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iii

Table of Contents

The Author iv

FOREWORD v

Introduction 1

Linear Homogeneous Recurrence Relations of Order 2 with
Constant Coefficients 4

Linear Recurrence Relations of Order k with Constant Coefficients 8

Transforming a Non-homogeneous Recurrence Relation into a
Homogeneous Relation of Higher Order 11

Exercises 16

Reverse Engineering 18

Different Representations 20

Fibonacci Sequence Problems 22

Recurrence Relations and Limits 27

Systems of Recurrence Relations and Limits 32

Look at the Limit First 34

Spot the Recurrence 39

Patterns and Repetition 44

More Problems 48

Solutions and Answers to the Exercises 52



iv

The Author

Iliya Bluskov is a professor of mathematics at the University of Northern British

Columbia, Canada. He was born in Bulgaria and received his B.Sc. in Mathematics from

the University of Plovdiv, Bulgaria, M.Sc degree in Mathematics from the University of

Victoria, Canada, and Ph.D. in Mathematics from Simon Fraser University, Canada.

Dr. Bluskov has broad experience in mathematical competitions and training for such

competitions. His first encounter with mathematical competitions was during his school

years when he started participating in math competitions, ranging from all the rounds of

the Bulgarian national mathematical Olympiad to regional and national competitions

outside the Olympiad to participation in journal problem solving competitions and

proposing problems himself. Mathematical Olympiads and mathematical competitions

played an important role in his decision to pursue studies in mathematics. His involvement

in mathematical competitions continued after he graduated with a degree in mathematics

and started working as a teacher in a specialized science school; naturally, he taught

mathematics there and participated in extracurricular activities in mathematics, which

involved working with students on preparation for mathematical competitions, proposing

problems for these competitions and participation in the marking of the students’ papers.

He has worked on organizing such competitions, accompanying teams for various stages of

the national Olympiad and other national competitions. He has participated in various

problem committees for local, regional and national competitions, and created some

of the problems. His involvement with competitive mathematics continued after his

coming to Canada for further studies in mathematics and work. At various stages of

this part of his career he continued to be involved with the preparation of students

for competitions (organizing preparation session for participants in the American High

School Mathematics Examination (AHSME) and participating in preparation sessions

for students from SFU and UNBC who were planning to write the Putnam Exam) and

with selection of problems and marking papers for regional and national mathematical

competitions, including the Canadian Mathematical Olympiad (CMO), and the British

Columbia Secondary School Mathematics Contest (BCSSMC). In addition, he served

on the Editorial Board of the problem solving journal Crux Mathematicorum with

Mathematical Mayhem (now named Crux Mathematicorum), where he was one of the

problem editors, going over dozens of proposed problems and writing up part of the

solutions section of each issue of the journal for over ten years. Dr. Bluskov has

also published many competition problems and solutions in various educational and

competition oriented journals such as the aforementioned Crux Mathematicorum (Canada),

The American Mathematical Monthly and The College Journal of Mathematics (USA),

Mathematics in School (USSR), and The Education in Mathematics and Informatics,

and Mathematics (Bulgaria).



v

FOREWORD

Over the years I have collected a huge number of nice problems and solutions on
various topics in Mathematics and this publication represents a part of this collection.
The publication is written partly as an introductory text, and partly as a book about
solving problems. The problems are organized by some common idea, some common
method of solving, and generally ordered in increasing level of difficulty. The book
should be fully accessible to high school students, and parts of it to even younger students
and can be used for preparation for mathematical competitions, but it can be useful in
preparation for any future work in mathematics. It can be also used by teachers who
work on preparation of students for competitions, and by instructors who teach any
course that covers recurrence relations.

I will continue with a brief discussion about the philosophy of preparing for
competitions; basically it is the philosophy of problem solving and can be applied in your
school work, and later in your course work at the university level. Can you really prepare
for mathematical competitions? After all, the problems there are difficult and tricky,
and many students, even the best ones, fail to solve some of the problems. Nevertheless,
preparation can help. Just like in any other activity, if you train, you get better. In
a sense, it is no different than preparing for a test in school. The more you train, the
better you become, up to a point. After that point, you need to be very smart... or
very lucky, or both! The idea behind preparation for math competition, or the so called
Eastern model, was quite simple: A question might look tricky, might have a tricky
solution, some neat idea that remains hidden for most of the people. Well, once you see
a couple of those, it cease to be a trick, it becomes a routine! Can a preparation win
you a competition? I do not think so, you have to be smarter than most of the other
participants, or way more prepared, or both, and that is, generally, not easy. Can you
get good scores though? Yes you can! By being exposed to many types of problems,
when you see these problems in a competition, you will not be deterred, you will not
be thinking: Oh, I have never seen this, how do I start this problem, etc. For most of
the problems, you will be able to jump right onto a reasonable path for solution, get
to the details and most likely succeed. There are different thoughts on whether reading
solutions written by other people helps as much as trying to solve the problems yourself.
Well, having a problem with its solution allow you to do both: You can try to solve
it for some time, and if you cannot, then look at the solution, or if you succeed, you
can still look at the solution - it might be shorter than yours, it might be different, so
reading might still make sense, might still bring some new knowledge. I see two major
benefits from reading solutions. In a sense, it develops certain knowledge faster (one
might argue that by trying to solve the problems yourself you will be able to acquire
deeper knowledge, and this might be true, although it comes with the cost of spending
somewhat more time). Another benefit from reading “book solutions” is the development
of good mathematical writing style, good writing skills, in general. This naturally leads
us to the important issue of how we actually read mathematics, in this case, the theory
needed to solve certain type of problems and the solutions. Most people (including many
of my students) make the mistake of only reading the solution and verifying it is correct.
Well, this is a good thing, it is needed for understanding the solution, you have to be
able to understand every line of it, every sentence of it; you have to be able to explain
to yourself why this line follows from the previous one, or where it follows from: Would
that be a known definition, theorem, or method, or, perhaps, a rule of logic? The best
approach, however, will be to go a step further: For every step of the solution, ask and try
to answer questions like: Why did they do that? What was the reason to take that step?
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Can this step be performed differently? Can the entire problem be solved differently?
Doing this on a regular basis will allow you to solve not only problems similar to the
ones you have seen, but also problems which are quite different, and/or more difficult,
because you will be accustomed to finding the answers by yourself, rather than being
guided by a model applicable only in some restricted settings. I also always suggest
reading with a pen and paper at your side; work out the details until every line of the
solution is perfectly clear to you and you have all the explanations up to your level of
understanding and knowledge.

Now, having said all that, no matter how prepared you are, you will encounter
problems that require more than preparation, more than routine. What do you do
with these problems? Well, pretty much what I and my colleagues mathematicians do
when solving problems, and what I tell my students to do: Think about the condition.
Ask yourself questions such as: What do I know about the objects in this question,
what do I know about the mathematics needed to solve it? Recall pertinent theorems,
definitions, formulas, known approaches, known tricks, things that we usually refer to
as “the ingredients”. Apparently, given any problem, you need a finite number of those.
Once you have the possible ingredients for a solution, you have to “mix” them together
so the result constitutes a valid solution. You have to combine the ingredients; perhaps,
using some good logic in the process, to produce the solution which will be read by the
scrutinizing eye of the marker and will be expected to bring you the high score you need.

Teaching you a few tricks and giving you good practice is what the structure of this
book is trying to achieve. In order to be good problem solvers, we need to have the basics,
some solid background, and then we need to be exposed to problems of increasing levels
of difficulty, up to the level of competition problems, and then to the level of the most
difficult competitions, such as national and international Olympiads, and the Putnam
exam. Now, the Putnam exam is a competition for undergraduate students, there are
a couple of problems from it in this text. It is good to know that many problems
on the Putnam exam are just difficult problems that often require nothing more than
good logic, and some high school mathematics; and sometimes, even less than that. So,
including some problems from it in a high school math competition preparation book
seems reasonable to me. It is probably worth mentioning that during the long history
of the Putnam exam, many high school students were given permission to write it, and
some even managed to get to the list of winners, outperforming thousands of university
students in the process!

The problems in this text are from a vast number of sources; ranging from problems

proposed by me for various competitions or for my class work in relevant courses, problems

that were proposed but not used for competitions, or problems from actual competitions,

again, from a very broad range of sources - Olympiads, regional, national and international

competitions, and also journal competition problems or proposals, again, ranging from

quite obscure and unknown to some classic problems from texts or well-known competition

problems.
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Introduction

In this text we talk about the concept of a recurrence relation and learn
how to solve various types of recurrence relations. We then proceed with some
interesting competition problems involving recurrence relations. The more difficult
problems for self-preparation are marked with an asterisks.

Recurrence relations have many applications. These include (but are not
restricted to) counting problems, iterative algorithms for numerical approximation,
computational complexity issues, and combinatorial generation.

A standard question about a sequence defined recursively is how to express
the general term an as a function of n. For example, in computational complexity,
quite often, the number of iterations of a particular algorithm can be determined as
a sequence {an}, where n is the size of the problem. Knowing an explicit formula
for an (as a function of n) allow us to compute the time necessary to perform
the algorithm. This knowledge also allow us to compare different algorithms for
solving the same problem.

We start with a simple example of a sequence defined recursively.

Example Let {ak}∞k=0 be a sequence defined by a0 = 3, ak+1 = 2ak for k ≥ 0.
The first several terms of the sequence are 3, 6, 12, 24, .... Clearly, the sequence is
a geometric progression, that is, a sequence in which every term is obtained
from the preceding one by multiplying it by a fixed number r, called the common
ratio. In our case, r = 2. The following approach allows us to express an as a
function of n. The defining equality of the sequence, ak+1 = 2ak, is true for every
k ≥ 0. Writing it out for k = 0, 1, 2, ..., n, we obtain

an+1 = 2an

an = 2an−1

... = ...

a2 = 2a1

a1 = 2a0

Multiplying all these equalities, we obtain

an+1(an...a2a1) = 2n+1(an...a2a1)a0

an+1 = 2n+1a0

an+1 = 3 · 2n+1.

Using the same approach, we can prove the following, more general result, giving
explicitly the general term of a geometric progression: If the sequence {ak}∞k=0 is
defined by a0 = a, ak+1 = rak for k ≥ 0, then an = arn.

The next result gives an explicit formula for the sum of the first n+ 1 terms of a
geometric progression.

Example The sequence {Sn} is defined by S0 = a, Sn = Sn−1 +arn. Show that

Sn = a
rn+1 − 1

r − 1
.
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Solution Writing the recurrence for k = 1, 2, . . . , n, then adding the results and
canceling, we obtain

Sn = Sn−1 + arn

Sn−1 = Sn−2 + arn−1

... = ...

S2 = S1 + ar2

S1 = S0 + ar1,

Sn = a+ ar + ar2 + · · ·+ arn−1 + arn,

which is the sum of the first n+ 1 terms of a geometric progression with first term
a and common ratio r. Multiplying both sides by r, we get

rSn = ar + ar2 + · · ·+ arn + arn+1 = Sn − a+ arn+1.

Thus rSn − Sn = a
(
rn+1 − 1

)
, and then

Sn = a
rn+1 − 1

r − 1
,

as claimed.

Example It is known that the number of comparisons an needed to sort n
numbers using the “bubble sort” algorithm is given by the following recurrence
relation: a1 = 0, an = (n− 1) + an−1 for n ≥ 2. Express an as a function of n.

Solution We use an approach similar to the one used in the preceding example.
We have

an = (n− 1) + an−1

an−1 = (n− 2) + an−2

... = ...

a3 = a2 + 2

a2 = a1 + 1

Adding all these equalities, we obtain

an + (an−1 + a3 + a2) = (an−1 + a3 + a2) + a1︸︷︷︸
=0

+1 + 2 + ...+ (n− 1).

Hence
an = 1 + 2 + ...+ (n− 1).

The right-hand side represents the sum of an arithmetic progression, so that

an =
1 + (n− 1)

2
(n− 1) =

n(n− 1)

2
.

Both of our examples so far,
an+1 = 2an
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and
an = (n− 1) + an−1

represent first-order linear recurrence relations. The first one is homogeneous.
The second is non-homogeneous.

The general first-order linear recurrence relation with constant coefficients
has the form

an+1 + can = f(n), n ≥ 0,

where c is a constant and f(n) is a function defined for every integer n ≥ 0. If
f(n) = 0 for every n ≥ 0, then the relation is homogeneous; otherwise, it is
non-homogeneous.

Example Find an as a function of n if a0 = 2 and an = (n+ 1)an−1, n ≥ 0.

Solution Note that this is not a recurrence relation with constant coefficients!
However, we can solve it by using an approach similar to the one used in the
preceding examples.

an = (n+ 1)an−1

an−1 = nan−2

... = ...

a3 = 4a2

a2 = 3a1

a1 = 2a0

Multiplying all these equalities, we obtain

an(an−1an−2...a2a1) = (n+ 1)!(an−1an−2...a2a1) a0︸︷︷︸
=2

.

Therefore, an = 2(n+ 1)!.
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Linear Homogeneous Recurrence Relations of Order 2
with Constant Coefficients

We saw an example of a linear homogeneous recurrence of order 1, the
geometric progression with first term a and common ratio r (defined by a0 = a,
ak+1 = rak for k ≥ 0); its solution was ak = ark. If we just focus on the recurrence,
it is easy to see one solution, namely ak = rk; then it is not much more difficult to
notice that ak = crk is also a solution, for any constant c. This constant can now
be found if we use the initial condition a0 = a; we have cr0 = a, and therefore,
c = a, as expected. We can try to find a solution of the same type for a linear
homogeneous recurrence of order 2, say, defined by

ak+2 = pak+1 + qak (1)

Suppose this recurrence has a solution of the type ak = rk. We can assume r 6= 0;
the case r = 0 is trivial. Apparently, just any r 6= 0 would not work; we see that
if rk is a solution, the equality

rk+2 = prk+1 + qrk

must hold, and then upon dividing both sides by rk, we see that r must satisfy
the equation

r2 = pr + q. (2)

This equation is called the characteristic equation of the given recurrence (1).
Suppose it has two real roots r1 and r2 and r1 6= r2. Then both rk1 and rk2 are
solutions to the given recurrence. The next two observations tell us how to find
more solutions:

Observation 1: If {αk} and {βk} are solutions of the recurrence (1), then {αk+
βk} is also a solution.

