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FOREWORD

While the quadratic equation is part of the standard syllabus in secondary school,
the scope of this topic has been curtailed in many jurisdictions over the years. Treatment
of any mathematical topic should be extensive enough to allow students to see some
interesting problems and applications, as well as to get some inkling as to how it fits
into the larger mathematical scheme of things. It is not enough for students to simply
do basic factoring exercises and engage in rote application of the quadratic formula in
solving equations.

This criticism has even more force when it comes to the topic of complex numbers.
For many students, complex numbers arise only in the discussion of the roots of a
quadratic equation with negative discriminant. Students have no idea of their theoretical
and utilitarian importance in mathematics. Yet there is so much that can be done at the
high school level, in particular in the solution of geometric and trigonometric problems.

This book is intended as a companion to the usual high school fare. The reader is

assumed to have been introduced to polynomials and operations of addition, subtraction,

multiplication and division, the remainder and factor theorems, simple factorizations,

solution of quadratic equations by factoring, completing the square and the quadratic

formula, and the relationship between the roots and coefficients of a quadratic equation.

In addition, the reader should know the fundamental trigonometric functions and their

values at standard angles as well as simple relationships among them. I hope that the

exercises and problems will interest and entertain the reader, as well as deepen their

experience and prepare them for advanced mathematical study.
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1

FACTORING THE DIFFERENCE OF SQUARES

Many years ago, I was asked to review a textbook to be used in the first two
high school years. I was dismayed by the many low-level and tedious exercises,
which seemed to offer little in enlightenment or interest. What were the students to
gain from doing them? I was challenged by the editors to come up with something
better, and the questions of this chapter represent my attempt to do this with
the factoring of differences of squares. They are included in this book because
they are, well, quadratic, but also because completion of the square and factoring
difference of squares are important foundational topics in studying quadratics.

1. Let a > b > 0. By means of a diagram, in which one slices and rearranges
the gnomon (L-shaped region) when a square of side length b is removed
from a square of side length a, illustrate the identity

a2 − b2 = (a + b)(a − b) .

2. The identity a2 − b2 = (a + b)(a − b) gives an approach for mental
multiplication. Suppose that we wish to multiply two positive integers u
and v, particularly if they are of the same parity. Show how we can find
suitable positive numbers a and b such that u and v can be written in the
form a+b and a−b. Then the product of u and v is the difference of squares
a2 − b2. All that is needed is to know how to compute squares.

(a) Use the suggested method to mentally compute 37×43, 22×28, 46×54.

(b) By making use of the identity (10t + u)2 = 100t2 + 20tu + u2, devise a
mental algorithm for quick computation of squares of two-digit numbers.

3. Let n be a positive integer. The number n! is defined to be the product
of the first n positive integers.

(a) Verify that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120.

(b) By factoring the difference of squares in each case and then writing each
factor as a product of smaller factors (no multiplications are necessary) and
recomposing some products where needed, verify the following numerical
results:

4! = 52 − 12 = 72 − 52

5! = 112 − 12 = 132 − 72

6! = 272 − 32 = 282 − 82 = 292 − 112

7! = 712 − 12 = 722 − 122 = 732 − 172 .

(It has been conjectured, but never proved, that 4!, 5! and 7! are the only
numbers of the form n! that are 1 less than a perfect square.)

(c) Verify that 13! = 789122 − 2882 = 1122962 − 798962.

(d) Write 17! as the difference of two integer squares.

(e) Prove that n! cannot be written as the difference of two integer squares
if and only if n = 2 or n = 3.

(January 30, 2012 / 14:09:28)
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2

4. You are equipped with a pocket calculator that can display integers up
to eight digits long. Let

a = 4565486027761

b = 1061652293520

c = 4687298610289 .

(a) Verify that (a, b, c) is a pythagorean triple, i.e., a2 + b2 = c2. (Hint: Try
factoring either c2 − b2 or c2 − a2.)

(b) Verify that c is a square.

(c) Verify that a + b is a square.

5. (a) Make a list of the numbers between 1 and 20 inclusive, expressing
each, when possible, as the difference of the squares of two integers. Make a
conjecture as to a criterion under which such a representation of a difference
of squares is possible. To formulate or check your conjecture, you might
want to extend your list.

(b) Suppose that an integer n can be written in the form u2−v2. By factoring
the difference of squares, show that it is necessary that n can be written as
the product of two integers of the same parity (i.e., both even or both odd).

