the 2022 European Girls’ Mathematical Olympiad (EGMO), Prob-
lem 5.

We received 4 submissions, of which 3 were correct and complete. We present the
solution by Oliver Geupel.

We are going to prove that n has the desired property if and only if n + 1 is a
power of 2, that is, if n ∈ {1, 3, 7, 15, . . .}.

First, suppose that n is even and consider any tiling T of a square n × n board.
Reflecting T in the principal diagonal of the board yields another tiling T ′ which
is distinct from T . Hence, the tilings come in pairs T, T ′. Thus, f(n, n) is even.

Next, assume that n is odd, n = 2m + 1. Split an n× 2k board into two m× 2k
boards separated by a 1 × 2k strip S. First, consider tilings of the board with
the property that S is fully covered by k dominoes. The number of those tilings
is (f(m, 2k))2. Next, consider a tiling T such that k dominoes do not cover S.
Reflecting T in S yields another tiling T ′ distinct from T . Hence, those tilings
come in pairs T, T ′. Therefore,

f(2m+ 1, 2k) ≡ f(m, 2k) (mod 2) .

We obtain for q ∈ N that

f (2q − 1, 2k) ≡ f
(
2q−1 − 1, 2k

)
≡ . . . ≡ f(3, 2k) ≡ f(1, 2k) ≡ 1 (mod 2) .

It remains to consider the case where n = 2m + 1 cannot be written in the form
2q − 1. A straightforward induction shows that repeated applications of the rule
2m+ 1 7→ m eventually, lead to an even number. If n is mapped to 2` in this way,
we obtain that f(n, 2`) must be even.
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Editor’s Comments. UCLan Cyprus Problem Solving Group mentioned that there
is an exact formula for f(n, 2k):

f(n, 2k) =

bn/2c∏
i=1

k∏
j=1

Å
4 cos2

πi

n+ 1
+ 4 cos2

πj

2k + 1

ã
.

However, it appears that the exact formula cannot be used to solve the current
question. The exact formula for f(n, 2k) was establish by Kasteleyn in “The statis-
tics of dimers on a lattice, I: The number of dimer arrangements on a quadratic
lattice”, Physica, 27 (12) 1961: 1209-1225 using the fact that f(n, 2k) counts the
perfect matchings of a graph. The graph is a quadratic lattice with vertices, the
squares of the board, and edges connecting only those squares that share a common
side.

OC593. Let4ABC be a triangle, and let C0, B0 be the feet of perpendiculars
from C and B onto AB and AC respectively. Let Γ be the circumcircle of 4ABC.
Let E be a point on Γ such that AE ⊥ BC. Let M be the midpoint of BC and
let G be the second intersection of EM and Γ. Let T be a point on Γ such that
TG is parallel to BC. Prove that T,A,B0, C0 are concyclic.

Originally 2021 Princeton University Mathematics Contest (Pumac), Individuals
Final B, Problem 3.

We received 9 correct solutions. We present 2 solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

Let ω be the circumcircle of triangle AB0C0 and recall that the orthocenter H of
ABC belongs on ω and in fact AH is a diameter of ω.

Let T ′ be the second point of intersection of MH with ω and let A′ be the sym-
metric point of H with respect to M . It is well known that A′ lies on Γ with AA′

being a diameter of Γ. We have ∠A′TA = ∠HT ′A = 90◦ and therefore T ′ lies on
Γ as well. So it is enough to show that T ′ = T .

We have

∠MT ′G = ∠A′T ′G = ∠A′EG = ∠A′EM .

We also have AM = MH = HE (as E is the reflection of H on BC). So the
triangle AME is isosceles and therefore ∠HME = 2∠A′EM = 2∠MT ′G. Thus
∠T ′MB = 1

2∠HME = ∠MT ′G. This shows that T ′G is parallel to BM and so
T = T ′ as required.
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Solution 2, by Michel Bataille.

Let O and H be the circumcentre and the orthocentre of ∆ABC, respectively. Let
D be the point diametrically opposite to A on Γ. Let RM,RBC,ROM denote the
reflections across the point M , the line BC, the line OM , respectively.

Since
−−→
DA = 2

−−→
DO and

−−→
HA = 2

−−→
MO (a well-known result), we have

−−→
DH = 2

−−→
DM ,

that is, RM(H) = D. Since RBC(E) = H (another well-known result) and
RM ◦RBC = ROM, we have D = ROM(E) and therefore the lines DH and EM
are symmetrical with respect to OM . Thus, ROM(G) is on DH. However, this
point is also on TG (since TG ⊥ OM) and on Γ (since Γ is its own reflection in
its diameter OM), hence ROM(G) = T . As a result, T,H,M,D are collinear.
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Now, AD being a diameter of Γ, we have AT ⊥ TD. Therefore, we also have
HT ⊥ TA so that T is on the circle with diameter AH. Because HB0 ⊥ B0A and
HC0 ⊥ C0A, the points B0, C0 are on this circle as well and we can conclude that
A, T,B0, C0 are concyclic.

OC594. A pentagon has vertices labelled A,B,C,D,E in that order counter-
clockwise, such that AB and ED are parallel and ∠EAB = ∠ABD = ∠ACD =
∠CDA. Furthermore, suppose that AB = 8, AC = 12, AE = 10. Finally, suppose

that the area of triangle CDE can be expressed as a
√
b

c , where a, b, c are positive
integers, so that b is square free, whereas a, c are relatively prime. Find a+ b+ c.

Originally 2021 Princeton University Mathematics Contest (Pumac), Geometry
B, Problem 7.

We received 9 submissions of which 8 were correct and complete.

We present the solution by UCLan Cyprus Problem Solving Group.

Since ∠ABD = ∠ACD, then A,B,C,D are concyclic. Let ω be the circle through
A,B,C,D. Since ∠EAB = ∠ABC and AB is parallel to ED, then ABDE is an
isosceles trapezium and so E also belongs on ω.

We have AB = 8 and AD = AC = 12 (since triangle ACD is isosceles). We
also have BD = AE = 10 (since ABDE is an isosceles trapezium). Thus, letting
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ϑ = ∠ABD then

cosϑ =
102 + 82 − 122

2 · 8 · 10
=

1

8
.

Let ϕ = ∠BDA and let R be the circumradius of ω. Then

12 = AD = 2R sinϑ = 2R
√

1− cos2 ϑ =
3R
√

7

4
=⇒ R =

16
√

7

7
.

We now have

8 = AB = 2R sinϕ =⇒ sinϕ =

√
7

4
=⇒ cosϕ =

3

4

where we used the fact that ϕ < ϑ and so cosϕ > 0. Note that

∠EAC = ∠EAB − ∠CAB = ∠CDA− ∠CDB = ∠BDA .

It follows that EC = BA = 8. From the isosceles trapezium ABDE we have

DE = AB − 2(AE) cosϑ = 8− 20 · 1

8
=

11

2
.

Note also that ∠DEC = ∠DAC = 180◦− 2ϑ. Thus the area of the triangle CDE
is equal to

1

2
(CE)(ED) sin(∠DEC) =

1

2
· 8 · 11

2
· 2 sinϑ cosϑ = 44 · 3

√
7

8
· 1

8
=

33
√

7

16
.

So a = 33, b = 7, c = 16 and a+ b+ c = 56.

OC595. The sequence {an}∞n=1 is defined by

a1 = 1, an+1 =
an
n

+
n

an
, n ≥ 1.

Prove that ba2nc = n for n ≥ 4, where bxc denotes the integer part of x.

Originally 1996 Bulgarian National Olympiad in Mathematics, Fourth round, Prob-
lem 4.

We received 11 submissions of which 9 were correct and complete. We present the
solution by Mohammed Aassila.

We prove by induction on n that

√
n+

1

(n− 1)
√
n
≤ an <

√
n+ 1 ∀n ≥ 4.