Proof We have

αk+2 = pαk+1 + qαk

βk+2 = pβk+1 + qβk

Adding these two equalities,

αk+2 + βk+2 = p(αk+1 + βk+1) + q(αk + βk),

that is, {αk + βk} is a solution.

Observation 2: If {αk} is a solution of the recurrence (1), then {cαk} is also a
solution.

Proof Multiplying the equality αk+2 = pαk+1 + qαk by c, we see that {cαk} is a
solution.

From these two observations it follows that

C1r
k
1 + C2r

k
2 (3)
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is also a solution of the recurrence (1). We now observe that if the first two terms of
the sequence defined by (1) are given, then the sequence is completely determined.
This suggests that the values of the constants C1 and C2 in the general solution (3)
can be uniquely determined so that that the general solution (3) represents the so
defined sequence. If say, a0 and a1 are the first two terms of the sequence, then
we have a system for C1 and C2,

C1r
0
1 + C2r

0
2 = a0

C1r
1
1 + C2r

1
2 = a1

It can be shown that this system always has a unique solution for C1, C2.

Unfortunately, this is not the case when the roots of the characteristic
equation (2) are equal. For example, consider the sequence a0 = 0, a1 = 1,
an+2 = 2an+1 − an, n ≥ 0. The characteristic equation is r2 − 2r + 1 = 0,
or (r − 1)2 = 0, so that r1 = r2 = 1. If we continue as before, we will get
an = C1(1n) + C2(1n), that is, an = C for some C. On the other hand, we
can compute the first several terms, and see that the sequence is 0, 1, 2, 3, 4, . . ..
Clearly, there is something wrong. Alternatively, the system for the constants C1

and C2,

C110 + C210 = a0 = 0

C111 + C211 = a1 = 1,

does not have a solution.

As another example, consider a0 = 0, a1 = 1, an+2 = 4an+1 − 4an, n ≥ 0.
The characteristic equation is r2−4r+ 4 = 0, or (r−2)2 = 0, so that r1 = r2 = 2.
Again, if we continue as before, we get an = C1(2n) + C2(2n), and the system for
the constants C1 and C2 is

C120 + C220 = a0 = 0

C121 + C221 = a1 = 1,

which does not have a solution, while the sequence is completely determined from
the given information about it; the first terms being 0, 1, 4, 12, . . ..

The last two examples show that we need a different approach if the roots of the
characteristic equation are equal, say, r1 = r2 = s. Fortunately, the recurrence can
still be solved, but the general solution will have a different form. We can find this
form by observing, just as before, that sk is a solution to the given recurrence, but
then, another solution is ksk. Indeed, since s is the double root of the equation (2),
we can write

r2 − pr − q = (r − s)(r − s) = r2 − 2sr + s2,

so that p = 2s and q = −s2 (this also follows by Vietta’s formulas). The
recurrence (1) becomes

ak+2 − 2sak+1 + s2ak = 0.
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It is easy to see that ak = sk is a solution, and perhaps, just slightly more difficult
that ak = ksk is also a solution; it follows from

(k + 2)sk+2 − 2s(k + 1)sk+1 + s2ksk = 0.

Now, using Observations 1 and 2, we conclude that

C1s
k + C2ks

k (4)

is a solution in this case. Just like in the previous case, if a0 and a1 are the first
two terms of the sequence, then C1 and C2 can be uniquely determined from the
system

C1s
0 + C2(0)s0 = a0

C1s
1 + C2(1)s1 = a1

Note that in determining C1 and C2 we could have used any two consecutive terms
of the sequence instead of a0 and a1, no matter what the roots of the characteristic
equation (2) are.

The next example shows another way of solving a linear recurrence of order two, by
reducing it to something we know at this point, namely, how to solve a recurrence of
order one, or to recognize a geometric progression. It also show how the geometric
progressions rn1 and rn2 (where r1 and r2, r1 6= r2, are the roots of the characteristic
polynomial) show up as solutions, and why the general solution is a particular
linear combination of these two. It also shows where the coefficients of this linear
combination of rn1 and rn2 come from. In a sense, the next example shows a way
to remove the guesswork in the previous solution.

Example Solve the recurrence relation an+2− 5an+1 + 6an = 0, n ≥ 0, a0 = −4,
a1 = −7.

Solution Write the recurrence as

an+2 − 2an+1 − 3(an+1 − 2an) = 0,

and let bn = an+1 − 2an. Clearly, bn+1 = 3bn with b0 = a1 − 2a0 = 1, and
this defines a geometric progression with first term 1 and common ratio 3. Hence
bn = 3n, and we have

an+1 − 2an = 3n. (5)

Similarly, write the given relation as

an+2 − 3an+1 − 2(an+1 − 3an) = 0,

and let cn = an+1 − 3an. Then cn+1 = 2cn with c0 = a1 − 3a0 = 5, and this is
a geometric progression with first term 5 and common ratio 2. Hence cn = 5.2n,
and we have

an+1 − 3an = 5.2n (6)

Subtracting (6) from (5), we obtain

an = 3n − 5.2n.
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We can write a more general recurrence in the way we wrote the recurrence in the
preceding example in the forms (5) and (6), and solve it, as shown next.

Example Solve the recurrence relation an+2 + san+1 + tan = 0, n ≥ 0, if a0 and
a1 are given and s2 − 4t > 0.

Solution We can find a quadratic with roots p and q so that

−(p+ q) = s and pq = t;

that will be r2 + sr + t. The recurrence can then be written as

an+2 − (p+ q)an+1 + pqan = 0,

and then as
an+2 − pan+1 − q(an+1 − pan) = 0,

and
an+2 − qan+1 − p(an+1 − qan) = 0.

Now, letting bn = an+1 − pan, and cn = an+1 − qan, we find bn = qnb0 and
cn = pnc0, so that

an+1 − pan = qnb0

and
an+1 − qan = pnc0.

Subtracting the former from the latter, we get

(p− q)an = c0p
n − b0qn.

Note that the condition s2 − 4t > 0 guarantees p and q are distinct real numbers.
(This condition can be relaxed to s2 − 4t 6= 0 to allow p and q complex and
distinct.) Since b0 = a1 − pa0 and c0 = a1 − qa0, we obtain

an =
1

p− q
[(a1 − qa0)pn − (a1 − pa0)qn] .



8

Linear Recurrence Relations of Order k with Constant
Coefficients

Let k be a positive integer and Ci real, i = n − k, n − k + 1, ..., n, where
Cn 6= 0, Cn−k 6= 0 and n ≥ k. Then

Cnan + Cn−1an−1 + ...+ Cn−kan−k = f(n)

is a linear recurrence relation of order k with constant coefficients. Note
that the defining equality says that an can be expressed as a function of the
preceding k terms of the sequence.

If f(n) = 0 for every n ≥ k, then the relation is homogeneous; otherwise, it is
non-homogeneous.

We now focus on homogeneous relations, that is, relations of the form

Cnan + Cn−1an−1 + ...+ Cn−kan−k = 0, Cn 6= 0, Cn−k 6= 0, (1)

where Ci is real. This is a recurrence relation of order k. A sequence {an}∞n=0

which satisfies (1) for all n ≥ k is called a solution of the recurrence relation. It
can be shown that assigning arbitrary values to k consecutive terms determines a
unique solution, and that, for any such solution, an can be expressed explicitly as
a function of n.

The characteristic polynomial of the recurrence (1) is

P (r) = Cnr
k + Cn−1r

k−1 + ...+ Cn−k+1r + Cn−k.

The degree of P (r) is k. Consider the case in which all the roots of P (r) = 0 are
real, that is, there are roots r1, r2, ..., rl with respective multiplicities s1, s2, . . . , sl,
such that s1 + s2 + ...+ sl = k. Then the general term an of the sequence is given
by

an = A1r
n
1 +A2nr

n
1 + ...+As1n

s1−1rn1

+B1r
n
2 +B2nr

n
2 + ...+Bs2n

s2−1rn2

...

+M1r
n
l +M2nr

n
l + ...+Msln

sl−1rnl .

Example If the characteristics polynomial of a recurrence relation factors as

P (r) = (2r − 1)2(r − 4)3,

then

r = 1/2 is a root of multiplicity 2

and

r = 4 is a root of multiplicity 3.
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Hence the general term has the form

an = A1

(
1

2

)n
+A2n

(
1

2

)n
+B14n +B2n4n +B3n

24n. (2)

The coefficientsA1, A2, ..., As1 , B1, B2, ..., Bs2 , ..., M1,M2, ...,Msl , can be determined
once sufficient information about {an}∞n=0 is given. For example, if a0, a1, a2, a3, a4
are known, then the coefficients can be found from the equation (2) for n =
0, 1, 2, 3, 4.

Example Solve the recurrence relation an+2 − 5an+1 + 6an = 0, n ≥ 0, a0 = 2,
a1 = 5.

Solution The characteristic equation is

r2 − 5r + 6 = 0

with roots 2 and 3, so that

an = C12n + C23n.

Writing out the general form for n = 0 and n = 1 and using the conditions a0 = 2
and a1 = 5, we obtain the system

2 = a0 = C1 + C2

5 = a1 = 2C1 + 3C2

Solving the system gives C1 = C2 = 1. Therefore,

an = 2n + 3n.

Example Find an as a function of n, if a0 = a2 = 0, a1 = 9 and

an+3 − 3an+1 − 2an = 0.

Solution The characteristic equation is

r3 − 3r − 2 = 0
r3 − r − 2r − 2 = 0
r(r − 1)(r + 1)− 2(r + 1)
(r + 1)(r2 − r − 2) = 0
(r + 1)2(r − 2) = 0

Thus r = −1 is a root of multiplicity 2 and r = 2 is a root of multiplicity 1. Hence,
the general solution must have the form

an = A1(−1)n +A2n(−1)n +B2n.

Using the initial conditions a0 = a2 = 0 and a1 = 9, we obtain

0 = a0 = A1(−1)0 +A20(−1)0 +B20

9 = a1 = A1(−1)1 +A21(−1)1 +B21

0 = a2 = A1(−1)2 +A22(−1)2 +B22
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or,
0 = A1 +B
9 = −A1 −A2 + 2B
0 = A1 + 2A2 + 4B

Solving this system, we get A1 = −2, A2 = −3 and B = 2. Therefore, the solution
to the recurrence relation is

an = (−2)(−1)n + (−3)n(−1)n + 2 · 2n,

or,
an = (3n+ 2)(−1)n+1 + 2n+1.
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Transforming a Non-homogeneous Recurrence Relation
into a Homogeneous Relation of Higher Order

Example Solve the recurrence relation defined by an+1− 2an = 1 for n ≥ 1, and
a1 = 1.

Solution The defining equality is true for every n ≥ 1. Writing it out for n + 1
and n, we obtain

an+2 − 2an+1 = 1 = an+1 − 2an,

from which we get the recurrence

an+2 − 3an+1 + 2an = 0.

The characteristic equation is

r2 − 3r + 2 = 0

with roots r = 1 and r = 2. Hence the general form of the n-th term of the
sequence is

an = A1n +B2n.

We need (at least) two equations in order to determine A and B. We know that
a1 = 1, so by applying the defining equation, we obtain a2 − 2a1 = 1, so that
a2 − 2a(1) = 1, whence a2 = 3. Writing out the general form for n = 1 and n = 2
and using the initial conditions a1 = 1 and a2 = 3, we obtain the system

1 = a1 = A+ 2B
3 = a2 = A+ 4B

Solving this system gives A = −1 and B = 1. Therefore, the general term of the
sequence is

an = (−1)1n + (1)2n = 2n − 1.

Example Solve the recurrence relation an+1 − 2an = n, n ≥ 1, a1 = 1.

Solution The defining equality is true for every n ≥ 1. Writing it out for n + 1
and n, we obtain

an+2 − 2an+1 = n+ 1
an+1 − 2an = n

Subtracting the second equality from the first one, we obtain

an+2 − 3an+1 + 2an = 1.

We can now use the approach from the preceding example. Writing out the new
recurrence relation for n+ 1 and n, we obtain

an+3 − 3an+2 + 2an+1 = 1 = an+2 − 3an+1 + 2an,

which yields the homogeneous recurrence relation

an+3 − 4an+2 + 5an+1 − 2an = 0.
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The characteristic equation is

r3 − 4r2 + 5r − 2 = 0

or
(r − 1)2(r − 2) = 0,

with roots r = 1 of multiplicity 2 and r = 2 of multiplicity 1. Hence the general
form of the n-th term of the sequence is

an = A11n +A1n1n +B2n.

We need three equations in order to determine A1, A2 and B. We know that
a1 = 1, so by applying the defining equation, we obtain a2 = 3 and a3 = 8.
Writing out the general form for n = 1, 2, 3, we obtain the system

1 = a1 = A1 +A2 + 2B
3 = a2 = A1 + 2A2 + 4B
8 = a3 = A1 + 3A2 + 8B

Solving this system gives A1 = A2 = −1 and B = 3/2. Therefore, the general
term of the sequence is

an = (−1)1n + (−1)n1n +
3

2
2n = (3)2n−1 − n− 1.

Example Solve the recurrence relation xn+2 − 2xn+1 + xn = 2n, n ≥ 1, x1 = 2,
x2 = 0.

Solution Using the relation for n+ 1 and n, we obtain

xn+3 − 2xn+2 + xn+1 = 2n+1 = 2 · 2n = 2(xn+2 − 2xn+1 + xn).

This gives the homogeneous recurrence relation

xn+3 − 4xn+2 + 5xn+1 − 2xn = 0,

which happens to be the same as the one from the preceding example. Hence the
general form of the n-th term of the sequence is

xn = A11n +A1n1n +B2n.