(c) Suppose that n can be written in the form hk where h and k are integers
of the same parity. Prove that there are integers u and v for which h = u+v
and k = u − v, and deduce that n can be written as the difference of two
squares.

(d) Show that any odd number can be written as the product of two odd
integers.

(e) Show that each integer divisible by 4 can be written as the product of
two even integers.

(f) Show that each integer that leaves a remainder 2 upon division by 4
cannot be written as the product of two integers that are both odd or both
even.

(g) Use the previous sections to formulate and prove a necessary and sufficient
condition that an integer can be expressed as the difference of two squares.

6. Prove that 4 is the only perfect square that is 1 more than a prime
number.

7. Prove that two nonzero perfect squares of integers cannot differ by 1.

8. (a) Make a table listing the numbers from 1 to 20, and beside each entry
write the product of that number and the next higher number and four times
this product. Formulate and prove a conjecture.

(b) Prove that the product of two consecutive positive integers is never a
perfect square.

(January 30, 2012 / 14:09:29)
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9. Prove that the product of two consecutive odd integers is not a perfect
square.

10. Prove that the product of two consecutive even integers is not a perfect
square.

11. (a) Look at the difference between the squares of two consecutive
integers, working up from 1. What do you observe?

(b) What is the sum of the first million positive odd integers?

12. Prove that

10002 − 9992 + 9982 − 9972 + · · · + 22 − 12

is equal to the sum of the first thousand positive integers. Formulate and
prove a generalization.

13. A straight metal rail is 2400 cm long and is firmly fixed at both ends.
On a warm day, its length increases to 2402 cm and so it buckles. Assuming
that its final shape is closely approximated by an isosceles triangle, determine
how far from the ground its midpoint rises.

14. It is possible to arrive at the factorization of x2 − y2 by the technique
of adding in an extra term and subtracting it out again:

x2 − y2 = x2 − xy + xy − y2 = x(x − y) + y(x − y) = (x + y)(x − y) .

(a) Apply this technique to determine a factorization of x3 − y3.

(b) Consider the factorization of x4 − y4. Use the technique just described
to write this polynomial as the product of x − y and another polynomial.
Check your answer by factoring x4 − y4 as a difference of squares, and then
factoring a second difference of squares.

(c) Factor xn − yn where n is a positive integer. Check the results of your
method for n = 5, 6, 7.

(d) Determine a method for factoring x3 + y3 and x5 + y5, and generalize it
to a method for factoring xn + yn where n is any odd positive integer.

15. (a) By adding to and subtracting from x4 + 4 a term which is a square,
factor x4 + 4 as a product of two polynomials with integer coefficients.

(b) Write x4 +1 as the product of two quadratic factors (in this case, not all
of the coefficients will be integers).

16. (a) Let p and q be two distinct odd primes. Prove that the number

(pq + 1)4 − 1

has at least four distinct prime divisors.

(b) Suppose that p = 2 and q is an odd prime. Does the conclusion of (a)
still hold?

(January 30, 2012 / 14:09:30)
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17. An ordered set (a, b, c) of three positive integers a, b, c is called a
pythagorean triple if it satisfies a2 + b2 = c2. The name derives from the fact
that pythagorean triples represent side lengths of right triangles (because of
the Theorem of Pythagoras). A pythagorean triple is primitive if the greatest
common divisor of its members is 1.

(a) Verify that (3, 4, 5) is a primitive pythagorean triple, but (24, 45, 51) is a
pythagorean triple that is not primitive.

(b) There exist pythagorean triples (a, b, c) for which c = b + 1; an example
is (5, 12, 13). Prove that each such triple is primitive and that the smallest
number of each such triple must be odd. Determine 7 such triples.

(c) Show that we can determine a pythagorean triple (a, b, c) for which a is
any number we choose except for 1 and 2.

(d) Prove that, if (u, v, w) is a pythagorean triple, then there is an integer
k and a primitive pythagorean triple (a, b, c) for which u = ka, v = kb and
w = kc.

(e) It is possible to give a formula which will churn out all pythagorean
triples. Suppose that (a, b, c) is a primitive pythagorean triple. Prove that
exactly one of a and b is odd. Without loss of generality, let us suppose that
a is even. Verify that a2 = (c − b)(c + b) and that the greatest common
divisor of c − b and c + b is 2. Deduce that c + b = 2m2 and c − b = 2n2 for
some integers m and n.