Since a1 = 1, then a2 = 2, a3 = 2. If n = 4, then we have a4 =
13

6
<
√

5 and

a4 −
√

4 =
1

6
=

1

(4− 1)
√

4
.
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Now, assume that the given relation is true for n. Let fn(x) =
x

n
+
n

x
. Observe

that fn is strictly decreasing on (0, n]. Since an <
√
n+ 1, then

an+1 = fn(an) > fn(
√
n+ 1) =

√
n+ 1 +

1

n
√
n+ 1

,

so the first inequality is proved. We have to prove the other inequality, namely

an+1 <
√
n+ 2. Since an ≥

√
n+

1

(n− 1)
√
n

, then

an+1 = fn(an) ≤ fn
Å√

n+
1

(n− 1)
√
n

ã
,

so we need to prove that

fn

Å√
n+

1

(n− 1)
√
n

ã
<
√
n+ 2,

which is equivalent to

1√
n

+
√
n+

1

n(n− 1)
√
n
−

√
n

n2 − n+ 1
<
√
n+ 2,

i.e. Å√
n+

1√
n
−
√
n+ 2

ã
+

1

n(n− 1)
√
n
<

√
n

n2 − n+ 1
.

Since a− b =
a2 − b2
a+ b

, then

√
n+

1√
n
−
√
n+ 2 =

Ä√
n+ 1√

n

ä2 − n− 2
√
n+ 2 +

√
n+ 1√

n

<
1

2n
√
n
.

Moreover,
1

n(n− 1)
√
n
≤ 1

2n
√
n

for all n ≥ 3, soÅ√
n+

1√
n
−
√
n+ 2

ã
+

1

n(n− 1)
√
n
<

1

n
√
n
<

√
n

n2 − n+ 1
,

and the conclusion follows by the Principle of Mathematical Induction.
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Chebyshev Substitutions for
Binomial Integrals

Emilian Sega

One of the most popular integration techniques in calculus is the method of partial
fractions. It reduces the integration of a rational function to integrating a number
of simpler rational expressions.

Some integrals, although not of rational functions to begin with, can be reduced
to integrals of rational functions using various and sometimes sophisticated sub-
stitutions.

In this paper we examine binomial integrals of the form

∫
xm(axn + b)p dx, where

a and b are real numbers and m, n, and p are rational numbers.

We first show that if at least one of p, m+1
n , or p+m+1

n is an integer, then a suitable
substitution reduces the computation of the binomial integral to the integral of a
rational function.

Let I =
∫
xm(axn + b)p dx and let x = t1/n. Then dx = 1

n t
1/n−1dt, and conse-

quently

I =
1

n

∫
tm/n(at+ b)pt1/n−1dt =

1

n

∫
t(m+1)/n−1(at+ b)pdt =

1

n

∫
tq(at+ b)pdt,

where q =
m+ 1

n
− 1.

Consider 3 cases.

Case I: p is an integer. Write q = r
s , where r and s are relatively prime integers

and s ≥ 1. Let u = t1/s. Hence t = us, dt = sus−1du and

I =
s

n

∫
ur+s−1(aus + b)pdu.

Because r, s, and p are integers, we can see that I is now the integral of a rational
function.

Case II: m+1
n is an integer. Then q = m+1

n − 1 is also an integer. As p is rational,
we can write p = r

s , where r and s are relatively prime integers and s ≥ 1. Let

u = (at+ b)1/s, so t = us−b
a , dt = s

au
s−1du, and

I =
1

n
· s
a

∫ Å
us − b
a

ãq
urus−1du =

s

na

∫ Å
us − b
a

ãq
ur+s−1du.

Because q, r, and s are integers, I is now the integral of a rational function.
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Case III: p + m+1
n is an integer. Hence p + q = p + m+1

n − 1 is an integer. Note
that

I =
1

n

∫
tq(at+ b)pdt =

1

n

∫
tp+q(at+ b)pt−pdt =

1

n

∫
tp+q(a+ bt−1)pdt.

As p is rational, we can write p = r
s , where r and s are relatively prime integers

and s ≥ 1. Let u = (a+ bt−1)1/s, so t =
b

us − a . Then dt = − bsus−1

(us − a)2
du, so we

have:

I =
1

n

∫ Å
b

us − a

ãp+q
ur
Å
− bsus−1

(us − a)2

ã
du = −b

p+q+1s

n

∫
ur+s−1

(us − a)p+q+2
du

Because p+ q, r, and s are integers, I is now the integral of a rational function.

We now state our main result, summarizing the transformation of I into the inte-
gral of a rational function.

Theorem. Let a, b be real numbers. Let m, n, and p be rational numbers, and let

I =

∫
xm(axn + b)p dx. Then the following substitutions reduce the calculation

of I to the antiderivative of a rational function:

• u = (xn)1/s, if p is an integer and
m+ 1

n
− 1 =

r

s
, with r and s relatively

prime integers and s ≥ 1

• u = (axn + b)1/s, if
m+ 1

n
is an integer and p =

r

s
, with r and s relatively

prime integers and s ≥ 1

• u = (a + bx−n)1/s, if p +
m+ 1

n
is an integer and p =

r

s
, with r and s

relatively prime integers and s ≥ 1

Remark. The above substitutions are sometimes referred to as Chebyshev substi-
tutions. P. L. Chebyshev proved that if none of p, m+1

n , and p+ m+1
n are integers,

then I cannot be reduced to the integral of a rational function, and hence I cannot
be calculated with elementary integration methods.

Example 1. Find

∫
x−3/8(x1/4 + 1)−2dx.

Solution. Note that m = − 3
8 , n = 1

4 , p = −2. Since p is an integer and m+1
n − 1 =

3
2 , it follows that r = 3 and s = 2.

Following case I, we let u = (x1/4)1/2 = x1/8. Hence u8 = x, so dx = 8u7du and

I =

∫
u−3(u2 + 1)−2(8u7)du = 8

∫
u4

(u2 + 1)2
du.
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The new integral in u can be solved using partial fractions. Note that

u4

(u2 + 1)2
=

(u4 + u2)− (u2 + 1) + 1

(u2 + 1)2
=

u2

u2 + 1
− 1

u2 + 1
+

1

(u2 + 1)2
= 1− 2

u2 + 1
+

1

(u2 + 1)2
.

To find

∫
1

(u2 + 1)2
du we use a trigonometric substitution: let u = tan θ, so

du = sec2 θdθ, and

J =

∫
1

sec4 θ
sec2 θdθ =

∫
cos2 θdθ =

∫
1 + cos 2θ

2
dθ =

1

2
θ +

1

2
sin θ cos θ

=
1

2
tan−1 u+

u

2(u2 + 1)
+ C

(note that if u = tan θ, then sin θ =
u√

u2 + 1
and cos θ =

1

u2 + 1
). Then

I = 8

Å
u− 2 tan−1 u+

1

2
tan−1 u+

u

2(u2 + 1)

ã
= 8u− 12 tan−1 u+

4u

u2 + 1
+ C

Thus,

I = 8x1/8−12 tan−1(x1/8)+
4x1/8

x1/4 + 1
+C =

8x3/8 + 12x1/8

x1/4 + 1
−12 tan−1(x1/8)+C.

Our next Example comes from the Calculus round of the 2012 Stanford Math
Tournament.

Example 2. Calculate

∫ 35

25

1

x− x3/5 dx.

Solution. Note that

I =

∫ 35

25

1

x− x3/5 dx =

∫ 35

25

1

x(1− x−2/5)
dx =

∫ 35

25
x−1(1− x−2/5)−1dx.

Then m = −1, n = −2

5
, and p = −1. Since p is an integer and

m+ 1

n
− 1 = −1,

it follows that r = −1, s = 1.

Following case I, we make the substitution u = (x−2/5)1, so u = x−2/5. Hence

x = u−5/2, dx = −5

2
x−7/2du. Also, when x = 25, u = (25)−2/5 = 2−2 = 1

4 , while

if x = 35, u = (35)−2/5 = 3−2 =
1

9
.