We need three equations in order to determine A1, A2 and B. We know that x1 = 2
and x2 = 0, so by applying the defining equation, we obtain x3 = 0. Writing out
the general form for n = 1, 2, 3, we obtain the system

2 = x1 = A1 +A2 + 2B
0 = x2 = A1 + 2A2 + 4B
0 = x3 = A1 + 3A2 + 8B

Solving this system gives A1 = 4, A2 = −4 and B = 1. Therefore, the general
term of the sequence is

xn = (4)1n + (−4)n1n + (1)2n = 2n − 4n+ 4.
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The next recurrence frequently occurs in applications.

Example The Fibonacci sequence is the sequence defined by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 3. Express Fn as a function of n.

Solution The characteristic equation is

r2 − r − 1 = 0

with roots 1+
√
5

2 and 1−
√
5

2 , so that

Fn = C1

(
1 +
√

5

2

)n
+ C2

(
1−
√

5

2

)n
.

Writing out the general form for n = 0 and n = 1 and using the conditions F1 = 1
and F2 = 1, we obtain the system

1 = F1 = C1
1+
√
5

2 + C2
1−
√
5

2

1 = F2 = C1

(
1+
√
5

2

)2
+ C2

(
1−
√
5

2

)2
Solving this system gives C1 = 1√

5
and C2 = − 1√

5
. Therefore,

Fn =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
.

We now proceed with several application of recurrence relations in counting problems.
Our goal will be to find a recurrence relation that gives the solution to a counting
problem.

Example Let an be the number of binary n-digit numbers with no consecutive
1’s. Find a recurrence relation for the numbers an.

Solution Let an be the number of binary n-digit numbers with no consecutive
1’s. We start by computing some values of an for small n. There might be some
benefits of such an exercise: First, we might need the first several terms of the
sequence, and second, we might get some insights on how to solve the problem. If
n = 1, we have two such numbers, 0 and 1, so that, a1 = 2. If n = 2, we have three
such numbers, 00, 01 and 10, so that, a2 = 3. If n = 3, we have five such numbers,
000, 001, 010, 100 and 101, so that, a3 = 5. In the process, you might nave noticed
that prefixing any valid 2-digit number with a zero produces a valid number with
three digits. Also, prefixing any 1-digit valid number with 10 produces a valid
number with three digits. Moreover, these two operations produce all of the valid
3-digit numbers. This observation works in general.

Let A be the set of all binary n-digit numbers with no consecutive 1’s and let us
assume that n ≥ 3. Let B be the subset of those starting with 0 and C the subset
of those starting with 1. Then an = |A| = |B|+ |C|. (Here |X| denotes the number
of elements of the set X.)
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If b ∈ B, then b starts with 0 and the remaining n− 1 digits of b can form any of
the an−1 binary (n− 1)-digit numbers with no consecutive 1’s. Hence

|B| = an−1.

If c ∈ C, then c starts with 1, so that, the next digit can only be 0, but then the
remaining n−2 digits can form any of the an−2 binary (n−2)-digit numbers with
no consecutive 1’s. Hence

|C| = an−2.

Thus,
an = |A| = |B|+ |C| = an−1 + an−2

with a1 = 2 and a2 = 3. (Clearly, an = Fn+2, where Fn is the n-th Fibonacci
number.)

Example Find a recurrence relation for the number of ways to fill a row of n
motorcycle parking spaces with cars and motorcycles if each motorcycle requires
one space and each car requires two spaces.

Solution Let an be the required number. We start by writing out the values
of an for several small values of n with the hope that we can observe how these
numbers relate to each other. We represent the possible arrangements by words
consisting of M’s and C’s, keeping in mind that M and C require one and two
spaces, correspondingly.

n = 1 a1 = 1 M
n = 2 a2 = 2 MM C
n = 3 a3 = 3 MMM MC CM
n = 4 a4 = 5 M|MMM M|MC M|CM

C|MM C|C

We can now observe (look at n = 2, 3, 4, for example) the following. If the first
vehicle in the row is a motorcycle, then there are an−1 ways to place the remaining
vehicles. If the first vehicle is a car, then there are an−2 ways to place the remaining
vehicles. This gives the recurrence

an = an−1 + an−2

for n ≥ 3, which, together with the initial values a1 = 1 and a2 = 2, completely
determines the number an of ways to park vehicles as required. (This is another
variation of the Fibonacci sequence: an = Fn+1, where Fn is the n-th Fibonacci
number.)

Example Let an be the number of ternary n-digit numbers (a ternary number is
a number composed of the digits 0, 1 and 2 only) with no 0 and 1 adjacent. Find
a recurrence relation for the numbers an.

Solution First we note that a1 = 3 (the 1-digit numbers that meet the condition
are 0, 1 and 2) and a2 = 7, because the 2-digit numbers that meet the condition
are
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20 00 11
21 02 12
22

Let t = d1d2...dn be a ternary n-digit number that meets the condition (here
d1, d2, ..., dn are the digits of t). If d1 = 2, then d2, ..., dn could form any of the
an−1 ternary (n− 1)-digit numbers with no 0 and 1 adjacent. Note that, if d1 = 0
or d1 = 1, then the argument from the preceding example does not work: Suppose
d1 = 0. Then d2 can only be 2 or 0. If d2 = 2, then the remaining n− 2 digits can
form any of the an−2 valid (n−2)-digit numbers. However, if d2 = 0, we encounter
new branching: d3 can either be 2 or 0 and the procedure does not close.

So, let us do something else. Let Ai be the set of ternary n-digit numbers with
no adjacent 0 and 1 so that d1 = i, i = 0, 1, 2. If A is the set of all ternary n-digit
numbers with no adjacent 0 and 1, then

|A| = |A0|+ |A1|+ |A2|.

Note also that |A0| = |A1|, because of the symmetry. Let |A0| = |A1| = bn. Then
b1 = 1 and b2 = 2. We can find a system of recurrence relations for the sequences
{an} and {bn}. We have already established that |A2| = an−1; also, |A| = an, so
that

an = |A| = |A0|+ |A1|+ |A2| = 2bn + an−1.

On the other hand, if, say, d1 = 0, then d2 = 0 or d2 = 2. There are bn n-digit
numbers starting with 0, bn−1 n-digit numbers starting with 00 and an−2 n-digit
numbers starting with 02, so that

bn = bn−1 + an−2.

Now we have to solve the system{
an = 2bn + an−1
bn = bn−1 + an−2

From the first equation, 2bn = an−an−1, so that 2bn−1 = an−1−an−2. Substitute
these in 2bn = 2bn−1 + 2an−2 (which is just the second equation multiplied by 2)
to obtain

an − an−1 = (an−1 − an−2) + 2an−2,

which simplifies to
an − 2an−1 − an−2 = 0.

This recurrence, together with the conditions a1 = 3 and a2 = 7, completely
determines the answer an to our counting problem.
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Exercises

(Solutions and answers are given at the end of this text, starting on page 52)

1. Choose the correct answer: The recurrence relation
5an+4 + 4an+2 + 3an = 3 is:

(1) homogeneous of order 4

(2) non-homogeneous of order 3

(3) linear of order 5

(4) non-homogeneous of order 4

(5) linear of order 3

(6) non-homogeneous of order 2

2. Solve the recurrence relation 2an+2−5an+1+2an = 0, n ≥ 0, a0 = 2, a1 = 5
2 .

3. Solve the recurrence relation an+2 = 4an+1 − 4an, n ≥ 1, a1 = 16, a2 = 52.

4. Solve the recurrence relation an − 6an−1 + 9an−2 = 0 for n ≥ 2, a0 = −2,
a1 = 6.

5. Solve the recurrence relation an + an−1 − 6an−2 = 0 for n ≥ 2, a0 = 7,
a1 = 4.

6. Solve the recurrence relation an + 6an−1 − 7an−2 = 0 for n ≥ 2, a0 = 1,
a1 = 2.

7. Solve the recurrence relation an+3 − 4an+2 + 5an+1 − 2an = 0 for n ≥ 0,
a0 = 4, a1 = 7, a2 = 17.

8. Solve the recurrence relation an − 5an−1 + 8an−2 − 4an−3 = 0 for n ≥ 3,
a0 = 0, a1 = 2, a2 = 4.

9. Solve the recurrence relation an+2 − 2an+1 + an = 2, n ≥ 0, a0 = 3, a1 = 6.

10. Solve the recurrence relation an − 3an−1 = 5n−1, n ≥ 1, a0 = 1.

11. Solve the recurrence relation an+1 = 5an + 16, n ≥ 1, a1 = 1.

12. (∗) Solve the recurrence dn = (n− 1)(dn−1 + dn−2), n ≥ 2, d0 = 1, d1 = 0.

13. Solve the following system of recurrence relations

an+1 = −2an − 4bn

bn+1 = 4an + 6bn

where n ≥ 0, a0 = 1 and b0 = 0.
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14. Solve the system of recurrence relations

an+1 = an + 3bn

bn+1 = an + bn

where n ≥ 1, a1 = 1 and b1 = 1.

15. Solve the system of recurrence relations

an+1 = 2an + 2bn

bn+1 = an + 2bn

where n ≥ 1, a1 = 2 and b1 = 1.

16. Let an be the number of strings b1b2...bk, where bi ∈ {1, 2} and

k∑
i=1

bi = n.

(For example, a4 = 5, because there are 5 strings that meet the condition:
1111, 112, 121, 211 and 22.) Show that an = an−1 + an−2, n ≥ 3, a1 = 1,
a2 = 2.

17. Let Sn denote the number of n-digit binary numbers that do not contain
three consecutive 1’s. Develop a recurrence relation and initial conditions
that uniquely define the sequence {Sn}∞n=1. (Do not solve the recurrence.)

18. Let an be the number of n-digit ternary numbers that have no double 0.
(A ternary number is one formed by the digits 0, 1 and 2 only.) Find a
recurrence relation and initial conditions that uniquely define the sequence
{an}∞n=1. (Do not solve the recurrence.)

19. (∗) Let an denote the number of n-digit ternary numbers that have no 1
immediately to the right of any 0. Develop a recurrence relation and initial
conditions that uniquely define the sequence {an}∞n=1. (Do not solve the
recurrence.)

20. (∗) Find a recurrence plus initial conditions for the number an of ternary
n-digit numbers with neither 0’s nor 1’s adjacent.

21. (∗) For n ≥ 1, let an be the number of ways to write n as an ordered sum of
odd positive integers. (For example, a4 = 3, because 4 = 3 + 1 = 1 + 3 =
1 + 1 + 1 + 1, and there are no other ways to represent 4 as a sum of odd
positive integers.) Find a recurrence relation for an.

22. (∗) Let xn be the number of words of length n formed by the letters a, b, c
with an even number of a’s. Express xn as a function of n.
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We now continue with less standard problems, grouped by some common
idea. This common idea is stated in the title of each section.

Reverse Engineering

In these problems we do not explicitly have a recurrence relation. What we
see might look like the solution of a recurrence relation, so we “reverse engineer” to
the original recurrence and use it to argue toward a proof of the problem statement.

1. Show that bn = 19.8n + 17 is a composite number for any positive integer n.

Solution We can write bn = 19.8n + 17.1n. Clearly, {bn} is a sequence,
which, if defined recursively, would have a characteristic equation with roots
1 and 8, that is,

(q − 1)(q − 8) = q2 − 9q + 8 = 0.

Therefore, its recurrence relation is

bn+2 = 9bn+1 − 8bn.

Now, b0 = 36 is divisible by 3, so that b2 = 9b1 − 8b0 is also divisible by 3.
By an easy induction, b2k is divisible by 3 for k = 0, 1, 2, . . ., and thus b2k is
a composite number.

Now, consider the sequence ck = b2k+1 = 19.82k+1 + 17.12k+1. It can be
written as

ck = b2k+1 = 19(8)64k + 17.1k.

The characteristic equation is (q − 1)(q − 64) = 0, or q2 = 65q − 64. Hence
a recurrence relation for the sequence {ck} is

ck+2 = 65ck+1 − 64ck.

Since c0 = b1 = 169 and 65 are divisible by 13, then c2 is divisible by 13. By
induction, c2k = b4k+1 is divisible by 13, and so b4k+1 is composite. Also,
c1 = b3 = 9745 and 65 are divisible by 5, so c3 = b7 is divisible by 5. By
induction, c2k+1 = b4k+3 is divisible by 5. Hence b4k+3 is composite. Since

{b2k}∞1 ∪ {b4k+1}∞1 ∪ {b4k+3}∞1 = {bn}∞1 ,

the proof is complete.

2. Let n be a positive integer. Show that the fractional part of the decimal
expansion of (5 +

√
26)n starts with n identical digits.

Solution Let an = (5+
√

26)n. Consider also bn = (5−
√

26)n and note that
xn = an + bn is an integer which is very close to an, because |5−

√
26| < 1

and (5 −
√

26)n → 0 as n → ∞. The fact that xn is an integer follows
from the Binomial Formula, or from the following argument: Note that the
characteristic equation of

xn = (5 +
√

26)n + (5−
√

26)n
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has roots 5 +
√

26 and 5−
√

26, that is, it has the form

[q − (5 +
√

26)][q − (5−
√

26)] = 0,

or
q2 − 10q − 1 = 0,

which means that a recurrence relation for {xn} is

xn+2 = 10xn+1 + xn.

Since x0 = 2 and x1 = 10, then, inductively, xn is an integer for all n ≥ 0.
Note also that

bn = (5−
√

26)n =

(
−1

5 +
√

26

)n
.

Notice that an − xn = −bn is positive if n is odd and negative if n is even,
and its absolute value is less than

[
1/(5 +

√
25)
]n

= 10−n. Since as noted
above xn is a positive integer, the fractional part of an begins with n 0s if n
is odd, and with n 9s if n is even.



20

Different Representations

In this selection of problems finding a new recurrence relation which defines
the given sequence helps us prove the desired statement.

1. The sequence {an} is defined by a1 = a2 = 1 and

an+1 =
a2n + 2

an−1
.

Show that an is an integer for every n ≥ 2.