(f) Prove that (u, v, w) is a pythagorean triple if and only if there are integers
k,m, n for which

u = 2kmn, v = k(m2 − n2), w = k(m2 + n2) .

(You have to show, first of all, that if u, v, w have this form, then (u, v, w)
is a pythagorean triple. Secondly, you have to argue, possibly using (d) and
(e), that if (u, v, w) is a pythagorean triple, then k,m, n can be found as
required.)

(g) Let (m,n) be a pair of integers. Then from (f) it can be seen that

(

m2 − n2

m2 + n2
,

2mn

m2 + n2

)

is a point on the circumference of the unit circle with centre at the origin.
Show that the angle between the radius vector from the origin to this point
and the x−axis is equal to twice the angle whose tangent is n/m.

On the other hand, if tan θ = n/m, determine sin 2θ and cos 2θ. Deduce that
there is a one-one correspondence between primitive pythagorean triples and
angles whose tangent is rational.

(January 30, 2012 / 14:09:31)
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18. (a) By factoring the left side as a difference of squares, show that

(

x + y

2

)2

−
(

x − y

2

)2

= xy .

(b) Use (a) to show that, when x and y are nonnegative, then

√
xy ≤ x + y

2
.

When does equality occur?

(c) The sum of two positive integers is 56. What is the largest possible value
of their product?

19. Consider the following numerical equations:

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442.

Suggest a generalization and verify these numerical equations in a way that
will convince you that the generalization also is valid.

20. There are many ways to see that the number of primes is infinite, which
is to say, that no matter how many primes you can identify, there is always
one more. One way to see this uses the sequence of Fermat numbers, defined
for nonnegative integers n by

Fn = 22n

+ 1 .

Thus F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Observe that 2+1 = (2−1)(2+1) = 22−1 = (22+1)−2 and (2+1)(22+1) =
(2− 1)(2 + 1)(22 + 1) = (22 − 1)(22 + 1) = 24 − 1 = (24 + 1)− 2. Generalize
this to obtain the following result:

F0F1F2 · · ·Fn = Fn+1 − 2 ,

for each nonnegative integer n. Deduce from this fact that any two terms in
the sequence {Fn} are coprime; that is, have greatest common divisor 1.

Prove that there are at least n + 1 distinct primes that divide the product
F0F2 · · ·Fn, and that therefore there are infinitely many primes.

21. Determine that positive integer n for which n + 9, 16n + 9 and 27n + 9
are all perfect squares.

22. A round-robin tournament is played by n sporting teams. This means
that each team plays each other team exactly once. Every match between
a pair of teams results in a win for one and a loss for the other; there are

(January 30, 2012 / 14:09:32)
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no ties. Suppose, for 1 ≤ k ≤ n, the kth team has wk wins and dk defeats.
Prove that

w2
1 + w2

2 + · · · + w2
n = d2

1 + d2
2 + · · · + d2

n .

Comments, Answers and Solutions

3. (c) Observe that

78912 + 288 = 79200 = 2 × 3 × 4 × 5 × 6 × 10 × 11

78912 − 288 = 78624 = 7 × 8 × 9 × 12 × 13

112296 − 79896 = 32400 = 3 × 4 × 5 × 6 × 9 × 10

112296 + 79896 = 192192 = 192 × 1001 = (2 × 8 × 12) × (7 × 11 × 13) .

3. (d) To express a number n as a difference of squares, write it as a product
of two numbers of the same parity: n = uv, with u > v. Then solve the
system a + b = u and a − b = v for a and b.

4. (a) Instead of multiplying out the squares, we can get the result by
factoring a difference of squares and taking out prime factors. It will
sometimes help in comparing two products to see if certain terms of a product
have a common divisor. This can be done by the Euclidean algorithm: if
we seek the common divisor of a and b, where a > b, divide b into a to get
the relation a = bq + r where q is the quotient and r is the remainder; note
that 0 ≤ r < b. Then the greatest common divisor of a and b is equal to the
greatest common divisor of b and r. We can then treat the pair b and r in
the same way.

We find that c − a = 121812582528 = 27 × 32 × 72 × 132 × 1132, c + a =
9252784638050 = 2×52×4301812 and b = 24×3×5×7×13×113×430181.
The check using the factorization of c2 − b2 can be handled similarly.