Hence

I =

∫ 1/9

1/4

u5/2(1− u)−1
Å
−5

2
u−7/2

ã
du =

5

2

∫ 1/9

1/4

1

u(u− 1)
du.
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The last integral can now be easily solved with partial fractions:

I =
5

2

∫ 1/9

1/4

Å
1

u− 1
− 1

u

ã
du =

5

2
(ln |u− 1| − ln |u|)

∣∣∣1/9
1/4

=
5

2
ln

∣∣∣∣1− 1

u

∣∣∣∣ ∣∣∣1/9
1/4

=
5

2
ln

8

3
.

Example 3. The area below the graph of f(x) = x3(1− x2/3)3/2 between x = 0

and x = 1 can be written in the form
k

h
, where k and h are relatively prime

positive integers. Find k + h.

Solution. Note that f(x) is continuous and f(x) ≥ 0 for all x in [0, 1]. Thus, the
area below the graph of f(x) is given by

Area =

∫ 1

0

x3(1− x2/3)3/2dx.

Let I =

∫ 1

0

x3(1− x2/3)3/2dx; with our notations from above, m = 3, n = 2
3 ,

p = 3
2 , and m+1

n = 6. Since m+1
n is an integer, following case II we set r = 3,

s = 2, and let u = (1− x2/3)1/2.

Then x2/3 = 1− u2, so
2

3
x−1/3dx = −2udu, hence dx = −3x1/3udu, and

I =

∫ 0

1

x3u3(−3x1/3u)du = 3

∫ 1

0

x10/3u4du = 3

∫ 1

0

u4(1− u2)5du

Using the Binomial Theorem, (1− u2)5 = 1− 5u2 + 10u4 − 10u6 + 5u8 − u10, so

I = 3

∫ 1

0

(u4 − 5u6 + 10u8 − 10u10 + 5u12 − u14)du

=

Å
3

5
u5 − 15

7
u7 +

10

3
u9 − 30

11
u11 +

15

13
u13 − 1

5
u15
ã ∣∣∣1

0

=
256

15015
.

Thus k = 256, h = 15015, so k + h = 15271.

Example 4. Find

∫
x−1/2(1− x−4/3)−5/8dx.

Solution. Let I =

∫
x−1/2(1− x−4/3)−5/8dx and note that m = − 1

2 , n = − 4
3 ,

p = − 5
8 , m+1

n = −3

8
, and p+ m+1

n = −1.
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Following case III, we take r = −5, s = 8, and we let u = (x4/3 − 1)1/8. Then

u8 + 1 = x4/3, so 8u7du =
4

3
x1/3dx, hence dx = 7u7x−1/3du. Rewrite I as

I =

∫
x−1/2(1− x−4/3)−5/8dx =

∫
x−1/2(x−4/3(x4/3 − 1))−5/8dx

=

∫
x−1/2x5/6(x4/3 − 1)−5/8dx

and change to u. Then we have

I =

∫
x1/3u−56u7x−1/3du =

∫
6u2du = 2u3 + C = 2(x4/3 − 1)3/8 + C.

Example 5. Find

∫  
x2020

(1− x2022)3
dx.

Solution. Let I denote the integral in the problem and note that it can be rewritten

as I =

∫
x1010(1− x2022)−3/2dx.

We then have m = 1010, n = 2022, p = − 3
2 , m+1

n =
1

2
, and p+ m+1

n = −1.

Because p + m+1
n is an integer, following case III with r = −3, s = 2, we let

u = (x−2022 − 1)1/2. Thus

u2 + 1 = x−2022, 2udu = −2022x−2023dx,

and hence

dx = − 1

1011
ux2023du.

Also, x2022 =
1

u2 + 1
, so 1− x2022 =

u2

u2 + 1
.

Consequently, I can be rewritten as

I =

∫
− 1

1011
x1010

u−3

(u2 + 1)−3/2
· ux2023du = − 1

1011

∫
u−2

x3033
· x3033du

= − 1

1011

∫
u−2du =

1

1011u
+ C

Finally, since u = (x−2022 − 1)1/2, we have that

I =
1

1011
√
x−2022 − 1

+ C =
x1011

1011
√

1− x2022
+ C.
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The following exercises are left for the interested reader.

1. Find

∫
x2021

3
√

1 + x674
dx.

2. Find

∫
x−3/5(1 + x2/5)−3/4dx.

3. Find

∫
1√

x( 4
√
x+ 1)100

dx.

4. Find

∫
x2009

1 + x2680
dx.
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Reading a Math Book
Solutions to No. 1

Yagub Aliyev

The tatements of the problems in this section originally appear in 2022: 48(8), p.
481. The problems were selected from [1].

PB1. Prove that

a) if g(x) = (f(x))
1
2 is nonzero, then

g′(x)

g(x)
=
f ′(x)

2f(x)
.

b) if h(x) = f(x)
g(x) is nonzero, then

h′(x)

h(x)
=
f ′(x)

f(x)
− g′(x)

g(x)
.

Solution. (By the author in collaboration with Laman Panakhova.) One can use
the limit definition for derivative to solve this problem. We will present shorter
solutions using the rules of differentiation.

a) Use the chain rule (h(f(x)))′ = h′(f(x))f ′(x) for h(u) =
√
u, u = f(x), to

write
Ä√

f(x)
ä′

= f ′(x)

2
√
f(x)

, and then divide both sides of the resulting equality by

g(x) = (f(x))
1
2 .

b) Use the quotient rule to write h′(x) =
Ä
f(x)
g(x)

ä′
= f ′(x)g(x)−f(x)g′(x)

g(x)2 and then

divide both sides of the resulting equality by h(x) = f(x)
g(x) .

PB2. Let f(x) = 1
2px

2 + x and g(x) = a−
√
a2 − 2ax− x2. Find

lim
x→0

f(x)− g(x)

x2
.

Solution. The limit does not exist if a ≤ 0. If a > 0 then one can use L’Hospital’s
rule twice to find the limit. It is also possible to find the limit using the method
of multiplication by the conjugate. The following is the solution by Ong See Hai.

lim
x→0

x2

2p + x− a+
√
a2 − 2ax− x2

x2

= lim
x→0

1

2p
+ lim
x→0

Ç
x− a+

√
a2 − 2ax− x2
x2

· a− x+
√
a2 − 2ax− x2

a− x+
√
a2 − 2ax− x2

å
=

1

2p
+ lim
x→0

a2 − 2ax− x2 − (a− x)2

x2(a− x+
√
a2 − 2ax− x2)

=
1

2p
− 1

a
.

Note that if a = 2p, then g(x) is the osculating circle of f(x) at x = 0.
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PB3. Let f(x) = 1
x2+1 . Show that the equation dnf(x)

dxn = 0 has n real roots.

Solution. This was probably the hardest problem among these 5 questions. We
will present several approaches.

Approach 1, by Ong See Hai. Use the generalisation of Rolle’s theorem.

Lemma.
dnf(x)

d xn
=

Pn(x)

(x2 + 1)n+1
,

where n ≥ 1 and Pn(x) is a polynomial of degree n.

Proof. We proceed by induction. It is easy to derive that df(x)
dx = −2x

(x2+1)2 . Hence

the base case is true. Now, suppose that the claim is true for some n > 1, and
consider n+ 1. We have to show that the claim is true for n+ 1 too.

dn+1f(x)

d xn+1
=

d

dx

Pn(x)

(x2 + 1)n+1

=
(x2 + 1)n+1 P ′n(x)− (n+ 1)(x2 + 1)n(2x) Pn(x)

(x2 + 1)2n+2

=
(x2 + 1) P ′n(x)− (n+ 1)(2x) Pn(x)

(x2 + 1)n+2
≡ Pn+1(x)

(x2 + 1)n+2
,

where we set Pn+1(x) to be equal to the numerator of the preceding expression.

It remains to show that the coefficient of xn+1 in Pn+1(x) is non-zero. From
the Induction Hypothesis, let the coefficient of xn in Pn(x) be an 6= 0. Then,
the leading coefficient of xn−1 in P ′n(x) is nan. Hence, the coefficient of xn+1 in
Pn+1(x) is:

nan − 2(n+ 1)an = an(n− 2n− 1) = −(n+ 2) an,

which is clearly non-zero.