Solution We start with a short experiment/observation. Writing the first
several terms of the sequence let us see that they differ approximately by a
factor of 4; more precisely:

a1 = 1

a2 = 1

a3 = 3 = 4(1)− 1 = 4a2 − a1
a4 = 11 = 4(3)− 1 = 4a3 − a2
a5 = 41 = 4(11)− 3 = 4a4 − a3
a6 = 153 = 4(41)− 11 = 4a5 − a4
. . .

Based on this observation, we now have a hypothesis: The sequence {an}
can also be defined by a1 = a2 = 1 and

an+1 = 4an − an−1 for n ≥ 2.

Indeed, if {an} is the newly defined sequence, then

an+1an−1 − a2n = (4an − an−1)an−1 − (4an−1 − an−2)an

= anan−2 − a2n−1.

But then, inductively,

an+1an−1 − a2n = anan−2 − a2n−1 = · · · = a3a1 − a22 = 2.

Thus an+1an−1 − a2n = 2, or

an+1 =
a2n + 2

an−1
,

which shows that the newly defined sequence (which is linear of order two)
is the same as the one given in the condition. Now the claim follows
immediately: Since all of the terms of the newly defined sequence are integers,
then so are the terms of the sequence defined in our problem.
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2. Let {an} be the sequence defined by a0 = 0 and

an+1 = 5an +
√

24a2n + 1. (3)

Show that an is an integer for every n ≥ 0.

Solution We have
(an+1 − 5an)2 = 24a2n + 1

or
a2n − 10an+1an + (a2n+1 − 1) = 0.

Solving this quadratic for an, we get

an = 5an+1 ±
√

24a2n+1 + 1. (4)

From (3) and (4) we have

an+2 − 5an+1 =
√

24a2n+1 + 1 = ± (5an+1 − an) .

By an easy induction it follows that all terms are integers.

3. The sequence {an} is defined by 3ak = ak−1 + ak+1. Show that

5a2n + 4(a20 + a21 − 3a0a1)

is a square of an integer.

Solution We have ak−1 = 3ak − ak+1 and ak+1 = 3ak − ak−1. Then

a20 + a21 − 3a0a1 = a21 + a0(a0 − 3a1)

= a21 + (3a1 − a2)(−a2)

= a21 + a22 − 3a1a2

= a22 + a1(a1 − 3a2)

= a22 + (3a2 − a3)(−a3)

= a22 + a23 − 3a2a3

= . . . (inductively)

= a2n−1 + a2n − 3an−1an.

Thus a20 + a21 − 3a0a1 = a2n−1 + a2n − 3an−1an and then

5a2n + 4(a20 + a21 − 3a0a1)

= 5a2n + 4(a2n−1 + a2n − 3an−1an)

= (3an − 2an−1)2,

which completes the proof.
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Fibonacci Sequence Problems

Earlier we introduced the Fibonacci sequence; we will denote it by {an}
here; it is defined by a1 = a2 = 1 and an = an−1 + an−2 for n ≥ 3. The general
term of the Fibonacci sequence was found to be

an =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
.

In this section we look at some more problems and facts about this sequence. Note
that the general term can be written as

an =
1√
5

(αn − βn) (5)

where α = 1+
√
5

2 and β = 1−
√
5

2 are the roots of the polynomial q2 − q − 1. Note
that α and β are also roots of the polynomial q3 − 2q − 1, because q3 − 2q − 1 =
(q+ 1)(q2− q− 1). Thus α3− 1 = 2α and β3− 1 = 2β. We can also establish such
equalities as follows: Multiply both sides of α2 = α+1 by α to obtain α3 = α2 +α
and then

α3 − 1 = α2 + α− 1 = α2 − α− 1︸ ︷︷ ︸
=0

+2α = 2α.

1. Show that
∑n
i=1 a3i = 1

2 (a3n+2 − 1).

Solution 1 We will use the representation (5), the formulas α3 − 1 = 2α
and β3 − 1 = 2β (that we just established above), and the formula for the
sum of a geometric progression:

n∑
i=1

xi = x+ x2 + · · ·+ xn =
xn+1 − x
x− 1

.
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We now have

n∑
i=1

a3i = a3 + a6 + · · ·+ a3n

=
α3 − β3

√
5

+
α6 − β6

√
5

+ · · ·+ α3n − β3n

√
5

=
1√
5

(
n∑
i=1

α3i −
n∑
i=1

β3i

)

=
1√
5

α3n+3 − α3

α3 − 1︸ ︷︷ ︸
=2α

− β3n+3 − β3

β3 − 1︸ ︷︷ ︸
=2β


=

1√
5

(
α3n+3 − α3

2α
− β3n+3 − β3

2β

)
=

1

2

(
α3n+2 − β3n+2

√
5

− α2 − β2

√
5

)
=

1

2
(a3n+2 − a2) =

1

2
(a3n+2 − 1),

as claimed.

Solution 2 (Suggested by A. Lachlan) Let Sn denote
∑n
i=1 ai. Note that

a3i = a3i−1 + a3i−2 and so

2

n∑
i=1

a3i =

n∑
i=1

(a3i + a3i−1 + a3i−2) =

3n∑
i=1

ai = S3n.

This means that what we need to show is that S3n − a3n+2 = −1. Next
observe that

(S3n+3 − a3n+5)− (S3n − a3n+2) = (S3n+3 − S3n) + a3n+2 − a3n+5

= a3n+1 + 2a3n+2 + a3n+3 − a3n+5

(6)

If we add together the following three instances of the recurrence relation

a3n+5 = a3n+4 + a3n+3, a3n+4 = a3n+3 + a3n+2, a3n+3 = a3n+2 + a3n+1,

and rearrange, we get

a3n+5 − a3n+3 − 2a3n+2 − a3n+1 = 0. (7)

From (6) and (7) it follows that

S3n+3 − a3n+5 = S3n − a3n+2.

Since S3 − a5 = −1, by induction it follows that S3n − a3n+2 = −1 for all n,
which completes the proof.
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2. Show that

(a)

n∑
i=1

ai = an+2 − 1 (b)

n∑
i=1

a2i−1 = a2n (c)

n∑
i=1

a2i = anan+1

Solution (a) Write

an = an+2 − an+1

an−1 = an+1 − an
... = ...

a2 = a4 − a3
a1 = a3 − a2.

Add all these to obtain

n∑
i=1

ai = an+2 − a2 = an+2 − 1.

(b) Write

a2n−1 = a2n − a2n−2
a2n−3 = a2n−2 − a2n−4

... = ...

a3 = a4 − a2
a1 = a2.

Add all these to obtain
n∑
i=1

a2i−1 = a2n.

(c) We have
akak+1 − ak−1ak = ak(ak+1 − ak−1) = a2k.

Now, write

a2n = anan+1 − an−1an
a2n−1 = an−1an − an−2an−1
... = ...

a23 = a3a4 − a2a3
a22 = a2a3 − a1a2
a21 = a1a2.

Add all these to obtain
n∑
i=1

a2i = anan+1.
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3. Show that

(a) an+m = an−1am + anam+1,

(b) an divides a2n.

Solution (a) Induction on m:

If m = 1, then the equality is an+1 = an−1a1 + ana2 or an+1 = an + an−1,
which is true.

If m = 2, then the equality is an+2 = an−1a2 + ana3,

or an+2 = an−1 + 2an,

or an+2 = an−1 + an︸ ︷︷ ︸
=an+1

+an,

or an+2 = an+1 + an,

which is true.

Inductive step: We show that if the claim is true for m = k and m = k + 1,
that is, if

an+k = an−1ak + anak+1, (8)

an+k+1 = an−1ak+1 + anak+2, (9)

then the claim is also true for m = k + 2, that is,

an+k+2 = an−1ak+2 + anak+3. (10)

Using the fact that an+k, an+k+1 and an+k+2 are consecutive terms of the
Fibonacci sequence, and applying (8) and (9), we get

an+k+2 = an+k+1 + an+k

= (an−1ak+1 + anak+2) + (an−1ak + anak+1)

= an−1(ak+1 + ak) + an(ak+2 + ak+1)

= an−1ak+2 + anak+3,

so that (10) holds. Therefore, the claim is true for all m.

(b) This part follows from part (a): Let m = n. Then

a2n = an−1an + anan+1

= an(an−1 + an+1),

which shows that an divides a2n.



26

In the next sections we will need some results about the limit of a sequence;
these are summarized in what follows.

THEOREM If r is a real number such that |r| < 1, then

lim
n→∞

rn = 0.

Using the preceding result and the formula for sum of geometric progression
(example on page 1) we obtain the following.

THEOREM (Sum of Infinite Geometric Progression) If Sn is the sum of the
first n+ 1 terms of the geometric progression {ark}∞k=0 with |r| < 1, then

lim
n→∞

Sn =
a

1− r
.

This can also be written as

a+ ar + ar2 + · · · = a

1− r
, if |r| < 1.

THEOREM If limn→∞ |an| = 0, then limn→∞ an = 0 as well.

THEOREM (The Squeeze Theorem) If an ≤ bn ≤ cn for all n ≥ k, where k is
some integer, and

lim
n→∞

an = lim
n→∞

cn = L,

then limn→∞ bn = L as well.

Definition The sequence {an} is increasing if there exists k such that an ≤ an+1

for all n ≥ k, that is, if
ak ≤ ak+1 ≤ ak+2 ≤ · · ·

If there exists k such that an ≥ an+1 for all n ≥ k, then the sequence is decreasing.

Definition A sequence {an} is bounded above if there is a number M such
that an ≤ M for all n ≥ 1. A sequence {an} is bounded below if there is a
number m such that an ≥ m for all n ≥ 1.

THEOREM If a sequence is increasing and bounded above, then it is convergent.

THEOREM If a sequence is decreasing and bounded below, then it is convergent.

THEOREM If {an} and {bn} are two sequences such that an ≤ bn for all n ≥ k,
where k is some integer, then

lim
n→∞

an ≤ lim
n→∞

bn.
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Recurrence Relations and Limits

1. The sequence {an} is defined by an = an−1 + 1
n2+n , a1 = 1

2 . Find out if the
sequence is convergent and if so, find its limit.

Solution Writing the defining equality as ak = ak−1 + 1
k(k+1) , then writing

it for k = 1, 2, . . . , n and adding the resulting n equalities, we obtain

an =
1

1.2
+

1

2.3
+ · · ·+ 1

n(n+ 1)
.

We can now apply an approach, known as telescoping, to finish the solution.
Using the identity 1

k(k+1) = 1
k −

1
k+1 , we can rewrite the expression for an as

an =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
,

and after cancellations, we get an = 1− 1
n . It is now clear that

lim
n→∞

an = 1.

Note that assuming the sequence has a limit, and taking limit on both sides
of the defining equality an = an−1 + 1

n2+n does not give us any information
about the value of this limit.

2. The sequence {an} is defined by an = n3−1
n3+1 an−1, a1 = 1. Find out if the

sequence is convergent and if so, find its limit.

Solution We will apply the idea of telescoping again, but we will need an
extra observation:

ak =
k3 − 1

k3 + 1
ak−1 =

(k − 1)(k2 + k + 1)

(k + 1)(k2 − k + 1)
ak−1

=
(k − 1)(k2 + k + 1)

(k + 1)[(k − 1)2 + (k − 1) + 1]
ak−1.

Writing this representation of ak for k = 2, 3, . . . , n, then multiplying the
resulting n − 1 equalities and simplifying, based on the above observation,
we obtain

an =
1.7

3.3
· 2.13

4.7
· 3.21

5.13
· 4.34

6.21
· · · (n− 1)(n2 + n+ 1)

(n+ 1)[(n− 1)2 + (n− 1) + 1]
a1

=
2

3
· n

2 + n+ 1

n(n+ 1)
.

Now, it is easy to see that limn→∞ an = 2
3 .
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3. Let an =

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n times

. Show that the sequence {an} is convergent

and find its limit.

Solution We use the fact that a bounded above and increasing sequence has
a limit. The sequence {an} can be defined by a1 =

√
2 and an+1 =

√
2 + an

for n ≥ 1. The bounded above property can be proved by induction: a1 =√
2 < 2, and then, if an < 2, then

an+1 =
√

2 + an <
√

2 + 2 = 2.

To show that {an} is increasing, we write

a2n+1 = 2 + an

a2n = 2 + an−1

Subtracting the second equality from the first one, we get

(an+1 − an)(an+1 + an) = an − an−1 (11)

Now, an+1 + an > 0, because an > 0 for all n ≥ 1. Since

a2 − a1 =

√
2 +
√

2−
√

2 > 0,

induction on n (using (11)) shows an+1 − an > 0 for all n ≥ 1. Hence the
sequence {an} is increasing. We have already shown {an} is bounded above,
so that {an} is convergent, and therefore, it must have a limit, say,

lim
n→∞

an = l.

Taking limits on both sides of

a2n+1 = 2 + an

we get
l2 = 2 + l,

which gives l = −1 or l = 2. Clearly, l = −1 does not work (because an > 0
for all n ≥ 1), so that we must have

lim
n→∞

an = 2.

4. Show that the sequence {an} defined by a1 = 2 and

an+1 = 4− 3

an

is convergent and find its limit.
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Solution We start by a short experiment, just to get some feeling about
how the sequence behaves: a1 = 2, a2 = 2.5, a3 = 2.8, etc.; computing
several more terms will not hurt. Based on this experiment we can hypothesize
that

2 ≤ an < an+1 < 3 (n ≥ 1). (12)

Let us try to prove it.

Consider the function 4 − 3
x on the interval [2, 3]. The function is strictly

increasing, because 3
x decreases as x increases for x > 0.

At the endpoints, the function values are

4− 3

2
= 2.5 and 4− 3

3
= 3.

Thus the range of 4− 3
x on [2, 3) is a subset of [2, 3). Since a1 is in [2, 3), it

follows by induction that 2 ≤ an < 3 for all n ≥ 1.

Since a1 < a2 and the function 4 − 3
x is increasing, it follows by induction

that an < an+1 for all n ≥ 1. This proves (12). Since {an} is bounded above
and increasing, it has a limit l, say,

lim
n→∞

an = l.