4. (b, c) c = 21650172 and a + b = 23721592.

5. See the comment for 3(d). It is necessary and sufficient that the number
can be written as the product of two factors of the same parity.

7. This result seems obvious, but many students cannot manage more than
an “arm-waving” proof. A more solid argument can be based on consideration
of the equation 1 = x2−y2 = (x−y)(x+y). If x > y > 0, then the equation
is impossible since the only factorization of 1 as a product of positive integers
is 1 = 1 × 1.

8. (b) n(n + 1) is a perfect square if and only if 4n(n + 1) = (2n + 1)2 − 1
is so. Alternatively, you can base an argument on the fact that the greatest
common divisor of n and n + 1 is 1.

13. The isoceles triangle is obtained by abutting two right triangles
with arm 1200 and hypotenuse 1201. The length of the vertical side is√

12012 − 12002 =
√

2401 = 49 cm, or almost half a metre.

(January 30, 2012 / 14:09:33)
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14. (c) Note that xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1) .

15. (a) Note that x4 + 4 = (x2 + 2)2 − 4x2.

15. (b) Note that x4 +1 = (x2 +1)2 − 2x2 = (x2 +
√

2x+1)(x2 −
√

2x+1) .

16. Notice that

(pq + 1)4 − 1 = [(pq + 1)2 − 1][(pq + 1)2 + 1]

= pq(pq + 2)[pq(pq + 2) + 2] .

When p and q are both odd, all the factors are odd and pairwise coprime.
Note that when p = 2 and q = 3, then we get

74 − 1 = 48 × 50 = 25 × 3 × 52 .

19. Observe that, for example,

(252 + 262 + 272) − (222 + 232 + 242)

= (252 − 242) + (262 − 232) + (272 − 222)
= (1 + 3 + 5) × 49 = 32 × 72 = 212 .

21. Let n+9 = x2 and 16n+9 = y2. Then 135 = 16x2−y2 = (4x+y)(4x−y).
The number n is equal to 280.

22. The key to the solution is to note that (i) wk + dk takes the same value,
n − 1, for each value of k, and (ii) the total number of wins equals the total
number of losses equals the number of matches played. Thus,

0 = (w1 − d1) + (w2 − d2) + · · · + (wn − dn) .

Multiply the first term by w1 + d1, the second by w2 + d2, and so on; then
add.

(January 30, 2012 / 14:09:35)
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COMPLEX NUMBERS

§1. Definitions and Notation

The quadratic formula for solving a quadratic equation whose discriminant
is negative involves the square root of a negative number. This induces us to
extend the number domain to include such square roots if we are to have a theory
of the quadratic that allows for solutions of quadratic equations that is like that
when the discriminant is positive. While the idea of taking the square root of
a negative number might seem strange, neverthess our enlarged number system
will turn out to be consistent with all the arithmetic laws that we have for real
numbers remaining valid.

A complex number has the form x + yi where x and y are real numbers and
i2 = −1. They can be added, subtracted, multiplied and divided following the
rules of ordinary algebra with the simplification that i2 can be replaced by −1.

For real numbers represented on a number line, we can think of addition in
terms of a translation along the line. For example, to add 2 and 5, the sum of 2 and
5 is represented by the point obtained by translating the point 5 by 2 units in the
positive direction (or equivalently the point 2 by 5 units in the positive direction).
Multiplication by a positive real corresponds on the line to a dilatation whose
centre is at the origin. Thus, the product of 2 and 5 is the place where 2 ends
up when the line has been expanded by a dilatation with factor 5. Multiplication
by −1 corresponds to a reflection in 0, and multiplication by a negative number
corresponds to the composite of this reflection and a dilatation whose factor is its
absolute value.

This leads to a geometric representation of the complex numbers (Argand
diagram). Since 1 × −1 = −1, we can think of the position of −1 as the result
of applying a reflection about 0, or, equivalently on the line, a rotation of 180◦

about the origin to the line. Since −1 is the result of multiplying 1 by i twice,
it is reasonable to represent i be the point on the plane which is the image of 1
after a counterclockwise rotation of 90◦ about the origin. Thus 1 corresponds to
the point (1, 0), i to the point (0, 1) and −1 to the point (−1, 0).