Corollary. limx→±∞
dnf(x)
dxn = 0.

We are now ready to prove the main result proper.

Let P (n) be the proposition that the equation dnf(x)
dxn = 0 has n distinct real roots.

When n = 1, we have d f(x)
dx = −2x

(x2+1)2 . Since the only real root is x = 0, the base

case is true. Now, suppose that P (n) is true for some n > 1. Let g(x) = dnf(x)
dxn = 0

have n distinct real roots. We wish to show that P (n + 1) is true too; that is,

g′(x) = dn+1f(x)
dxn+1 = 0 has n+ 1 distinct real roots.

Label the n zeroes of g(x) as x1, x2, ..., xn in strictly increasing order. By Rolle’s
Theorem, there exists ci ∈ (xi, xi+1) for each i ∈ {1, 2, .., n−1}, such that g′(ci) =
0. Thus g′(x) has at least n− 1 distinct roots in the interval [x1, xn].

Since xn is the largest root, g has at least one critical point in the interval (xn,∞),
i.e. there exists c > xn such that g′(c) = 0. To see why, suppose for the sake
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of contradiction that g′(c) 6= 0 for all c > xn. Then, |g′(c)| > 0. Let m =

inf{|g′(c)|} > 0. Note that limx→∞
g(x)−g(xn)
x−xn = 0. Hence, for all ε > 0, there

exists L such that x > L ⇒ | g(x)−g(xn)x−xn | < ε. Now, by the Mean Value Theorem,

there exists c′ ∈ (xn, x) such that g′(c′) = g(x)−g(xn)
x−xn . We have |g′(c′)| ≥ m, i.e.

for all values of x > xn, | g(x)−g(xn)x−xn | ≥ m too. But choosing ε < m results in an
absurdity. By a similar argument, g has at least one turning point in the interval
(−∞, x1), i.e. there exists c < x1 such that g′(c) = 0.

Hence, g′(x) has at least (n−1)+2 = n+1 distinct real roots. But since the roots
of g′(x) are precisely the roots of the polynomial Pn+1(x) which has degree n+ 1,

by the Fundamental Theorem of Algebra, g′(x) = dn+1f(x)
dxn+1 must have exactly n+1

distinct real roots.

Since P (1) is true and P (n)⇒ P (n+ 1) for all n > 1, by the Principle Of Mathe-
matical Induction, P (n) is true for all natural numbers n.

Approach 2, by the author. Use Rolle’s theorem itself.

One can use substitution x = tan t for |x| < π
2 , to make the zeros of f(x) = 1

x2+1

at ±∞ finite. Indeed, g(t) = f(tan t) = 1
tan2 t+1 = cos2 t has zeros only at the

endpoints of the interval −π2 ≤ t ≤ π
2 . By Rolle’s theorem there is at least one

zero of g′(t) in the interval. On the other hand one can show as in Approach 1,
that there is at most one zero of g′(t) in

(
−π2 , π2

)
. So, there is only one zero of h′(t)

in the interval. This zero is also the zero of f ′(x) = df(x)
dx = g′(t)

x′(t) = g′(t) cos2 t,

which also has zeros at t = ±π2 . By applying Rolle’s theorem again and again

we can show that f (n)(x) = df(n−1)(x)
dt cos2 t has n zeros in

(
−π2 , π2

)
and two more

zeros at t = ±π2 , which solves the problem.

Approach 3, by the author in collaboration with Hossaena Tedla. Use Sturm’s
method for the number of zeros of a polynomial.

Let us define polynomials pn(x) byÅ
1

x2 + 1

ã(n)
=

(−1)nn!pn(x)

(x2 + 1)n+1
.

For any particular polynomial pn, one can use Sturm’s method [3] to check that it
has exactly n real roots. For example, Sturm’s sequence for p6(x) = 7x6 − 35x4 +
21x2 − 1 is

x6 − 5x4 + 3x2 − 1

7
, x5 − 10

3
x3 + x, x4 − 6

5
x2 +

3

35
, x3 − 3

7
x, x2 − 1

9
, x, 1.

We find the signs of these polynomials at −∞ and +∞, as + − + − + − + and
+ + + + + + +, respectively. The number of sign changes at −∞ and +∞ are 6
and 0, respectively. Therefore the number of real roots for for p6(x) is 6− 0 = 6.
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n pn
0 1
1 2x
2 3x2 − 1
3 4x3 − 4x
4 5x4 − 10x2 + 1
5 6x5 − 20x3 + 6x
6 7x6 − 35x4 + 21x2 − 1

For arbitrary n, one can use the fact that pn, pn−1, . . . , p2, p1, p0 form a generalized
Sturm sequence [4]. Using

f (n)(x) =

Å
1

x2 + 1

ã(n)
=

1

2i

Å
1

x− i −
1

x+ i

ã(n)
=

(−1)nn!

2i

Å
1

(x− i)n+1
− 1

(x+ i)n+1

ã
=

(−1)nn!
(
(x+ i)n+1 − (x− i)n+1

)
2i (x2 + 1)

n+1 ,

one can check that

pn(x) =

Ç
n+ 1

1

å
xn −

Ç
n+ 1

3

å
xn−2 +

Ç
n+ 1

5

å
xn−4 − . . . ,

and therefore, pn−1(x) =
p′n(x)
n+1 . Furthermore, using

Ä
pn(x)

(x2+1)n+1

ä′
= −(n+1) pn+1(x)

(x2+1)n+2 ,

we find that

pn+1 = 2xpn − (x2 + 1)pn−1.

In particular, this implies that if x = c is a root of pn then pn+1(c)pn−1(c) < 0.
Also, this implies that pn−1 and pn do not have common zeros, or which is the
same pn does not have non-simple (double, triple,...) zeros. Indeed, if pn−1 and
pn had a common zero, then pn−2 would have the same zero. But p0 = 1 does not
have any zeros, which is a contradiction.

We checked that pn, pn−1, . . . , p2, p1, p0 form a generalized Sturm sequence [3,4].
Therefore we can use it to count the number of zeros of pn. The signs of these
polynomials at −∞ and +∞, are +−+−. . . (n+1 alternating signs) and ++. . .+
(n+1 times ”+” signs), respectively. The number of sign changes at −∞ and +∞
are n and 0, respectively. Therefore, the number of real roots of pn(x) is n−0 = n.

Note that similar treatment of the function f(x) = e−x
2

gives Hermite polynomials
Hn(x). See [5] for more information about Hermite polynomials.

PB4.

a) Find the area between the parabola f(x) = 1
2px

2 and its chord AB which is

perpendicular to the y-axis. Here A(a, f(a)), B(b, f(b)), b = −a > 0, p > 0.

b) Show also that this area is 2/3 of the area of the rectangle bounded by the lines
AB, x-axis, x = −a, x = a.
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Solution. This problem is related to the quadrature of the parabola by Archimedes
which in our case says that the area of a parabolic segment is 4

3 the area of in-
scribed triangle OAB, where O(0, 0) is the origin. The following is the solution
by Ong See Hai.

a) Simple calculation shows that the area under the parabola is

∫ b

a

1

2p
x2 dx =

1

2p

ï
x3

3

ò−a
a

=
1

2p

ï−a3
3
− a3

3

ò
=

1

2p

ï−2a3

3

ò
=
−a3
3p

=
b3

3p
.

area of rectangle is b2

2p · −2a = −ab2
p = b3

p . Hence, desired area is given by the area

of rectangle minus area under parabola, which equals to 2b3

3p units2.

b) This follows immediately from our work in (a): clearly, 2b3

3p units2 is 2
3 of b3

p

units2.

PB5.

a) Let f(x) = sin 1
x . Does this function have a limit at x = 0?