Taking limits on both sides of the defining relation an+1 = 4− 3
an

, we get

l = 4− 3

l
,

which gives l = 1 or l = 3. Since {an} is increasing and an > 1, the limit of
an cannot be 1. Consequently, lim an = 3.

5. Let the sequence {xn} be defined by x1 = 5 and xn+1 = x2n − 2 for n ≥ 1.
Find

lim
n→∞

xn+1

x1x2 . . . xn
.

Solution We will start with a different representation; we have

x2n+1 = (x2n − 2)2 = x4n − 4x2n + 4,

so that

x2n+1 − 4 = x2n(x2n − 4),

and we can write

x2n+1 − 4 = x2n(x2n − 4)

x2n − 4 = x2n−1(x2n−1 − 4)

. . . = . . .

x22 − 4 = x21(x21 − 4)
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Multiplying all these equalities, we get

x2n+1 − 4 = x2nx
2
n−1 . . . x

2
1(x21 − 4),

or

x2n+1 − 4 = 21(x1x2 . . . xn)2 (13)

Let

An =

(
xn+1

x1x2 . . . xn

)2

.

Using (13), we get

An = 21 +
4

(x1x2 . . . xn)2
(14)

Now, note that xn > 2. (This follows by induction: x1 = 5 > 2, and if
xn > 2, then xn+1 = x2n − 2 > 22 − 2 = 2.) Then, from (14),

21 < An = 21 +
4

(x1x2 . . . xn)2
< 21 +

4

2n
.

By the Squeeze Theorem,

lim
n→∞

An = 21.

By the continuity of the function
√
x,

lim
n→∞

√
An =

√
lim
n→∞

An =
√

21,

and therefore,

lim
n→∞

xn+1

x1x2 . . . xn
=
√

21.

6. The sequence {an} is defined by a1 = a2 = 1 and

an+1 = an +
1

n(n+ 1)
an−1 for n ≥ 2.

Show that the sequence is convergent.

Solution Clearly, an > 0, and an+1 ≥ an for n ≥ 1, so the sequence is
increasing. We will show it is also bounded above; in particular, we will
show by induction that an <

5
3 for n ≥ 1. We have a3 = 7

6 , so the claim
is true for n = 1, 2, 3. Assuming the claim is true for n = 1, 2, . . . , k, we
want to show it is also true for n = k + 1. Writing the defining equality for
n = 2, 3, . . . k and adding the resulting k − 1 equalities, we obtain

ak+1 =
ak−1

k(k + 1)
+

ak−2
(k − 1)k

+ · · ·+ a2
3(4)

+
a1

2(3)
+ a2.
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Let k ≥ 3. Using the induction assumption, we obtain

ak+1 <
5

3

[
1

k(k + 1)
+

1

(k − 1)k
+ · · ·+ 1

4(5)

]
+

1

3(4)
+

1

2(3)
+ 1

=
5

3

[(
1

k
− 1

k + 1

)
+

(
1

k − 1
− 1

k

)
+ · · ·+

(
1

4
− 1

5

)]
+

5

4

=
5

3

[
1

4
− 1

k + 1

]
+

5

4
=

5

3
· (k − 3)

4(k + 1)
+

5

4

=
5

4

[
k − 3

3(k + 1)
+ 1

]
<

5

4

[
k + 1

3(k + 1)
+ 1

]
=

5

3
.

This completes the induction. Thus the sequence is increasing and bounded
above, and therefore convergent.

7. The sequence {an} is defined by ak = 2k−1
2k ak−1, a1 = 1

2 . Find out if the
sequence is convergent and if so, find its limit.

Solution Writing the defining equality for k = 1, 2, ...n and multiplying the
results, we get

an =
1

2
· 3

4
· · · 2n− 1

2n
.

None of the previous approaches seems to work here, but we can still apply
the Squeeze Theorem; we just need to consider a2n instead of an, and apply
the observation

n(n+ 2) = n2 + 2n < (n+ 1)2.

We have

a2n =
12

22
· 32

42
· 52

62
· · · (2n− 1)2

(2n)2

=
1.(1.3)(3.5)(5.7) . . . [(2n− 3)(2n− 1)](2n− 1)

22.42.62 . . . (2n− 2)2.(2n)2

<
1.22.42.62 . . . (2n− 2)2(2n− 1)

22.42.62 . . . (2n− 2)2.(2n)2
=

2n− 1

4n2
<

1

2n
,

and therefore, 0 < an <
√

1
2n . Since limn→∞ 0 = 0 = limn→∞

√
1
2n , it

follows that limn→∞ an = 0 as well.

Readers familiar with series might appreciate the following alternative solution
suggested by the editor A. Lachlan:

an =
1

2
· 1(

1 + 1
3

) (
1 + 1

5

)
+ . . .+

(
1 + 1

2n−1

)
<

1

2
· 1

1 + 1
3 + 1

5 + . . .+ 1
2n−1

<
1

1 + 1
2 + 1

3 + 1
4 . . .+

1
n

Since the harmonic series diverges, limn→∞ an = 0.
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Systems of Recurrence Relations and Limits

We have already solved some systems of linear recurrence relations, so this
knowledge might come handy; we will also look at some alternative approaches in
the case when limits of sequences are involved.

1. Given the system of recurrence relations

an+1 = an + 3bn

bn+1 = an + bn

where n ≥ 1, and a1 = b1 = 1, show that the sequence
{
an
bn

}
is convergent

and find its limit.

Solution This system was already suggested as an exercise (on page 17;
the answer is on page 56). We will give a brief solution here anyway.

From the second equation, an = bn+1 − bn, so that an+1 = bn+2 − bn+1.
Substitute these into the first equation to obtain

bn+2 − bn+1 = bn+1 − bn + 3bn,

that is,
bn+2 − 2bn+1 − 2bn = 0.

Similarly,
an+2 − 2an+1 − 2an = 0.

We can now determine a2 = 4 and b2 = 2. The characteristic equation for
the sequence {an} is r2 − 2r − 2 = 0 with roots 1 ±

√
3 (it is the same for

the sequence {bn}). Thus

an = C1(1 +
√

3)n + C2(1−
√

3)n.

We can now determine the coefficients C1 and C2 from the system

1 = a1 = C1(1 +
√

3) + C2(1−
√

3)

4 = a2 = C1(1 +
√

3)2 + C2(1−
√

3)2

Solving for C1 and C2 gives C1 = C2 = 1
2 . Hence

an =
1

2

[
(1 +

√
3)n + (1−

√
3)n
]
.

Similarly,

bn =
1

2
√

3

[
(1 +

√
3)n − (1−

√
3)n
]
.

Now, let xn = (1 +
√

3)n and yn = (1−
√

3)n. Then

an
bn

=
√

3
xn + yn
xn − yn

=
√

3
1 + yn

xn

1− yn
xn

.
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But

lim
n→∞

yn
xn

= lim
n→∞

(
1−
√

3

1 +
√

3

)n
= 0,

because
∣∣∣ 1−√3
1+
√
3

∣∣∣ < 1. Therefore,

lim
n→∞

an
bn

=
√

3
1 + 0

1− 0
=
√

3.

2. Let an and bn be the unique integers such that (2 +
√

2)n = an + bn
√

2 (an
and bn are unique, because

√
2 is irrational). Does limn→∞

an
bn

exist? If so,
find it.

Solution We note that a1 = 2 and b1 = 1. Also,

an+1 + bn+1

√
2 = (2 +

√
2)n+1

= (2 +
√

2)n(2 +
√

2)

= (an + bn
√

2)(2 +
√

2)

Then
an+1 + bn+1

√
2 = 2an + 2bn + an

√
2 + 2bn

√
2,

or
(an+1 − 2an − 2bn) + (bn+1 − 2bn − an)

√
2 = 0.

This can only happen if

an+1 − 2an − 2bn = 0
bn+1 − 2bn − an = 0,

which reduces the given problem to a problem similar to the preceding one
(see also Exercise 17 on page 17), so we can solve the system, express the
ratio an

bn
as a function of n and find its limit. Rather than continuing with

the details, we will leave these to the reader, and suggest alternative solution:
Note that the Binomial Formula shows that

an + bn
√

2 = (2 +
√

2)n

implies
an − bn

√
2 = (2−

√
2)n

Solving this system for an and bn gives

an =
1

2

[
(2 +

√
2)n + (2−

√
2)n
]

bn =
1

2
√

2

[
(2 +

√
2)n − (2−

√
2)n
]

Now continue as in the preceding question.
Answer:

lim
n→∞

an
bn

=
√

2.
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Look at the Limit First

In some problems of finding a limit of a sequence defined recursively we
might start by assuming the limit exists and find its possible value, and then using
this information prove that the sequence is actually convergent, thus justifying our
computation of the limit. (Computing a possible value of the limit would not be
useful if the sequence is not convergent...) Looking at the possible value of the
limit might be useful even if the problem is not to find the limit. We start by
taking a second look at the problem from the previous section

1. Given the system

an+1 = an + 3bn

bn+1 = an + bn

where n ≥ 1, and a1 = b1 = 1, show that the sequence
{
an
bn

}
is convergent

and find its limit.

Solution Let xn = an
bn

. Then

xn+1 =
an+1

bn+1
=
an + 3bn
an + bn

=
an
bn

+ 3
an
bn

+ 1
=
xn + 3

xn + 1
.

Now, note that an > 0 and bn > 0, so that xn > 0 for all n ≥ 1. In fact,
x1 = 1, and

xn+1 =
xn + 3

xn + 1
= 1 +

2

xn + 1
> 1,

so that xn ≥ 1 for all n ≥ 1.

If limn→∞ xn exists, say, limn→∞ xn = l, then taking limits on both sides of
xn+1 = xn+3

xn+1 , we get

l =
l + 3

l + 1
,

which gives l = ±
√

3. The case l = −
√

3 is impossible, because xn ≥ 1, so
we must have l =

√
3 (if the sequence is convergent). We will now show that
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the sequence {xn} is convergent. Consider |xn+1 −
√

3|. We have

0 ≤ |xn+1 −
√

3|

=

∣∣∣∣xn + 3

xn + 1
−
√

3

∣∣∣∣
=

(
√

3− 1) |
√

3− xn|
xn + 1

≤
√

3− 1

2
|xn −

√
3| (because xn ≥ 1)

≤

(√
3− 1

2

)2

|xn−1 −
√

3| (by a similar argument)

. . . . . .

≤

(√
3− 1

2

)n
|x1 −

√
3| (continuing the process)

=

(√
3− 1

2

)n
|1−

√
3|

Thus

0 ≤ |xn+1 −
√

3| ≤ |1−
√

3|

(√
3− 1

2

)n
.

Since

lim
n→∞

(√
3− 1

2

)n
= 0,

then, by the Squeeze Theorem,

lim
n→∞

|xn+1 −
√

3| = 0,

so that limn→∞ xn+1 =
√

3, or limn→∞ xn =
√

3, as expected.

2. The sequence {xn} defined by x1 = 1 and

xn+1 =
4x2n + 1

5xn + 1

for n ≥ 1. Show that {xn} converges and find limn→∞ xn.
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Solution (outline).

(1) Show that if limn→∞ xn exists, say, limn→∞ xn = l, then

l =

√
5− 1

2
.

(2) Show that

xn >

√
5− 1

2
for all n ≥ 1.

(3) Show that {xn} is decreasing.

Then (2) and (3) show that {xn} is convergent, and therefore the limit found
in (1) is the correct one.

3. (Crux 1686, 9/1991) The sequence {an} is defined by a0 = 4
3 and

an+1 =
3(5− 7an)

2(10an + 17)

for n ≥ 0. Find a formula for an in terms of n.

Solution This question asks us to do what we referred to earlier as “solve”
the recurrence; the only problem is the recurrence is not linear. What we
might try is to somehow reduce it to a linear one. Convergence and limit
are not explicit in this question, but we can start with some investigation
on that as a part of getting some more information about the behaviour of
this sequence. A brief experiment (writing the first several terms) suggests
that the sequence might be converging to 1

4 . Moreover, if it has limit, say
limn→∞ an = l, then taking limits on both sides of the defining equation, we
get

l =
3(5− 7l)

2(10l + 17)
,

which gives l = −3 or l = 1
4 . The experiment suggests that the limit (if it

exists) would be 1
4 . Hence the substitution

bn = an −
1

4

gives a promise of simplifying the defining equation. Then an = bn + 1
4 and

we obtain

bn+1 +
1

4
=

3
[
5− 7

(
bn + 1

4

)]
2
[
10
(
bn + 1

4

)
+ 17

] ,
which simplifies to

bn+1 = − 26bn
20bn + 39

.
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We can also compute b0 = a0 − 1
4 = 13

12 . Now, the defining equation for bn
can be written as

1

bn+1
= −

(
10

13
+

3

2

1

bn

)
,

so that we can next substitute cn = 1
bn

, thereby obtaining

cn+1 = −3

2
cn −

10

13
, with c0 =

13

12
.

We are now in familiar territory:

cn+1 +
3

2
cn = −10

13
= cn +

3

2
cn−1,

so that

cn+1 +
1

2
cn −

3

2
cn−1 = 0, with c0 =

13

12
, c1 = −28

13
,

which is a homogeneous linear recurrence relation of order 2. Solving it gives

cn =
16

13

(
−3

2

)n
− 4

13
.

Then, performing back-substitutions,

bn =
13

16
(
− 3

2

)n − 4
,

and finally,

an =

(
− 3

2

)n
+ 3

4
(
− 3

2

)n − 1
=

3n + 3(−2)n

4(3n)− (−2)n
=

1 + 3
(
− 2

3

)n
4−

(
− 2

3

)n ,

which completes the solution. From the last expression for an we can see
that, indeed, limn→∞ an exists, and it is 1

4 , as conjectured.

4. Find all sequences {xn}∞n=0 such that 0 < x0 ≤ 1 and 0 < xn+1 ≤ 2− 1
xn

for
n ≥ 0.