In general, we represent the complex number x + yi with x and y real,
by the point (x, y) in the plane. Addition of complex numbers corresponds to
vector addition in the plane: (x + yi) + (u + vi) = (x + u) + (y + v)i. Also,
(x + yi)(u + vi) = (xu − yv) + (xv + yu)i. The absolute value |x + yi| is equal

to
√

x2 + y2, which geometrically is the distance from 0 to x + yi in the Argand
diagram. The angle θ measured counterclockwise from the positive real axis to
the segment joining 0 to x + yi is called the argument of x + yi and is denoted by
arg (x + yi). It is given in radians and is determined up to a multiple of 2π.

For a complex number x + yi, x is called the real part and denoted by
Re (x+ yi), and y is called the imaginary part and is denoted by Im (x+ yi). The
number x − yi is called the complex conjugate of x + yi and is denoted by x + yi.

If r =
√

x2 + y2 and θ = arg(x + yi), then x = r cos θ and y = r sin θ and

(January 30, 2012 / 14:09:36)
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we get the polar representation of the complex number:

r cos θ + ir sin θ .

§2. Exercises

In these exercises, we can use the standard notation

z = x + yi = r(cos θ + i sin θ)

and
w = u + vi = s(cos φ + i sin φ)

unless otherwise indicated.

2.1. Prove that z + w = z + w, zw = zw and z = z. (Otherwise stated, this
says that the operation of complex conjugation is an isomorphism and an
involution, i.e., it preserves the arithmetic operations of complex numbers
and is a transformation of period 2.)

2.2. (a) Prove that |z|2 = zz and deduce that, for any nonzero complex
number z,

z−1 =
z

|z|2 .

(b) Deduce that, when |z| = 1, then z = z−1.

(c) Provide a geometric interpretation of the mapping z −→ z−1.

2.3. Prove that

Re z =
1

2
(z + z) ≤ |z|

and

Im z =
1

2i
(z − z) ≤ |z| .

2.4. Prove that |zw| = |z||w| and that |z + w| ≤ |z| + |w|. The latter
inequality can be obtained algebraically by expressing |z + w|2 as
(z + w)(z + w), multiplying out and observing that zw is the complex
conjugate of zw.

Give a geometric interpretation of the inequality

|z + w| ≤ |z| + |w| .

2.5. Prove that
1√
2
(|x| + |y|) ≤ |z| ≤ (|x| + |y|) .

2.6. Prove that

[r(cos θ + i sin θ)][s(cos φ + i sin φ)] = rs(cos(θ + φ) + i sin(θ + φ)) .

Deduce that arg zw ≡ arg z + arg w modulo 2π and give a geometric
interpretation in the complex plane of the product of two complex numbers
z and w.
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2.7. Prove that the vectors from the origin to the points represented by
z and w in the complex plane are perpendicular if and only if z/w is pure
imaginary (i.e., its real part is 0, so that it is a real multiple of i).

2.8. Prove, for integers n, de Moivre’s theorem:

cos nθ + i sin nθ = (cos θ + i sin θ)n .

Use this result to obtain cos kθ and sin kθ as polynomials in cos θ and sin θ
for k = 2, 3, 4.

2.9. Suppose that z = cos θ + i sin θ. Prove that

(a) |z| = 1 and z−1 = cos θ − i sin θ.

(b) cos θ = 1
2 (z + z) and sin θ = 1

2i
(z − z).

(c) For each integer n,

cos nθ =
1

2
(zn + zn) =

1

2
(zn + z−n)

and

sin nθ =
1

2i
(zn − zn) =

1

2i
(zn − z−n) .

2.10. Prove that, for each real value of θ, the value of

sin 3θ

sin θ
− cos 3θ

cos θ

is constant and determine the value of the constant. Find more than one
argument for this result, including an argument that makes use of complex
numbers.

2.11. Let p(z) be a polynomial in the complex variable z with real coefficients.
Prove that

p(z) = p(z)

and deduce that if r is a root of p(z) then so is its complex conjugate
r. Explain why every polynomial with real coefficients and odd degree
must have at least one real root. Provide an example to show that these
assertions are not necessarily true when a polynomial has at least one nonreal
coefficient.