Now, for parts (b) and (c) below, suppose that

f(x) =

{
xn · sin 1

x , x 6= 0,
0, x = 0.

b) Show that if n = 1, then f(x) is continuous at x = 0 and f ′(0) does not exist.

c) Show that if n = 2, then f(x) is continuous at x = 0, f ′(0) exists but f ′(x) is
not continuous at x = 0.

Solution. We will solve only the first part. The remaining parts are similar to
Problem 2 in [2].

a) The function f(x) = sin 1
x does not have a limit at x = 0. Take, for example

the sequences xn = 1
π
2 +2πn and x′n = 1

−π2 +2πn for n = 1, 2, . . ., both of which tend

to zero, but limn→∞ f(xn) = 1 and limn→∞ f(x′n) = −1.
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[5] Hermite polynomials, From Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/Hermite_polynomials
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by April 30, 2023.

4811. Proposed by Nguyen Viet Hung.

Find all positive integers n such that
√
n3 + 1 +

√
n+ 2 is a positive integer.

4812. Proposed by Michel Bataille.

Let ABCD be a tetrahedron. Prove that a = BC2 + DA2, b = CA2 + DB2,
c = AB2 + DC2 are the sides of a triangle. For which tetrahedra is this triangle
equilateral?

4813. Proposed by Mihai Prunescu.

Find all plane triangles ABC such that every side is equal with the opposed angle:
BC = ∠A, AC = ∠B and AB = ∠C.

4814. Proposed by Mihaela Berindeanu.

In triangle ABC, let G be the centroid and I be the incenter. Suppose that
GI is parallel to BC, AI cuts BC in E and the circumcircle in D. Show that
BD = 2ED.

4815. Proposed by Aravind Mahadevan.

In triangle ABC, let a, b, c denote the lengths of the sides BC, CA and AB,
respectively. If tanA, tanB and tanC are in harmonic progression, prove that a2,
b2 and c2 are in arithmetic progression. Does the converse hold?

4816. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Let a, b, k ≥ 0. Calculate

lim
n→∞

∫ 1

0

xk
…
a

x
+ bn2x2n dx.
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4817. Proposed by Goran Conar.

Let a, b, c > 0 be real numbers such that abc = 1. Prove that the following
inequality holds

a7 + a3 + bc

a+ bc+ 1
+
b7 + b3 + ca

b+ ca+ 1
+
c7 + c3 + ab

c+ ab+ 1
≥ 3 .

When does equality occur?

4818. Proposed by Yagub Aliyev.

In triangle ABC, let E ∈ AC,D ∈ BC,F ∈ AB such that AD, BE, CF are

concurrent. Let G ∈ ED. Prove that
(
AF
FB

)2
= DG

GE if and only if

1

[ADE]2
+

1

[BDE]2
=

1

[AEG]2 + [BDG]2

4819. Proposed by Daniel Sitaru.

Let f : [0, 1]→ [0, 1] be a continuous function and 0 < a ≤ b < 1.
Prove that:

2

∫ a+b
2

2ab
a+b

tf(t)dt ≥
∫ a+b

2

2ab
a+b

f(t)dt

(∫ a+b
2

0

f(t)dt+

∫ 2ab
a+b

0

f(t)dt

)

4820. Proposed by George Apostolopoulos.

Let ABCD be a square with side length a. Take interior points K,L on the sides
BC and CD respectively so that the perimeter of triangle KCL equals 2a. If the
diagonal BD intersects the segments AK, AL in points N , M respectively, prove
that the area of triangle AMN equals to the area of quadrilateral KLMN .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 avril 2023.

4811. Soumis par Nguyen Viet Hung.

Trouvez tous les entiers positifs n tels que
√
n3 + 1 +

√
n+ 2 est un entier positif.

4812. Soumis par Michel Bataille.

Soit ABCD un tétraèdre. Prouvez que a = BC2 + DA2, b = CA2 + DB2,
c = AB2 + DC2 sont les côtés d’un triangle. Pour quels tétraèdres ce triangle
est-il équilatéral?

4813. Soumis par Mihai Prunescu.

Trouvez tous les triangles ABC du plan pour lesquels chaque côté est égal à l’angle
opposé, c’est-à-dire BC = ∠A, AC = ∠B et AB = ∠C.

4814. Soumis par Mihaela Berindeanu.

Soit G le centre de masse du triangle ABC et soit I le centre du cercle inscrit à
ABC. Supposons que GI est parallèle à BC, que AI rencontre BC en E et la
circonférence en D. Montrez que BD = 2ED.

4815. Soumis par Aravind Mahadevan.

Dans le triangle ABC, on désigne par a, b et c les longueurs des côtés BC,CA et
AB, respectivement. Si tanA, tanB et tanC forment une progression harmonique,
prouvez que a2, b2 et c2 forment une progression arithmétique. La réciproque est-
elle vraie?

4816. Soumis par Ovidiu Furdui et Alina Ŝıntămărian.

Étant donné a, b, k ≥ 0. Calculez

lim
n→∞

∫ 1

0

xk
…
a

x
+ bn2x2n dx.
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4817. Soumis par Goran Conar.

Soient a, b, c > 0 des nombres réels tels que abc = 1. Prouvez que l’inégalité
suivante est vérifiée

a7 + a3 + bc

a+ bc+ 1
+
b7 + b3 + ca

b+ ca+ 1
+
c7 + c3 + ab

c+ ab+ 1
≥ 3 .

Quand a-t-on égalité?

4818. Soumis par Yagub Aliyev.

Dans le triangle ABC, soit E ∈ AC, D ∈ BC et F ∈ AB tels que AD, BE et CF

sont concourants. Soit G ∈ ED. Montrez que
(
AF
FB

)2
= DG

GE si et seulement si

1

[ADE]2
+

1

[BDE]2
=

1

[AEG]2 + [BDG]2

4819. Soumis par Daniel Sitaru.

Soit f : [0, 1]→ [0, 1] une fonction continue et 0 < a ≤ b < 1.
Montrez que

2

∫ a+b
2

2ab
a+b

tf(t)dt ≥
∫ a+b

2

2ab
a+b

f(t)dt

(∫ a+b
2

0

f(t)dt+

∫ 2ab
a+b

0

f(t)dt

)

4820. Soumis par George Apostolopoulos.

Soit ABCD un carré de longueur de côté a. Considérons des points intérieurs K
et L sur les côtés BC et CD respectivement, de sorte que le périmètre du triangle
KCL soit égal à 2a. Si la diagonale BD coupe les segments AK et AL en des
points N et M respectivement, prouvez que l’aire du triangle AMN est égale à
l’aire du quadrilatère KLMN .
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 48(7), p. 421–424.

4761. Proposed by Michel Bataille.

Let ABC be a triangle neither isosceles nor right-angled, and let O be its cir-
cumcentre. Let A′, B′, C ′ be the respective reflections of A,B,C in O and let
A1, B1, C1 be the reflections of O in B′C ′, C ′A′, A′B′, respectively. Prove that
the circumcircles of the triangles OAA1, OBB1, OCC1 and ABC have a common
point.

We received nine submissions, all of which are correct, and feature two of them.

Solution 1, by Oliver Geupel.

Consider the problem in the plane of complex numbers where the affix of any point
Z is denoted by the respective lower-case letter z. Suppose that the affix of O is
0 and aa = bb = cc = 1. We show that the circles (OAA1), (OBB1), (OCC1) and
(ABC) have the common point S with affix

s = −ab+ bc+ ca

a+ b+ c
.

Note that a1 = b′ + c′ = −b − c. Since ∠A is not a right angle, the points A1

and O are distinct. Since AB 6= AC, the points A, A1, and O are not collinear.
Hence, 4OAA1 is non-degenerate. Let D denote the circumcenter of 4OAA1. By
a standard formula (see [1], p. 108), we have

d =
aa1 (a− a1)

aa1 − aa1
=

a(−b− c)
(
1
a + 1

b + 1
c

)
1
a (−b− c)− a

(
− 1
b − 1

c

) =
a(ab+ bc+ ca)

bc− a2 .