Solution Since 2 − 1
xn

> 0 and xn > 0, we obtain xn > 1
2 , so that the

sequence is bounded below. We also have

xn+1 − xn ≤ 2− 1

xn
− xn ≤ 0,

because xn+ 1
xn
≥ 2 when xn > 0. Thus the sequence is also decreasing, and

therefore convergent. Let limn→∞ xn = l. Since xn+1 ≤ 2− 1
xn

and xn >
1
2

we have l ≥ 1
2 > 0 and l ≤ 2− 1

l , which gives (l− 1)2 ≤ 0, so that l must be
1. Since x0 ≤ 1 and the sequence is decreasing, we must have

1 ≥ x0 ≥ x1 ≥ x2 ≥ · · ·

On the other hand, the limit of this sequence is 1. Clearly, this can only
happen if all the terms of the sequence are equal to 1. Therefore, the only
sequence that meets the condition is 1, 1, 1, . . ..
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5. (Crux 1378, 8/1988) Suppose a0, a1, a2, . . . is a sequence of positive real
numbers such that a0 = 1 and an = an+1 + an+2, n ≥ 0. Find an.

Solution It seems that we are one initial condition short of what we need to
solve the recurrence. However, the fact that the sequence consists of positive
real numbers might just provide enough information for us to find an. We
have an − an+1 = an+2 > 0, so that the sequence is decreasing. Since the
members of the sequence are positive, the sequence is bounded below and
therefore it has a limit, say limn→∞ an = l. Taking limits on both sides of
the defining recurrence, we get l = l + l, and then l = 0.

The characteristic equation of the given recurrence relation is q2 + q− 1 = 0

with roots q1 =
√
5−1
2 and q2 = −

√
5−1
2 . Hence

an = C1q
n
1 + C2q

n
2 .

Suppose that C2 6= 0. Since |q1| < 1 and |q2| > 1, C1q
n
1 → 0 and |C2q

n
2 | → ∞

as n → ∞. It follows that, for large n, an has the same sign as C2q
n
2 . But

qn < 0 and so the sign of C2q
n
2 alternates as n increases. This contradicts an

being positive for all n. Therefore C2 = 0. We can now determine C1 from
1 = a0 = C1 + C2; C1 = 1, and therefore,

an =

(√
5− 1

2

)n
.
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Spot the Recurrence

This section deals with problems which are somewhat similar to the ones
in the section Reverse Engineering, in the sense that no recurrence relation is
explicitly mentioned in the condition. However, unlike in that section, nothing
that looks like a solution to a recurrence relation appears in the condition either;
yet a recurrence can be spotted/constructed and used to produce a solution.

1. Find the sum of the 11th powers of the roots of the equation x3 +x+ 1 = 0.

Solution It is known that a polynomial equation of degree n has n roots,
some of which might not be real. In any case, if ε is a root of the equation
x3 + x+ 1 = 0, then ε3 + ε+ 1 = 0. Let α, β, γ be the roots of the equation,
and let Sk = αk + βk + γk, k = 1, 2, . . . Multiplying the equalities

α3 + α+ 1 = 0, β3 + β + 1 = 0, and γ3 + γ + 1 = 0

by αn, βn and γn, respectively, and adding the results, we obtain a recurrence
for the sequence {Sk}∞k=0, namely,

Sn+3 + Sn+1 + Sn = 0, (15)

which is a linear recurrence relation of order 3. Since α, β and γ are the
roots of the equation x3 + x+ 1 = 0, we have

x3 + x+ 1

= (x− α)(x− β)(x− γ)

= x3 − (α+ β + γ)x2 + (αβ + αγ + βγ)x− αβγ,

from which α+ β + γ = 0 and αβ + αγ + βγ = 1. Thus S1 = 0, and

S2 = α2 + β2 + γ2

= (α+ β + γ)2 − 2(αβ + αγ + βγ)

= 0− 2(1) = −2

Clearly, S0 = 3. Thus we have the values of the first three terms of the
sequence {Sk}∞k=0, and we can find S11 by substituting n = 0, 1, . . . , 8 in (15).
Answer: S11 = 0.

2. Let dk be the largest odd divisor of the positive integer k. Show that

2n∑
k=1

dk =
4n + 2

3
.

Solution Let Sn denote the sum in the left hand side of the desired equality.
A part of this sum can be easily computed: If k is odd, then its largest odd
divisor is k. Let S′n be the sum of the largest odd divisors of the numbers
1, 3, 5, . . . , 2n − 1, and let S′′n be the sum of the largest odd divisors of the
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numbers 2, 4, 6, . . . , 2n. Clearly, Sn = S′n + S′′n. Also, observe that the
sum of the largest odd divisors of the numbers 2, 4, 6, . . . , 2n is the same as
the sum of the largest odd divisors of the numbers 1, 2, 3, . . . , 2n−1, that is,
S′′n = Sn−1, and therefore,

Sn = S′n + Sn−1.

Let us compute S′n.

S′n = 1 + 3 + 5 + · · ·+ (2n − 1) = 2 + 4 + 6 + · · ·+ 2n − 2n−1

= 2(1 + 2 + 3 + · · ·+ 2n−1)− 2n−1

= 2 · 2n−1(2n−1 + 1)

2
− 2n−1 = 4n−1.

Thus Sn = Sn−1 + 4n−1. We also have S1 = 2, so we can finish the solution
by solving this recurrence. We have

Sn = Sn−1 + 4n−1

Sn−1 = Sn−2 + 4n−2

. . . = . . .

S2 = S1 + 41.

Adding all these equalities, we obtain

Sn = S1 + 41 + 42 + · · ·+ 4n−1 = 2 + 41 + 42 + · · ·+ 4n−1

= 1 + 40 + 41 + 42 + · · ·+ 4n−1 = 1 +
4n − 1

4− 1
=

4n + 2

3
,

as claimed. (Check Exercise 10 for a slightly different solution to a similar
recurrence.)

3. Find the number of n-tuples (x1, x2, . . . , xn), n ≥ 2, such that xi ∈ {a, b, c},
i = 1, 2, . . . , n, x1 = xn = a, and xi 6= xi+1 for i = 1, 2, . . . , n− 1.

Solution Let fn be the number of all n-tuples that meet the condition.
Clearly, f2 = 0, f3 = f4 = 2. It is easy to compute f5 = 6; this can give us
some idea on how to solve the problem. Let n ≥ 5. To find a recurrence for
the sequence {fn}, we need a second count for the number fn. Each n-tuple
has the form (a, x2, . . . , xn−1, a). If xi 6= a for all i = 2, 3 . . . , n − 1, then
there are only two possibilities for the n-tuple (a, x2, . . . , xn−1, a); it is either
(a, b, c, b, c, . . . , a) or (a, c, b, c, b, . . . , a). Now, let xi, i ≥ 3, be the first a after
the starting a in the n-tuple (i 6= 2, because of the condition). Clearly, i 6= n
(we already considered this case); also, i 6= n− 1, because of the condition.
Thus the n-tuple must have the form

(a, x2, x3 . . . , xi−1, a, xi+1, . . . , xn−1, a︸ ︷︷ ︸
n−(i−1)

), 3 ≤ i ≤ n− 2. (16)
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According to the condition, (a, x2, x3 . . . , xi−1) must either be (a, b, c, b, c . . .)
or (a, b, c, b, c . . .). There are fn−i+1 ways to form the remaining part of the
n-tuple (16). Hence there are 2fn−i+1 n-tuples of the kind (16). The first a
after the starting one can be at any position from 3 to n− 2 (3 ≤ i ≤ n− 2),
so we get a second count for all n-tuples, and a recurrence relation for the
sequence {fn}:

fn = 2 + 2(f3 + f4 + · · ·+ fn−2). (17)

Technically, this is a linear recurrence relation of order n − 1, but n varies;
fortunately, we can easily find a better representation. Write the recurrence
relation (17) for (n − 1) instead of n, and subtract the result from (17) to
obtain a different looking recurrence for the sequence {fn}

fn−1 = 2 + 2(f3 + f4 + · · ·+ fn−3),

fn − fn−1 − 2fn−2 = 0.

Using f3 = 2 and f4 = 2, we can solve the recurrence and get an explicit
formula for fn. Answer: fn = 1

62n − 2
3 (−1)n, n ≥ 2.

4. Let C1C2O be a triangle. Form a sequence of points C3, C4, C5, . . . alternating
between the sides OC1 and OC2 of the triangle so that Cn+1Cn+2 is the
bisector of the angle CnCn+1O for n = 1, 2, .... Show that the sequence of
angles γn = ∠CnCn+1O is convergent and find its limit if ∠C1OC2 = α.

Solution

C C

C
C

C

C

C

C

1 2

3

4

5

n+1

n

n+2

O
O

nn+1

n+1

Using the the condition, from triangle CnCn+1O we get a recurrence for the
sequence {γn}, namely, 2γn+1 + γn + α = π. We will use the idea from the
previous section and look at the possible limit first. If the sequence {γn} has
a limit l, then we must have 2l + l + α = π, so that l = π−α

3 . We now use
this information to show that the sequence {γn} is indeed convergent. We
have ∣∣∣∣γn+1 −

π − α
3

∣∣∣∣ =

∣∣∣∣π − γn − α2
− π − α

3

∣∣∣∣
=

∣∣∣∣π − α6
− γn

2

∣∣∣∣ =
1

2

∣∣∣∣γn − π − α
3

∣∣∣∣
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Let β = π−α
3 . Then we can write the above result as

|γn+1 − β| =
1

2
|γn − β|.

Applying it for n− 1, n− 2, . . . , 1, in place of n, we get

|γn − β| =
1

2
|γn−1 − β| =

1

22
|γn−2 − β| = · · · =

1

2n
|γ1 − β| .

Thus

0 ≤
∣∣∣∣γn − π − α

3

∣∣∣∣ =
1

2n

∣∣∣∣γ1 − π − α
3

∣∣∣∣ .
Since limn→∞

1
2n = 0 and γ1 − π−α

3 is a constant, then

lim
n→∞

1

2n

∣∣∣∣γ1 − π − α
3

∣∣∣∣ = 0,

and the Squeeze Theorem tells us that the sequence {γn} is convergent and
its limit is π−α

3 .

5. Is the sequence an = tann convergent?

Solution A recurrence can be obtained by using a trigonometric formula:

an+1 = tan(n+ 1) =
tann+ tan 1

1− (tann)(tan 1)
=

an + tan 1

1− an tan 1
.

Now, if {an} is convergent, then limn→∞ an = l, where l is some real number.
Taking limits on both sides of the above recurrence, we get

l =
l + tan 1

1− l tan 1
,

or (tan 1)(l2 + 1) = 0, a contradiction with l being real. Therefore, the
sequence {an} is divergent.

There are some details to be filled in. It is known that π is transcendental
which implies that it is irrational. Taking this for granted it follows that
n is not an odd multiple of π/2 and so tann is defined for all n. Now, if
(tann)(tan 1) = 1, then tann = tan ((π/2)− 1) and so n = kπ+ ((π/2)− 1)
for some integer k. This contradicts the irrationality of π. So (tann)(tan 1) 6=
1 for all n.

Readers who have the feeling that the problem can be solved without writing
a recurrence might appreciate the following argument, suggested by the
editor A. Lachlan: It is not hard to prove that if α is irrational, then the
numbers nα − bnαc, where n runs through the positive integers, are dense
in (0, 1). Applying this with α = 1/π we see that there are infinitely many
values of n for which n is close to a multiple of π, and infinitely many values
of n for which n is close to an odd multiple of π/2.
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6. (Crux 2337, 3/1998; slightly modified) Prove that for every integer n > 0⌈
n2 + 3n+ 1

n2 + 2n

⌈
n2 + 3n

n2 + 2n− 1
...

⌈
n2 + 2n+ 2

n2 + n+ 1

⌉
...

⌉⌉
= n+ 1.

Note that dxe denotes the least integer ≥ x.

Solution Let

an =

⌈
n2 + 3n+ 1

n2 + 2n

⌈
n2 + 3n

n2 + 2n− 1
...

⌈
n2 + 2n+ 2

n2 + n+ 1

⌉
...

⌉⌉
.

For every n ≥ 1, consider the sequence

b1 =

⌈
n2 + 2n+ 2

n2 + n+ 1

⌉
= 1 +

⌈
n+ 1

n2 + n+ 1

⌉
= 2,

bi =

⌈
n2 + 2n+ 2 + (i− 1)

n2 + n+ 1 + (i− 1)
bi−1

⌉
, 2 ≤ i ≤ n.

It is clear that an = bn. We prove inductively that bn = n + 1. Assuming
that bi−1 = i for some i, 2 ≤ i ≤ n, we obtain

bi =

⌈
n2 + 2n+ 2 + (i− 1)

n2 + n+ 1 + (i− 1)
bi−1

⌉
=

⌈
n2 + 2n+ i+ 1

n2 + n+ i
i

⌉

=

⌈
n2i+ 2ni+ i2 + i

n2 + n+ i

⌉
= i+

⌈
ni+ i

n2 + n+ i

⌉
= i+ 1,

because ni+ i ≤ n2 +n < n2 +n+ i. Thus an = bn = n+1, which completes
the proof.
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Patterns and Repetition

We have seen that some experiment with the first terms of a sequence
can help in observing some properties or some behavior that can be utilized
in the solution. Problems of that type were considered in the section Different
Representations. Experiments also helped us in getting some idea about whether
a sequence is bounded, and in finding an appropriate bound. Writing the first
several terms of a sequence could also help in noticing some kind of repetitive
behaviour; this could be repeating terms of the sequence, or it could be that the
sequence has different terms but something else might be repeating, like remainders
on division by a particular integer, or a pattern that can be utilized.

1. The sequence {an} is determined by an = an−1an−2an−4, with a1 = a3 = 1,
a2 = a4 = −1. Find a2020.

Solution Clearly, |an| = 1. Writing the first several terms of the sequence,
we observe periodicity. More precisely,

an = an−1an−2an−4 = (an−2an−3an−5)an−2an−4

= a2n−2an−3an−4an−5 = a2n−2(an−4an−5an−7)an−4an−5

= a2n−2a
2
n−4a

2
n−5an−7 = an−7,

which shows that the sequence {an} is periodic with period 7. Since 2020 =
7(288) + 4, then a2020 = a4 = −1.