2.12. The function f(θ) = cos θ + i sin θ satisfies the equation f(θ + φ) =
f(θ)f(φ) and f(0) = 1, which makes it look like an exponential function. In
fact, this is precisely what it is. Because this function satisfies the differential
equation f ′′(θ) = f(θ) as well as the “initial” conditions f(0) = 1 and f ′(0) =
i, we can write it in the form eiθ, where e is the base of the natural logarithms,
a number that lies between 2 and 3. However, for our purposes, we can leave
this at the formal level.
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Sum the geometric progression

n
∑

k=0

e(iθ)k

and equate the real and imaginary parts of this sum to the real and imaginary
parts of the closed form of the sum that you get to obtain an expression for
the sums of the following trigonometric series:

sin θ + sin 2θ + sin 3θ + · · · + sin nθ

and
1 + cos θ + cos 2θ + cos 3θ + · · · + cos nθ .

Check that your expressions for these sums are correct when n = 1, 2, 3.

2.13. Establish the identity

cos 7θ = (cos θ + 1)(8 cos3 θ − 4 cos2 θ − 4 cos θ + 1)2 − 1

and deduce that the three roots of the polynomial

8z3 − 4z2 − 4z + 1

are cos π
7 , cos 3π

7 and cos 5π
7 . Deduce that

8z3 − 4z2 − 4z + 1 = 8(z − cos
π

7
)(z − cos

3π

7
)(z − cos

5π

7
) .

Compare coefficients of the two sides of this equation to obtain three equations
satisfied by these roots.

2.14. Let p(z) be a polynomial of degree greater than 4 with complex
coefficients. Prove that p(z) must have a pair u, v of roots, not necessarily
distinct, for which the real parts of both u/v and v/u are positive. Show
that this does not necessarily hold for polynomials of degree 4.

Comments, Answers and Solutions

2.4. |z + w|2 = (z + w)(z + w) = |z|2 + zw + wy + |w|2

= |z|2 + 2Re (zw) + |w|2 ≤ |z|2 + 2|z||w| + |w|2

= (|z| + |w|)2 .

2.10. Letting z = cos θ + i sin θ, we have that

sin 3θ

sin θ
− cos 3θ

cos θ
=

z3 − z3

z − z
− z3 + z3

z + z

= (z2 + 1 + z2) − (z2 − 1 + z2) = 2 .

Putting the difference over a common denominator yields

sin 3θ cos θ − cos 3θ sin θ

sin θ cos θ
=

sin 2θ
1
2 sin 2θ

= 2 .
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Alternatively, we can expand sin 3θ = sin(2θ + θ) and cos 3θ to obtain

sin 3θ

sin θ
= cos 2θ + 2 cos2 θ and

sin 3θ

sin θ
= cos 2θ + 2 cos2 θ

from which the same result follows.

2.14. Solution. Since the degree of the polynomial exceeds 4, there must be
two roots u, v in one of the four quadrants containing a ray from the origin
along either the real or the imaginary axis along with all the points within
the region bounded by this ray and the next such ray in the counterclockwise
direction. The difference in the arguments between two such numbers must
be strictly between −π

2 and π
2 . Since arg(u/v) = argu−argv and arg(v/u) =

argv − argu both lie in this range, both u/v and v/u lie to the right of the
imaginary axis, and so have positive real parts.

§3. Problems on Complex Numbers

These problems can be solved by complex techniques and you should do so.
However, if you can solve them some other way, compare your solution with
the complex one with respect to naturalness, ease of understanding and the
insight it gives into the situation.

3.1. Using complex multiplication, show that the product of two integers
that are equal to the sum of two squares is also equal to the sum of two
squares. Use this to write 85 as the sum of two squares in two different
ways.

3.2. Using complex numbers, prove that the angle subtended at
the circumference of a circle by a diameter is right.

3.3. Some pirates wish to bury their treasure on an island. They find a tree
T and two rocks U and V . Starting at T , they pace off the distance from T
to U , then turn right and pace off an equal distance from U to a point P ,
which they mark. Returning to T , they pace off the distance from T to V ,
then turn left and pace off an equal distance from V (to TV ) to a point Q
which they mark. The treasure is buried at the midpoint of the line segment
PQ.

Years later, they return to the island and discover to their dismay that the
tree T is missing. One of them decides just to assume any position for the
tree and carry out the procedure. Is this strategy likely to succeed?

3.4. Let ABC be a triangle and P any point in its plane. Let P1 be the
reflection of P in A, P2 be the reflection of P1 in B and P3 be the reflection
of P2 in C. Suppose that I is the midpoint of the segement PP3.

(a) How does the position of I depend on P?

(b) Is it possible for the points P and P3 to coincide? Justify your answer.