Thus,

d =
1
a

(
1
ab + 1

bc + 1
ca

)
1
bc − 1

a2

=
a+ b+ c

a2 − bc .

The second intersection S of the circumcircles of 4ABC and 4OAA1 is the reflec-
tion of A in the axis OD. We know (see [1], p. 98) that the affix of the reflection
W of a point Z over a line XY is

w =
(x− y)z + xy − xy

x− y .

Therefore,

s =
d

ad
= −ab+ bc+ ca

a+ b+ c
.
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Similarly, S lies on the circumcircles of 4OBB1 and of 4OCC1.

References

[1] Chen, E. (2016), Euclidean Geometry in Mathematical Olympiads. Washington,
DC: Mathematical Association of America.

Solution 2, by the UCLan Cyprus Problem-Solving Group.

Assume that A,B,C are points of the unit circle and are represented by the
complex numbers a, b, c. Then B′, C ′ are represented by −b,−c, their midpoint
by −(b+ c)/2, and so A1 is represented by −(b+ c).

Let z be the complex number representing the point of intersection of the cir-
cumcircles of triangles OAA1 and ABC. Since z, 0, a,−(b+ c) represent concyclic
points, then the cross ratio in any order, for example

z − (−(b+ c))

z − 0
· a− 0

a− (−(b+ c))
,

must be real; thus we have

z + b+ c

z
· a

a+ b+ c
=
z + b+ c

z
· a

a+ b+ c
=
bc+ cz + zb

bc
· bc

bc+ ca+ ab
.

This leads to the quadratic equation

z(a+ b+ c)(z(b+ c) + bc)− a(z + b+ c)(ab+ bc+ ca) = 0 .

The product of the roots of this equation is

−a(b+ c)(ab+ bc+ ca)

(a+ b+ c)(b+ c)
.

The number is well-defined by our assumptions: Should b + c = 0, then b and c
would represent the ends of a diameter, and the triangle would be right-angled at
A; if a+ b+ c = 0, then the center of gravity is equal to the circumcenter, in which
case the triangle would be equilateral.

Since both circles contain the point A, an obvious root of the quadratic equation
is a, whence the second root must be

−ab+ bc+ ca

a+ b+ c
.

This is symmetric in a, b, c, so z also lies on the circumcircles of OBB1 and OCC1.
Remark. Note that we used the assumption that ∆ABC is not isosceles only to
eliminate the possibility of an equilateral triangle (so that a + b + c is nonzero).
Of course, when the triangle is not isosceles, then 0, a,−(b + c) are not collinear.
Our proof continues to be valid in the case of a nonequilateral isosceles triangle if
we replace the circumcircle of OAA1 by the straight line passing through O,A,A1

should they be collinear.
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4762. Proposed by Didier Pinchon and George Stoica.

Prove that

n∑
i=1

ai

Ñ ∏
1≤j≤n,j 6=i

Å
ai + aj
ai − aj

ãé
=

n∑
i=1

ai

for any distinct complex numbers a1, . . . , an.

All 7 received submissions were correct. We present two solutions.

Solution 1, by Ulrich Abel.

We prove the result by using the following well-known facts on divided differences
(eg Lemma 1 in J. Schwaiger, On a characterization of polynomials by divided
differences, Aequationes Mathematicae, 48 (1994), 317–324):

[a1, . . . , an] f (x) :=
n∑
i=1

f (ai)∏
1≤j≤n,j 6=i (ai − aj)

,

[a1, . . . , an]xr =

 0 (r = 0, . . . , n− 2) ,
1 (r = n− 1) ,∑n
i=1 ai (r = n) .

Define f (x) =
∏n
j=1 (x+ aj). Then f (ai) = 2ai

∏
1≤j≤n,j 6=i (ai + aj).

Because f (x) = xn + xn−1
∑n
j=1 aj + p (x), where p is a polynomial of degree less

than or equal to n− 2, we obtain

2
n∑
i=1

ai
∏

1≤j≤n,j 6=i

Å
ai + aj
ai − aj

ã
=

n∑
i=1

f (ai)∏
1≤j≤n,j 6=i (ai − aj)

= [a1, . . . , an] f (x)

= [a1, . . . , an]xn + [a1, . . . , an]xn−1
n∑
j=1

aj + [a1, . . . , an] p (x)

=
n∑
i=1

ai +
n∑
j=1

aj + 0 = 2
n∑
i=1

ai.

Solution 2, by Seán M. Stewart.

Consider the rational function

F (x) :=
n∏
j=1

x+ aj
x− aj

.
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By a partial fraction decomposition, we have

F (x) =
n∏
j=1

x+ aj
x− aj

= A0 +
n∑
i=1

Ai
x− ai

,

where A0 = 1 and

Ai = lim
x→ai

(x− ai)F (x) = lim
x→ai

(x− ai)
n∏
j=1

x+ aj
x− aj

= 2ai

n∏
j=1
j 6=i

ai + aj
ai − aj

,

as a1, . . . , an are distinct complex numbers. So

n∏
j=1

x+ aj
x− aj

= 1 +
n∑
i=1

2ai
x− ai

n∏
j=1
j 6=i

ai + aj
ai − aj

. (1)

We now equate the coefficients of 1/x in the Laurent series expansion of (1) about
x = ∞. Setting x = 1

z , this is equivalent to equating the coefficients of z in the
Laurent series expansion of

n∏
j=1

1 + zaj
1− zaj

= 1 +
n∑
i=1

2zai
1− zai

n∏
j=1
j 6=i

ai + aj
ai − aj

. (2)

about z = 0. For the left hand side of (2) we see that

[z]
n∏
j=1

1 + zaj
1− zaj

= [z]
n∏
j=1

(1 + zaj)
∞∑
n=0

(zaj)
n = 2

n∑
i=1

ai.

Here [zn] denotes the coefficient operator extracting the coefficient of zn in a formal
power series A(z). Similarly, for the right hand side of (2) we see that

[z]
n∑
i=1

2zai
1− zai

n∏
j=1
j 6=i

ai + aj
ai − aj

= [z]
n∑
i=1

2zai

n∏
j=1
j 6=i

ai + aj
ai − aj

∞∑
n=0

(zai)
n

=
n∑
i=1

2ai

n∏
j=1
j 6=i

ai + aj
ai − aj

.

Thus on equating equal coefficients for z in (2), we find

n∑
i=1

ai

n∏
j=1
j 6=i

ai + aj
ai − aj

=
n∑
i=1

ai,

as required to prove.
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4763. Proposed by William Weakley.

Let K be a field and let S be a nonempty subset of K that is closed under
subtraction.

a) For all K and S, characterize the functions f : S → K such that

f(x)f(y) = f(x− y) for all x, y ∈ S.

b) As K and S vary, what finite cardinalities can the set of such functions have?

We received 5 submissions out of which 4 were complete and correct. We present
the solution by the Missouri State University Problem Solving Group, lightly edited.

a) Since S is nonempty and closed under subtraction, S is an additive subgroup
of K. In particular, 0 ∈ S. Let x ∈ S. Then

f(0) = f(x− x) = f(x)2. (1)

Letting x = 0 we see that f(0) ∈ {0, 1}. If f(0) = 0, then (1) implies f(x) = 0 for
all x ∈ S. If f(0) = 1, then (1) implies f(x) ∈ {−1, 1} for all x ∈ S. Therefore
f is either identically 0 or it is a homomorphism from the additive group S to
the multiplicative group {±1}. Conversely, given such a homomorphism f and
x, y ∈ S, the function f satisfies

f(x− y) = f(x)f(y)−1 = f(x)f(y),

since the elements of {±1} are their own inverses.

b) Let Hom(S, {±1}) denote the set of all homomorphisms from S to {±1}. Defin-
ing

(f ⊕ g)(s) = f(s)g(s),

(r � f)(s) = f(s)r

for f, g ∈ Hom(S, {±1}), r ∈ F2, and s ∈ S makes Hom(S, {±1}) an F2-vector
space. Therefore, if Hom(S, {±1}) is finite, it contains 2d elements where d is the
dimension of the vector space.