2. The sequence {un} is defined by u0 = 2, u1 = 5
2 , and un+1 = un(u2n−2)− 5

2 .
Show that

bunc = 2
2n−(−1)n

3 .

Solution We can start by a little experiment, namely, writing the first
several terms and observing a pattern:

u0 = 2 = 20 + 20

u1 =
5

2
= 21 + 2−1

u2 =
5

2
= 21 + 2−1

u3 =
65

8
= 23 + 2−3

u4 =
1025

32
= 25 + 2−5

. . .

Let {an} be the sequence defined by an = 2n−(−1)n
3 . Clearly, a0 = 0, a1 =

a2 = 1, a3 = 3, a4 = 5, etc.; and these are the exponents of 2 from our
experiment, which allow us to form the hypothesis

un = 2an + 2−an , n ≥ 0. (18)
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We will prove this claim by induction, but first we reverse engineer a recurrence
for the sequence {an}. Since

an =
1

3
2n − 1

3
(−1)n,

the roots of the characteristic equation must be 2 and −1, so that the
characteristic equation is r2 − r − 2 = 0, and then a recurrence for {an}
is an+2 = an+1 + 2an, n ≥ 0. The recurrence relation can be rewritten as
an+2−2an+1 = − (an+1 − 2an). From this it follows easily by induction that

an − 2an−1 = (−1)n+1 (a1 − 2a0) = (−1)n+1. (19)

Returning to the main induction, we observe that the statement (18) is
correct for n = 0 and n = 1. Assuming the statement is correct for n − 1
and n we show it is correct for n+ 1 as well. We have

un+1 = un(u2n − 2)− 5

2

=
(
2an + 2−an

) [(
2an−1 + 2−an−1

)2 − 2
]
− 5

2

=
(
2an + 2−an

) (
22an−1 + 2−2an−1

)
− 5

2

= 2an+2an−1 + 2−(an+2an−1) +

(
2an−2an−1 + 2−(an−2an−1) − 5

2

)
From (19), an − 2an−1 and −(an − 2an−1) are 1 and −1 in some order, and
so the expression in parentheses is 0. Finally, using the recurrence relation,
we obtain

un+1 = 2an+1 + 2−an+1 ,

which completes the induction. Thus (18) holds, and then

bunc = 2an + b2−anc = 2an = 2
2n−(−1)n

3 .

3. The sequence {un} is defined by u1 = 1, u2 = 2, u3 = 3 and un+3 = un for
n ≥ 1. Find a formula for un in terms of n.

Solution The general theory presented earlier in the text applies in the
case when the characteristic equation has complex roots, which is the case
here; the characteristic equation of the given recurrence is r3 − 1 = 0. We
choose to proceed with an elementary solution.

First we observe that the given sequence

1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ,

can be written as un = an + 2, where {an} is the sequence

−1, 0, 1,−1, 0, 1,−1, 0, 1, . . .
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The terms of {an} can be written as

sin
3π

2
, sin

4π

2
, sin

5π

2
, sin

7π

2
, sin

8π

2
, sin

9π

2
, sin

11π

2
, . . . ,

or an = sin
(
bn

π
2

)
, where {bn} is the sequence

3, 4, 5, 7, 8, 9, 11, 12, 13, . . .

Now, bn = cn + 2, where {cn} is the sequence

1, 2, 3, 5, 6, 7, 9, 10, 11, . . .

Finally, we observe that cn = n+ dn, where {dn} is the sequence

0, 0, 0, 1, 1, 1, 2, 2, 2, . . .

Clearly, dn =
⌊
n−1
3

⌋
, and then going backwards, we find

cn = n+

⌊
n− 1

3

⌋
=

⌊
4n− 1

3

⌋
bn = cn + 2 =

⌊
4n− 1

3

⌋
+ 2 =

⌊
4n+ 5

3

⌋
an = sin

(
bn
π

2

)
= sin

(⌊
4n+ 5

3

⌋
π

2

)
un = an + 2 = 2 + sin

(⌊
4n+ 5

3

⌋
π

2

)
.

4. The sequence {an} is defined by a1 = 1, a2 = 2 and an = 4an−1 − an−2.
Show that this sequence has infinitely many terms divisible by 7 and infinitely
many terms divisible by 13.

Solution We start by computing the first several term of the sequence
and factoring them to find some divisible by 7 or by 13. We have a2 = 7,
a3 = 26 = 2(13), a4 = 97, a5 = 362 = 2(181), a6 = 1351 = 7(193),
a7 = 5042 = 2(2521), a8 = 18817 = 31(607), a9 = 70226 = (2)(13)(37)(73),
a10 = 262087 = 7(37441). We see that a2, a6, and a10 are divisible by 7 and
a3 and a9 by 13, so we can form the hypotheses that a4k+2 is divisible by 7
and a6k+3 is divisible by 13 for k = 0, 1, 2, . . .. Using the defining recurrence,
we get

an = 4an−1 − an−2
= 4(4an−2 − an−3)− an−2
= 15an−2 − 4an−3

= 15(4an−3 − an−4)− 4an−3

= 56an−3 − 15an−4,
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from which it follows that if 7 divides an−4, then it also divides an, and
now easy induction shows 7 divides a4k+2 for k = 0, 1, 2, . . .. Continuing the
above computation with two similar steps, we get

an = 56(4an−4 − an−5)− 15an−4

= 209an−4 − 56an−5

= 209(4an−5 − an−6)− 56an−5

= 780an−5 − 209an−6,

form which the second hypothesis similarly follows.

5. The sequence {an} is defined by a0 = 1, a1 = 3, a2 = 6 and an = a3n−1 +
a2n−2 + an−3 for n ≥ 3. Let αn denote the last digit of the integer an. Show
that the number r = 0.α0α1α2α3 . . . is rational.

Solution It suffices to show that the sequence {αn} is periodic. Let βi =
{αi, αi+1, αi+2}. Since 0 ≤ αk ≤ 9 for k = i, i + 1, i + 2, there are 103

possible triples βi. Hence there must be two equal terms in the sequence
β1, β2, . . . , β1001, say, βm = βl. Without loss of generality, we can assume
m < l.

Now, αm+3 is the last digit of am+3 = a3m+2 + a2m+1 + am, and also the last
digit of α3

m+2 + α2
m+1 + αm.

Similarly, αl+3 is the last digit of α3
l+2 + α2

l+1 + αl.

Since βm = βl, then {αm, αm+1, αm+2} = {αl, αl+1, αl+2}, and then, using
the recurrence, αm+3 = αl+3. But then

{αm+1, αm+2, αm+3} = {αl+1, αl+2, αl+3},

and similarly, αm+4 = αl+4. Continuing inductively, we obtain αm+s = αl+s
for s = 3, 4, . . . , l −m + 2, which shows that the sequence {αn} is periodic
with period of length l − m, and therefore, the number r is a repeating
decimal, and therefore rational, as claimed. More precisely,

r = 0.α1α2 . . . αm+2αm+3αm+4 . . . αm+(l−m+2) . . . ,

where the over-lined part is the repetend.

The following result generalizes the observations presented in the last two
problems: Let {an} be a sequence defined by

an+1 = f(an, an−1, . . . , an−k+1),

where n ≥ k ≥ 1, f is a polynomial of an, an−1, . . . , an−k+1 with integer
coefficients, and a1, a2, . . . ak are integers. Let rn be the remainder on
division of an by the positive integer m (so that an = mq + rn, where q
is an integer and 0 ≤ rn ≤ m− 1). Then the sequence {rn} is periodic.
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More Problems

Here we list some problems without solutions; most of these can be solved by using
ideas and approaches discussed in the previous sections.

1. Show that 2n− 3 is divisible by 5 for infinitely many values of the integer n.

2. (∗) The sequence {an} is defined by a1 = a2 = a3 = 1 and

an+1 =
1 + an−1an

an−2
.

Show that an is an integer for all n ≥ 1.

3. (∗) The sequence {an} is defined by

an =
a2n−1 + c

an−2
,

where c is a constant. If a1, a2 and
a21+a

2
2+c

a1a2
are integers, then show that an

is an integer for all n ≥ 1.

4. The sequence {an} is defined by a1 = a2 = 1 and an+2 = an+1an + 1 for
n ≥ 1. Show that no term of this sequence is divisible by 4.

5. (∗) The sequence {an} is defined by a1 = 1, a2 = 2 and

an+2 =

{
5an+1 − 3an if anan+1 is even,
an+1 − an if anan+1 is odd.

Show that this sequence contains infinitely many positive and infinitely many
negative terms.

6. (∗) (Putnam’1999) The sequence {an} is defined by a1 = 1, a2 = 2, a3 = 24
and

an =
6a2n−1an−3 − 8an−1a

2
n−2

an−2an−3
.

Show that an is an integer multiple of n for all n ≥ 1.

7. Show that
b(45 +

√
1975)2016c

is odd. (Recall that bxc denotes the greatest integer ≤ x.)

8. (∗) Show that
b(
√

3 + 1)2mc+ 1

is divisible by 2m+1 for every integer m ≥ 0.

9. (∗) Show that (55 +
√

3035)2k+1 has a decimal expansion starting with at
least 3k + 2 consecutive identical digits after the decimal point.
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10. (∗) (Putnam’1998) Let N be a positive integer with 1998 decimal digits, all
of them 1; that is,

N = 11 . . . 1︸ ︷︷ ︸
1998

.

Find the thousandth digit after the decimal point of
√
N .

(Answer: 1)

11. Let a1 = a2 = 1 and an+2 = an+1 + an for n ≥ 1. Show that

n∑
i=1

a2i = a2n+1 − 1.

12. Show that the sequence {an} defined by a1 = 1 and

an+1 = 3− 1

an

is convergent and find its limit. (Answer: limn→∞ an = 3+
√
5

2 .)

13. The sequence {an}∞n=1 is defined by a1 = 0, an+1 = 1
2 (b + a2n) if n ≥ 1,

where 0 ≤ b ≤ 1. Show that this sequence is convergent and find its limit.
(Answer: The limit is 1−

√
1− b.)

14. The sequence {xn} is defined by x1 = a, x2 = b and

xn =
xn−1 + xn−2

2
for n ≥ 3.

Show that the sequence is convergent and find its limit.
(Answer: limn→∞ xn = a+2b

3 .)

15. The sequence {xn} is defined by x0 > 0, and xn+1 = 1
2

(
xn + 1

xn

)
for n ≥ 0.

Show that the sequence is convergent and find its limit.

16. The sequence {xn} is defined by x1 = x2 = 1, and

xn+1 =
1

xn−1 + 1
xn

for n ≥ 3.

Show that the sequence is convergent and find its limit.

17. The sequence {xn} is defined by x1 = 4, and

xn+1 =
n+ 2

2(n+ 1)
(xn + 1) for n ≥ 1.

Show that the sequence is convergent and find its limit.

18. The sequence {an} is defined by an+2 − 2an+1 + an = A. Find limn→∞
an
n2 .

(Answer: The limit is A
2 .)
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19. The sequence {xn} is defined by x1 = a, and xn = x2n−1 + 3xn + 1 for n ≥ 2.
Find the values of a for which this sequence is convergent.
(Answer: a ∈ [−2,−1].)

20. The sequences {an} and {bn} are defined by a1 = a, b1 = b, a, b ≥ 0, an+1 =
an+bn

2 , and bn+1 = bn+an+1

2 . Show that both sequences are convergent and

have the same limit. (Answer: limn→∞ an = limn→∞ bn = a+2b
3 .)

21. (∗) The sequences {xn} and {yn} are defined by x1 = a, y1 = b, xn+1 =√
xnyn, and yn+1 = xn+yn

2 . Show that both sequences are convergent and
have the same limit.

22. The sequence {an}∞n=1 satisfies the recurrence relation an−an+1 = anan+1+
1. Find the first four terms of the sequence, if a2017 = c.

23. (∗) The sequences {an} and {bn} are defined by 1 < a1 < b1 and

an =
bn−1
an−1

, bn =
bn−1 − 1

an−1 − 1
for n ≥ 2.

Find all values of a1 and b1 for which both sequences are convergent.

(Answer: a1 = 1+
√
5

2 , b1 = 3+
√
5

2 . Hint: Compute the first seven terms of
each sequence. Experiment helps!)

24. The sequence {an} is defined by a2 = 3
4 and an = an−1

(
1− 1

n2

)
for n ≥ 3.

Find out if the sequence is convergent and if so, find its limit.

25. The sequence {sn} is defined by s1 = 1
2 and sn = sn−1 + 2n−1

2n for n ≥ 2.
Find out if the sequence is convergent and if so, find its limit.

26. The sequence {an} is defined by a2 = 2
3 and an = an−1

n2+n−2
n2+n for n ≥ 3.

Find out if the sequence is convergent and if so, find its limit.

27. The sequence {xn} is defined by x0 = 1 +a, |a| < 1 and xn = xn−1(1 +a)2
n

.
Find out if the sequence is convergent and if so, find its limit.

28. (Crux 1679, 8/1991) A1A2A3A4 is a unit square in the plane, with A1(0, 1),
A2(1, 1), A3(1, 0), A4(0, 0). A5 is the midpoint of the segment A1A2, A6 is
the midpoint of A2A3, A7 is the midpoint of A3A4, A8 is the midpoint of
A4A5, and so on. This forms a spiral polygonal pathA1A2A3A4A5A6A7A8 . . .
converging to a unique point inside the square. Find the coordinates of this
point. (Answer:

(
4
7 ,

3
7

)
.)
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A A

AA A

A

A

A

A A

A

A

1 5 2

34

6

7

8

9

10
11

12

13

A

29. (∗) (American Mathematical Monthly 10695, 9/1998) Find

lim
n→∞

1

n

⌈
3n2 + 2n

3n2

⌈
3n2 + 2n− 1

3n2 − 1
...

⌈
3n2 + 1

3n2 − 2n+ 1

⌉
...

⌉⌉
.