3.5. Let a, b, c be three real numbers for which 0 ≤ c ≤ b ≤ a ≤ 1 and let w
be a complex root of the polynomial z3 + az2 + bz + c. Must |w| ≤ 1?
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3.6. For nonzero complex numbers z and w, show that

(|z| + |w|)
∣

∣

∣

∣

z

|z| +
w

|w|

∣

∣

∣

∣

≤ 2(|z + w|) .

3.7. Determine the set of complex numbers z that satisfy each of the
following equations:

(a) Re (wz) = c, where w is a fixed nonzero complex number and c is a fixed
real number.

(b) |z| = k|z + 1| where k is a fixed positive real number.

(c) |z − u| + |z − v| ≤ k where u and v are fixed distinct complex numbers
and k is a positive real number.

(d) Im (z4) = (Re (z2))2.

3.8. Describe those triangles with vertices at the points z1, z2, z3 in the
complex plane for which

(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 = 0 .

3.9. Evaluate

(a) cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦.

(b) sin 10◦ sin 50◦ sin 70◦.

(c) sec 40◦ + sec 80◦ + sec 160◦.

3.10. (a) A regular pentagon has side length a and diagonal length b. Prove
that

b2

a2
+

a2

b2
= 3 .

(b) A regular heptagon (seven equal sides and equal angles) has diagonals of
two different lengths. Let a be the length of a side, b the length of a shorter
diagonal and c the length of a longer diagonal of a regular heptagon. Prove
that

a2

b2
+

b2

c2
+

c2

a2
= 6

and
b2

a2
+

c2

b2
+

a2

c2
= 5 .

(c) Can the results of (a) and (b) be generalized?

3.11. Suppose that z1, z2, z3, z4 are four distinct complex numbers for
which there exists a real number t not equal to 1 such that

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a
rectangle.
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Comments, Answers and Solutions

3.2. Let the circle be centred at the origin with radius 1. Suppose that the
ends of the diameter are at −1 and +1 and that z is an arbitrary point on
the circumference. Then it has to be established that (z− 1) and (z +1) are
perpendicular.

3.3. Suppose that the rocks U and V are at the respective points 0 and 1 in
the complex plane and the tree is at the point z. Then P is at the point iz
and Q is at the point 1−i(z−1). The midpoint of P is at 1

2 (iz+1−i(z−1)) =
1
2 (1 + i).

3.4. Place the triangle in the complex plane with A, B, C at the respective
points a, b, c. Let the point P be at z. Then P1 is at 2a − z, P2 is at
2b− (2a− z) = 2b− 2a + z and P3 is at 2c− (2b− 2a + z) = 2(a + c− b)− z.
The midpoint of PP3 is at a+c−b, which is independent of z. As an exercise,
verify this when P is chosen to be any of the vertices of the triangle. The
points P and P3 will coincide when z = a+c−b or z−a = c−b. Geometrically,
this says that the two points will coincide when P is the fourth vertex of a
parallelogram whose other vertices are A, B, C.

3.5. Let a, b, c be three real numbers for which 0 ≤ c ≤ b ≤ a ≤ 1 and let w
be a complex root of the polynomial z3 + az2 + bz + c. Must |w| ≤ 1?

Solution 1. [L. Fei] Let w = u + iv, w = u − iv and r be the three roots.
Then a = −2u − r, b = |w|2 + 2ur and c = −|w|2r. Substituting for b, ac
and c, we find that

|w|6 − b|w|4 + ac|w|2 − c2 = 0

so that |w|2 is a nonnegative real root of the cubic polynomial q(t) = t3 −
bt2 + act − c2 = (t − b)t2 + c(at − c). Suppose that t > 1, then t − b and
at − c are both positive, so that q(t) > 0. Hence |w| ≤ 1.

Solution 2. [P. Shi; Y.Zhao]

0 = (1 − w)(w3 + aw2 + bw + c)
= −w4 + (1 − a)w3 + (a − b)w2 + (b − c)w + c

=⇒ w4 = (1 − a)w3 + (a − b)w2 + (b − c)w + c
=⇒ |w|4 ≤ (1 − a)|w|3 + (a − b)|w|2 + (b − c)|w| + c .

Suppose, if possible, that |w| > 1. Then

|w|4 ≤ |w|3[(1 − a) + (a − b) + (b − c) + c] = |w|3

which implies that |w| ≤ 1 and yields a contradiction. Hence |w| ≤ 1.