To show that all nonnegative values of d are possible, first consider d ≥ 1. Let
K = S = Q[x]/p(x), where p is an irreducible polynomial of degree d. Then
S ∼= Qd and |Hom(S, {±1})| = 2d, since there are two choices for each of the d
basis vectors to map to.

For d = 0, consider K = F2. Then Hom(S, {±1}) = Hom(S, {1}) and there is
just one homomorphism.

Therefore, including the function that is identically zero, the possible finite values
for the number of functions satisfying the conditions of the problem are 2d + 1
with d ≥ 0.
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4764. Proposed by Muhammad Afifurrahman.

Let (an)∞n=1 denote an arithmetic progression with common difference d. If both
a1 and d are positive, prove that

a2p
aq+r

+
a2q
ar+p

+
a2r
ap+q

≥ 3

for all p, q, r ∈ N.

We received 21 submissions of which 20 were correct and complete. We present
the solution by Soham Bhadra, slightly modified.

Since an = a1 + (n− 1)d for every n ∈ N, it easily follows that

an − am = (n−m)d for every n,m ∈ N.

The inequality we want to prove is equivalent to

a2p
aq+r

+
a2q
ar+p

+
a2r
ap+q

− 3 ≥ 0.

We have that

a2p
aq+r

+
a2q
ar+p

+
a2r
ap+q

− 3

=

Å
a2p
aq+r

− 1

ã
+

Å
a2q
ar+p

− 1

ã
+

Å
a2r
ap+q

− 1

ã
=

(2p− q − r)d
aq+r

+
(2q − r − p)d

ar+p
+

(2r − p− q)d
ap+q

= d

Å
(p− q) + (p− r)

aq+r
+

(q − r) + (q − p)
ar+p

+
(r − p) + (r − q)

ap+q

ã
= d

ÅÅ
p− q
aq+r

− p− q
ar+p

ã
+

Å
q − r
ar+p

− q − r
ap+q

ã
+

Å
r − p
ap+q

− r − p
aq+r

ãã
= d

Å
(p− q) · (p− q)d

aq+r ar+p
+ (q − r) · (q − r)d

ar+p ap+q
+ (r − p) · (r − p)d

ap+q aq+r

ã
= d2

Å
(p− q)2
aq+r ar+p

+
(q − r)2
ar+p ap+q

+
(r − p)2
ap+q aq+r

ã
.

Since squares of real numbers are non-negative and by assumption an > 0 for all
n, the expression in the last line is clearly non-negative, concluding the proof.

4765. Proposed by Omar Sonebi.

Let n be a natural number and let S(n) denote the sum of digits of n in the decimal
notation. Is the sequence S(2n) eventually strictly increasing?

We received 9 solutions; only 3 were completely correct. We present Soham
Bhadra’s submission.
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The sequence S(2n) is not eventually strictly increasing. Obviously n ≡ S(n)
(mod 9). Let us assume that S(2n) was eventually increasing. Now, let’s pick
some large k ≡ 0 (mod 6) so 2k ≡ 1 (mod 9) and S(2k) = 9a + 1 for some a.
Then, by hypothesis,

S(2k+1) ≥ 9a+ 2, S(2k+2) ≥ 9a+ 4,

S(2k+3) ≥ 9a+ 8, S(2k+4) ≥ 9a+ 16,

S(2k+5) ≥ 9a+ 23, S(2k+6) ≥ 9a+ 28,

hence the sequence S(2n) is at least asymptotic to 9n/2. On the other hand, S(2n)
is bounded by 9 times the number of digits that 2n has, which is at most n/3 for
large n as log2(10) > 3. Hence S(2n) . 3n. Contradiction!

Editor’s Comments. This is a very old problem. Every submission followed the
same strategy: produce incompatible estimates on the growth rate of S(2n).

The upper bound

lim sup
n→∞

S(2n)

n
≤ 9 log10(2) = 2.709 . . .

comes from standard properties of “digimetric” functions.

Meanwhile, assuming that S(2n) is eventually strictly increasing, the lower bound

lim inf
n→∞

S(2n)

n
≥ 27

6
= 4.5

comes from the fact that S(2n) ≡ 2n has period 6 modulo 9, with residues
1, 2, 4, 8, 7, 5, 1, . . .. Empirical evidence suggests that S(2n) does grow linearly—
this is an open problem!

4766. Proposed by Le Hoang Long and Ngo Thai Binh, modified by the Editorial
Board.

Given a regular (2n − 1)-gon A0 . . . A2n−2, with sides of length a1 = A0A1 and
diagonals ak = A0Ak, prove that

1

a1
=
n−1∑
k=1

1

a2k
.

We received 9 solutions. We present the solution by C. R. Pranesachar, slightly
edited.

We may assume without loss of generality that the regular (2n−1)-gon is inscribed
in the unit circle; denote by O the center of the circle. Fix k ∈ {1, . . . , 2n − 2}.
Let θ = π

2n−1 so that ∠A0OAk = 2kθ. Using the formula for the length of a chord
we get

ak = 2 sin(kθ) for all 1 ≤ k ≤ 2n − 2.
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Hence the equality we want to prove is equivalent to

1

sin(θ)
=
n−1∑
k=1

1

sin(2kθ)
. (1)

Using the trigonometric identity csc(2x) = cot(x)− cot(2x) gives us

n−1∑
k=1

1

sin(2kθ)
=
n−1∑
k=1

[
cot
(
2k−1θ

)
− cot

(
2kθ
)]

= cot(θ)− cot(2n−1θ)

=
cos(θ) sin(2n−1θ)− sin(θ) cos(2n−1θ)

sin(θ) sin(2n−1θ)

=
sin(2n−1θ − θ)

sin(θ) sin(2n−1θ)

=
1

sin(θ)
,

where in the last line we used the fact that for θ = π
2n−1 we have

(2n−1θ − θ) + 2n−1θ = (2n − 1)θ = π,

and so sin(2n−1θ − θ) = sin(2n−1θ). This completes the proof of (1) and hence
also of the desired equality.

4767. Proposed by George Apostolopoulos.

Let R and r be the circumradius and inradius, respectively, of triangle ABC. Let
D,E and F be chosen on sides BC,CA and AB so that AD,BE and CF bisect
the angles of ABC. Prove that

DE

AB
+
EF

BC
+
FD

CA
≤ 3

4

Å
1 +

R

2r

ã
.

There were 10 correct solutions among the 13 submissions that we received — the
other three were flawed. We feature two solutions: the first is a note by Michel
Bataille that describes how the result follows quickly from previous Crux problems,
and the second, almost entirely also by Bataille, to provide readers the details of a
typical solution.

Solution 1, by Michel Bataille.

Let a = BC, b = CA, c = AB, as usual. In 2502 [2000 : 45 ; 2001 : 53], it was
proved that

DE ≤ 2c+ a+ b

8
, EF ≤ 2a+ b+ c

8
, FD ≤ 2b+ c+ a

8
.
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It readily follows that the inequality holds if

b+ c

a
+
c+ a

b
+
a+ b

c
≤ 3R

2
.

We are done since this is one of the inequalities of 3087 [2005 : 459,462 ; 2006 :
521].

Solution 2, by Parviz Khalili (based on a solution by Michel Bataille).

Most of the following solution appeared as a solution by Michel Bataille to problem
12182 in The American Mathematical Monthly, 129(1), 2022. It is only the final
estimate (after equation (1) below) that differs from Bataille’s solution. Compare
also the solution by Subhankar Gayan to Crux Problem 4609 [47(6) 2001:321].

Let a = BC, b = CA, c = AB be the side lengths of triangle ABC . Since
AD, BE, CF are the angle bisectors, we know that AE = bc

a+c and AF = bc
a+b .