(Note that dxe denotes the least integer ≥ x)

30. (∗) (Crux 1705, 1/1992) Let n ≥ 2 and b0 ∈ [2, 2n − 1] be integers, and
consider the recurrence

bi+1 =

{
2bi − 1 if bi ≤ n,
2bi − 2n if bi > n.

Let p = p(b0, n) be the smallest positive integer such that bp = b0.

(a) Find p(2, 2k) and p(2, 2k + 1) for all k ≥ 1.

(b) Prove that p(b0, n) divides p(2, n).

31. (∗) (Crux 1709, 1/1992) Find the number of ways to choose cells from a 2×n
“chessboard” so that no two chosen cells are next to each other diagonally
(one way is to choose no cells at all). For example, for n = 2 the number of
ways is 9, namely

X X
X X

X X X
X X X

X
X

Answer: 1
5

[(
3−
√
5

2

)n+2

+
(

3+
√
5

2

)n+2

− 2(−1)n+2

]
.

32. (∗) (Crux 1853, 6/1993) Let {bn}∞n=1 be a sequence of positive real numbers
which satisfies the condition

3bn+2 ≥ bn+1 + 2bn

for every n ≥ 1. Prove that either the sequence converges or limn→∞ bn =∞.
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Solutions and Answers to the Exercises

1. The correct answer is (4).

2. The characteristic equation is

2r2 − 5r + 2 = 0

with roots 2 and 1/2, so that

an = C12n + C2

(
1

2

)n
.

Writing out the general form for n = 0 and n = 1 and using the conditions
a0 = 2 and a1 = 5

2 , we obtain the system

2 = a0 = C1 + C2
5
2 = a1 = 2C1 + 1

2C2

Solving the system gives C1 = C2 = 1. Therefore,

an = 2n +

(
1

2

)n
.

3. The characteristic equation is

r2 − 4r + 4 = 0

with r = 2 a root of multiplicity 2, so that

an = C12n + C2n2n.

Writing out the general form for n = 1 and n = 2 and using the conditions
a1 = 16 and a2 = 52, we obtain the system

16 = a1 = 2C1 + 2C2

52 = a2 = 22C1 + 2 · 22C2

Solving the system gives C1 = 3 and C2 = 5. Therefore,

an = 3 · 2n + 5n2n = (3 + 5n)2n.

4. Answer: an = (−2 + 4n)3n.

5. Answer: an = 5 · 2n + 2(−3)n.

6. Answer: an = 1
8 [9− (−7)n].

7. Answer: an = 7 · 2n − 3− 4n.
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8. Answer: an = −4 + (4− n)2n.

9. The defining equality is true for every n ≥ 0. Writing it out for n and n+ 1,
we obtain

an+3 − 2an+2 + an+1 = 2 = an+2 − 2an+1 + an,

from which we get the recurrence

an+3 − 3an+2 + 3an+1 − an = 0.

The characteristic equation is

r3 − 3r2 + 3r − 1 = 0

or

(r − 1)3 = 0,

with r = 1 a root of multiplicity 3. Hence the general form of the n-th term
of the sequence is

an = C1 + C2n+ C3n
2.

Writing out the general form for n = 0, n = 1 and n = 2 and using the
initial conditions a0 = 3, a1 = 6 and a2 = 11 (the last follows from a2 =
2a1 − a0 + 2 = 11), we obtain the system

3 = a0 = C1

6 = a1 = C1 + C2 + C3

11 = a2 = C1 + 2C2 + 4C3

Solving this system gives C1 = 3, C2 = 2 and C3 = 1. Therefore,

an = n2 + 2n+ 3.

10. The defining equality is true for every n ≥ 1, Writing it out for n and n+ 1,
we obtain

an+1 − 3an = 5n = 5 · 5n−1 = 5(an − 3an−1),

from which we get the recurrence

an+1 − 8an + 15an−1 = 0.

The characteristic equation is

r2 − 8r + 15 = 0

with roots r = 3 and r = 5. Hence the general form of the n-th term of the
sequence is

an = C13n + C25n.
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Writing out the general form for n = 0 and n = 1 and using the initial
conditions a0 = 1 and a1 = 4 (the last follows from a1 = 3a0 + 50 = 4), we
obtain the system

1 = a0 = C1 + C2

4 = a1 = 3C1 + 5C2

Solving this system gives C1 = C2 = 1
2 . Therefore,

an =
1

2
3n +

1

2
5n =

1

2
(3n + 5n).

11. The defining equality is true for every n ≥ 1, Writing it out for n and n+ 1,
we obtain

an+2 − 5an+1 = 16 = an+1 − 5an,

from which we get the recurrence

an+2 − 6an+1 + 5an = 0.

The characteristic equation is

r2 − 6r + 5 = 0

with roots r = 5 and r = 1. Hence the general form of the n-th term of the
sequence is

an = C15n + C21n.

Writing out the general form for n = 1 and n = 2 and using the initial
conditions a1 = 1 and a2 = 21 (the last follows from a2 = 5a1 + 16 = 21),
we obtain the system

1 = a1 = 5C1 + C2

21 = a2 = 25C1 + C2

Solving this system gives C1 = 1 and C2 = −4. Therefore,

an = 5n − 4.

12. Note that this recurrence is an example of a linear recurrence of order two
with non-constant coefficients. In order to reduce the order of the recurrence,
we rewrite the condition as

dn − ndn−1 = −dn−1 + (n− 1)dn−2.

Let an = dn − ndn−1. The above recurrence becomes

an = (−1)an−1.

Note also that a2 = 1. Now,

an = (−1)an−1 = (−1)2an−2 = ... = (−1)n−2 a2︸︷︷︸
=1

= (−1)n,
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so that, dn − ndn−1 = (−1)n, which gives another defining recurrence for
our sequence {dn}. Note that the new recurrence has order one. We can
now express dn as a function of n by writing the defining recurrence for
n, n− 1, ..., 2, 1 and manipulating the n equations.

dn − ndn−1 = (−1)n

dn−1 − (n− 1)dn−2 = (−1)n−1 | × n
dn−2 − (n− 2)dn−3 = (−1)n−2 | × n(n− 1)

. . . | . . .
d2 − 2 · d1 = (−1)2 | × n(n− 1) . . . 3

d1 − 1 · d0︸︷︷︸
=1

= (−1)1 | × n(n− 1) . . . 3 · 2

Multiplying the i-th equation by n(n− 1)...(n− i+ 2), i = 2, 3, ..., n, adding
all of the new equations and canceling, we obtain

dn = (−1)n + n(−1)n−1 + n(n− 1)(−1)n−2 + · · ·

+
n!

2!
(−1)2 + n!(−1)1 + n! d0︸︷︷︸

=(−1)0

= n!

(
(−1)n

n!
+

(−1)n−1

(n− 1)!
+ ...+

(−1)2

2!
+

(−1)1

1!
+

(−1)0

0!

)
= n!

(
1− 1

1!
+

1

2!
− ...+ (−1)n−1

1

(n− 1)!
+ (−1)n

1

n!

)

13. From the first recurrence, we have 4bn = −an+1 − 2an.
Substitute in 4bn+1 = 16an + 6(4bn) (which is just the second recurrence
multiplied by four) to obtain

−an+2 − 2an+1 = 16an + 6(−an+1 − 2an)

and then

an+2 − 4an+1 + 4an = 0.

The characteristic equation of the last recurrence is

r2 − 4r + 4 = 0

with r = 2 a root of multiplicity 2. It follows that the general solution of
the recurrence is

an = C12n + C2n2n.

We have a1 = −2a0 − 4b0 = −2, so that we can obtain a system for the
coefficients C1 and C2:

1 = a0 = C120 + C2(0)20

−2 = a1 = C121 + C2(1)21

}
=⇒ C1 = 1, C2 = −2
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Hence an = 2n − (2n)2n = (1− 2n)2n. Then

4bn = −an+1 − 2an = −[1− 2(n+ 1)]2n+1 − 2(1− 2n)2n = 4n2n+1,

so that bn = n2n+1. Therefore, the solution to the system of recurrences is

an = (1− 2n)2n, bn = n2n+1.

14. Answer:

an =
1

2

[
(1 +

√
3)n + (1−

√
3)n
]

bn =
1

2
√

3

[
(1 +

√
3)n − (1−

√
3)n
]

15. Answer:

an =
1

2

[
(2 +

√
2)n + (2−

√
2)n
]

bn =
1

2
√

2

[
(2 +

√
2)n − (2−

√
2)n
]

16. Let an be the number of required strings. The cases a1 and a2 are trivial.
If b1 = 1, then there are an−1 ways to complete a string b1b2...bk such that∑k
i=1 bi = n. If b1 = 2, then there are an−2 ways to to complete a string

b1b2...bk such that
∑k
i=1 bi = n. Therefore, for all n ≥ 3, an = an−1 + an−2,

as claimed.

17. We count the number of the required n-digit binary numbers, n ≥ 4, in two
different ways. One count is Sn. For a second count, we observe that there
are three types of n-digit binary numbers:

(a) those beginning with 0; there are Sn−1 of them;

(b) those beginning with 10; there are Sn−2 of them;

(c) those beginning with 11; there are Sn−3 of them, because these numbers
must start with 110 (the choice of the third digit is forced by the
condition).

Using the two counts, we obtain

Sn = Sn−1 + Sn−2 + Sn−3, n ≥ 4.

The sequence {Sn}∞n=1 will be completely determined if we know S1, S2 and
S3. These are easily computed to be S1 = 2, S2 = 4 and S3 = 7.

18. We count the number of the required n-digit ternary numbers, n ≥ 3, in two
different ways. One count is an. For a second count, we observe that there
are four types of n-digit ternary numbers:
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(a) those beginning with 1; there are an−1 of them;

(b) those beginning with 2; there are an−1 of them;

(c) those beginning with 01; there are an−2 of them;

(d) those beginning with 02; there are an−2 of them.

Using the two counts, we obtain

an = 2an−1 + 2an−2, n ≥ 3.

The sequence {an}∞n=1 will be completely determined if we know a1 and a2.
These are easily computed to be a1 = 3 and a2 = 8.

19. Let an be the number of n-digit ternary numbers that have no 1 immediately
to the right of any 0. Let A be the set of all such numbers. Then A =
A0 ∪ A1 ∪ A2, where Ai is the number of those starting with i, i = 0, 1, 2.
Clearly, |A| = |A0|+|A1|+|A2|, because A0, A1 and A2 are pairwise disjoint.
Also, |A1| = |A2| = an−1, because an n-digit valid number can be obtained
by adding a first digit 1 or 2 to any (n−1)-digit valid ternary number. There
are an−1 n-digit ternary numbers starting in 0. However, those starting in
01 are not valid; there are an−2 of them. Hence |A0| = an−1 − an−2. Thus

an = |A| = |A0|+ |A1|+ |A2| = an−1 − an−2 + 2an−1,

so that, an = 3an−1 − an−2. It is easy to check directly that a1 = 3 and
a2 = 8. These initial conditions and the recurrence completely determine
the sequence {an}∞n=1.

20. It is easy to check that a1 = 3 and a2 = 7. For each of the desired (n−1)-digit
ternary numbers σ generate two n-digit ternary numbers as follows:

if σ begins with 0, generate 1σ and 2σ;

if σ begins with 1, generate 0σ and 2σ;

if σ begins with 2, generate 0σ and 1σ. Clearly, we have generated 2an−1
n-digit ternary numbers of the desired kind. The only n-digit ternary numbers
we missed are those beginning with 22 of which there are an−2. Therefore,
an = 2an−1 + an−2. This recurrence, together with the conditions a1 = 3
and a2 = 7, completely describe the answer an to our counting problem.

21. It is easy to notice that a1 = 1 and a2 = 2. Let n = q1 + q2 + ... + qk be
a representation of n as a sum of odd positive integers. There are an such
representations.

Case 1. If q1 = 1, then we have

n− 1 = q2 + q3 + ...+ qk,

a representation of n − 1 as a sum of odd positive integers; there are an−1
such representations.
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Case 2. If q1 ≥ 3, then we have

n− 2 = (q1 − 2) + q2 + ...+ qk,

a representation of n − 2 as a sum of odd positive integers; there are an−2
of these.

Therefore, an = an−1 + an−2. This recurrence, together with the conditions
a1 = 1 and a2 = 2, completely determine the answer an to our counting
problem.

22. Let E be the set of nonempty words on {a, b, c} containing an even number
of as, and Ω the set of nonempty words on {a, b, c} containing an odd number
of as. Let xn and yn denote the numbers of words of length n in E and Ω,
respectively.

Every word in E of length n > 1 can be written uniquely in one of the forms
σb, σc, or τa, where σ is in E, or τ is in Ω as the case may be. Conversely,
for any σ in E of length n− 1, and any τ in Ω of length n− 1, the words σb,
σc, and τa are in E, and have length n. Therefore, for all n > 1,

xn = 2xn−1 + yn−1,

and similarly,
yn = 2yn−1 + xn−1.

Now we have to solve the system{
xn = 2xn−1 + yn−1
yn = 2yn−1 + xn−1

From the first equation, yn−1 = xn−2xn−1, and therefore, yn = xn+1−2xn.
Substituting into the second equation of the system, we obtain

xn+1 − 2xn = 2(xn − 2xn−1) + xn−1,

which simplifies to
xn+1 − 4xn + 3xn−1 = 0.

It is easy to find x1 = 2 (the words of length 1 are b and c) and x2 = 5 (the
words of length 2 are aa, bc, cb, bb and cc). The characteristic equation is
r2 − 4r + 3 = 0 with roots 3 and 1, so that,

xn = A3n +B.

Using x1 = 2 and x2 = 5, we can write a system for the coefficients A and
B: {

2 = x1 = 3A+B
5 = x2 = 9A+B

,

from which A = B = 1/2. Therefore,

xn =
3n + 1

2
.
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15. Michel Bataille Géométrie plane, avec des nombres

Cost per volume (including shipping and handling charges):
Regular Rate $15.00 — CMS Member’s Rate $12.00 (excluding taxes).
For non-Canadian shipping addresses the rates quoted must be paid in US funds.
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