Applying the Law of Cosines, we obtain

EF 2 = AE2 +AF 2 − 2AE ·AF cosA =
b2c2

(a+ c)2
+

b2c2

(a+ b)2
− bc(b2 + c2 − a2)

(a+ b)(a+ c)

=
bc

(a+ b)2(a+ c)2
[
bc[(a+ b)2 + (a+ c)2]− (b2 + c2 − a2)(a+ b)(a+ c)]

]
=

bc[a2(a+ b)(a+ c) + 2a2bc+ 2ab2c+ 2abc2 − a2b2 − ab2c− ab3 − a2c2 − ac3 − abc2]

(a+ b)2(a+ c)2

=
abc

(a+ b)2(a+ c)2
[a(a+ b)(a+ c)− a(b− c)2 − b(b− c)2 − c(b− c)2]

≤ a2bc

(a+ b)(a+ c)
,

with equality if and only if b = c.

By the AM-GM inequality (applied three times),

EF ≤ a
√
bc√

(a+ b)(a+ c)
≤ a

√
bc»

2
√
ab · 2√ac

=

√
a 4
√
b 4
√
c

2
≤ 2a + b + c

8
.

Similar inequalities hold for FD and DE; therefore,

EF

a
+
FD

b
+
DE

c
≤ 3

4
+

1

8

Å
b+ c

a
+
c+ a

b
+
a+ b

c

ã
, (1)

with equality if and only if a = b = c. With R the circumradius, r the inradius,
and s = a+b+c

2 , we have ab+ bc+ ca = s2 + 4Rr + r2 and abc = 4Rrs. Applying
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Gerretsen’s inequality (s2 ≤ 4R2 + 4Rr + 3r2) we get

b+ c

a
+
a+ c

b
+
a+ b

c
=

2s(ab+ bc+ ca)− 3abc

abc

=
2s(s2 + 4Rr + r2) − 12sRr

4sRr

=
s2 − 2Rr + r2

2Rr

≤ 4R2 + 2Rr + 4r2

2Rr
= 1 + 2

Å
R

r
+
r

R

ã
.

Substitute in (1) and apply Euler’s inequality (2r ≤ R) to get

EF

a
+
FD

b
+
DE

c
≤ 7

8
+

1

4

Å
R

r
+
r

R

ã
≤ 7

8
+

1

4

Å
R

r
+

r

2r

ã
≤ 3

4

Å
1 +

R

2r

ã
.

This completes the solution.

Editor’s comments. The Monthly problem, mentioned in the second solution, called
for an upper bound of 3R

4r , which is greater than the bound here, namely 3
4 (1+ R

2r ).

Janous observed that such estimates are misleading: Since the quantity R
r can be

arbitrarily large (for example, when an isosceles triangle has a small apex angle),
these upper bounds are unbounded, but EF

a and the other two summands are
easily seen to be less than 1 (as in the estimate for EF 2 in solution 2 above).
Indeed, Janous proved that their sum is less than 2; specifically,

EF

a
+
FD

b
+
DE

c
≤ 47R+ 2r

31R+ 2r
.

It remains an open question whether, except for the equilateral triangle, the sum is
always less than 3

2 . We challenge the readers to send us a proof or counterexample.

4768. Proposed by Mihaela Berindeanu.

Find all functions f : R −→ R, such that f (2x) · f
(y

2

)
≤ f (xy) + 2x +

y

2
holds

for all real numbers x, y.

We received 13 solutions, all correct. We present the solution by Michel Bataille.

We consider the equivalent problem of finding all f : R→ R satisfying

f(x)f(y) ≤ f(xy) + x+ y, (1)

for all x, y. It is easy to see that the function x 7→ x + 1 is a solution. We show
that there is no other solution.

Let f be a solution. With x = y = 1, (1) gives (f(1))2 ≤ f(1) + 2, hence f(1) ≤ 2.

With x = y = −1, (1) gives (f(−1))2 ≤ f(1)−2, hence (f(−1))2 ≤ 0 and therefore
f(−1) = 0.
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From f(−x)f(−1) ≤ f(x)− x− 1, we then deduce that for all real x,

f(x) ≥ x+ 1. (2)

With x = y = 0, (1) yields (f(0))2 ≤ f(0), hence f(0) ≤ 1. Since f(0) ≥ 1 (from
(2) with x = 0), we must have f(0) = 1 and therefore

f(x) = f(x)f(0) ≤ f(0) + x+ 0 = 1 + x

for all x. With (2) we conclude that f(x) = x + 1 for all x and the proof is
complete.

4769. Proposed by Nguyen Tien Lam.

Let a, b, c, d be positive integers such that a > b > c > d and

a2 − ac+ c2 = b2 − bd+ d2.

Prove that ab− cd is not prime.

We received 15 submissions, out of which 13 were correct and complete. We present
the solution by Prithwijit De, lightly edited.

Observe that if a−ac+ c2 = b2 − bd+ d2 we have

(ac− bd)(a2 − ac+ c2) = ac(b2 − bd+ d2)− bd(a2 − ac+ c2)

= (bc− ad)(ab− cd).
(1)

Using the condition a > b > c > d we see that ab − cd > 0, ac − bd > 0, and
a2 − ac+ c2 > ac− ac+ c2 > 0. Therefore bc− ad > 0. Further

ab− cd > ac− bd > bc− ad > 0. (2)

In particular ac− bd > 1.

Suppose ab− cd is prime. Then the inequality (2) implies that ac− bd is relatively
prime to ab− cd and from (1) it follows that ac− bd must therefore divide bc−ad.
But this is absurd since ac− bd > bc− ad > 0. Hence ab− cd is not prime.

4770. Proposed by Boris Čolaković.

Prove that for all acute triangles with angles A,B,C, the following inequality
holds:

sin
A

2
+ sin

B

2
+ sin

C

2
− 2 sin

A

2
sin

B

2
sin

C

2
≥ 5

4
.

We received 14 submissions, of which 12 were correct and complete. We present
here a solution which is a composite of almost identical solutions submitted (inde-
pendently) by Šefket Arslanagić, Mohamed Amine Ben Ajiba, Daniel Văcaru, and
the proposer.
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The Popoviciu’s inequality (see C. Niculescu & L.-E. Persson, Convex functions
and their applications: A contemporary approach, CMS Books in Mathematics,
Springer, 2006, page 12, Theorem 1.1.8.) is the following: let f be a real continuous
function on a real interval I. Then f is convex if and only if

f(x) + f(y) + f(z)

3
+ f

(x+ y + z

3

)
≥ 2

3

[
f
(x+ y

2

)
+ f

(y + z

2

)
+ f

(z + x

2

)]
for all x, y, z ∈ I. If f is stricly convex on I, then the equality holds if and only if
x = y = z.

Because the angles A,B,C of an acute triangle belong to the interval (0, π/2), this
inequality is written for the strictly concave function cos(x) on this interval:

cosA+ cosB + cosC

3
+ cos

Å
A+B + C

3

ã
≤ 2

3

ï
cos

Å
A+B

2

ã
+ cos

Å
B + C

2

ã
+ cos

Å
C +A

2

ãò
.

As A+B + C = π, this is equivalent to

cosA+ cosB + cosC

3
+

1

2
≤ 2

3

ï
sin

A

2
+ sin

B

2
+ sin

C

2

ò
, (1)

because, for example,

cos

Å
A+B

2

ã
= cos

Å
π

2
− C

2

ã
= sin

C

2
.

The equality holds if and only if A = B = C, that is for an equilateral triangle.

Using elementary trigonometric transformations of products into sums, it is verified
that for any three angles A,B,C satisfying A+B + C = π,

sin
A

2
sin

B

2
sin

C

2
=

1

4
[cosA+ cosB + cosC − 1] .

Therefore

cosA+ cosB + cosC = 1 + 4 sin
A

2
sin

B

2
sin

C

2
. (2)

From (1) and (2), we get:

sin
A

2
+ sin

B

2
+ sin

C

2
≥ cosA+ cosB + cosC

2
+

3

4

≥ 5

4
+ 2 sin

A

2
sin

B

2
sin

C

2
,

which is the requested result. The equality is verified if and only if A = B = C,
i.e. the triangle is equilateral.
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