Solution 3. There must be one real solution v to the equation f(z) ≡ z3 +
az3 + bz2 + c = 0. If v = 0, then the remaining roots w and w, the complex
conjugate of w, must satisfy the quadratic equation z2+az+b = 0. Therefore
|w|2 = ww = b ≤ 1 and the result follows. Henceforth, let v 6= 0.
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Observe that

f(−1) = −1 + a − b + c = −(1 − a) − (b − c) ≤ 0

and that

f(−c) = −c3 + ac2 − bc + c ≥ −c3 + c3 − bc + c = c(1 − b) ≥ 0 ,

so that −1 ≤ v ≤ −c. The polynomial can be factored as

(z − v)(z2 + pz + q)

where c = −qv so that q = c/(−v) ≤ 1. But q = ww, and the result again
follows.

3.6. Prove that, for any complex numbers z and w,

(|z| + |w|)
∣

∣

∣

∣

z

|z| +
w

|w|

∣

∣

∣

∣

≤ 2|z + w| .

Solution 1. (|z| + |w|)
∣

∣

∣

∣

z

|z| +
w

|w|

∣

∣

∣

∣

=

∣

∣

∣

∣

z + w +
|z|w
|w| +

|w|z
|z|

∣

∣

∣

∣

≤ |z + w| + 1

|z||w| |z̄zw + w̄zw|

= |z + w| + |zw|
|z||w| |z̄ + w̄| = 2|z + w| .

Solution 2. Let z = aeiα and w = beiβ , with a and b real and positive. Then
the left side is equal to

|(a + b)(eiα + eiβ)| = |aeiα + aeiβ + beiα + beiβ |
≤ |aeiα + beiβ | + |aeiβ + beiα| .

Observe that

|z + w|2 = |(aeiα + beiβ)(ae−iα + be−iβ)|
= a2 + b2 + ab[ei(α−β) + ei(β−α)]

= |(aeiβ + beiα)(ae−iβ + be−iα)|
from which we find that the left side does not exceed

|aeiα + beiβ | + |aeiβ + beiα| = 2|aeiα + beiβ | = 2|z + w| .

Solution 3. Let z = aeiα and w = beiβ , where a and b are positive reals.
Then the inequality is equivalent to

∣

∣

∣

∣

1

2
(eiα + eiβ)

∣

∣

∣

∣

≤ |λeiα + (1 − λ)eiβ |
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where λ = a/(a + b). But this simply says that the midpoint of the segment
joining eiα and eiβ on the unit circle in the Argand diagram is at least as
close to the origin as another point on the segment.

Solution 4. [G. Goldstein] Observe that, for each µ ∈ C,

∣

∣

∣

∣

µz

|µz| +
µw

|µw|

∣

∣

∣

∣

=

∣

∣

∣

∣

z

|z| +
w

|w|

∣

∣

∣

∣

,

|µ|[|z| + |w|] = |µz + µw| ,

and

|µ||z + w| = |µz + µw| .

So the inequality is equivalent to

(|t| + 1)

∣

∣

∣

∣

t

|t| + 1

∣

∣

∣

∣

≤ 2|t + 1|

for t ∈ C. (Take µ = 1/w and t = z/w.)

Let t = r(cos θ + i sin θ). Then the inequality becomes

(r + 1)

√

(cos θ + 1)2 + sin2 θ ≤ 2

√

(r cos θ + 1)2 + r2 sin2 θ

= 2
√

r2 + 2r cos θ + 1 .

Now,

4(r2 + 2r cos θ + 1) − (r + 1)2(2 + 2 cos θ)

= 2r2(1 − cos θ) + 4r(cos θ − 1) + 2(1 − cos θ)

= 2(r − 1)2(1 − cos θ) ≥ 0 ,

from which the inequality follows.

Solution 5. [R. Mong] Consider complex numbers as vectors in the plane.
q = (|z|/|w|)w is a vector of magnitude z in the direction w and p = (|w|/|z|)z
is a vector of magnitude w in the direction z. A reflection about the angle
bisector of vectors z and w interchanges p and w, q and z. Hence |p + q| =
|w + z|. Therefore

(|z| + |w|)
∣

∣

∣

∣

z

|z| +
w

|w|

∣

∣

∣

∣

= |z + q + p + w| ≤ |z + w| + |p + q|
= 2|z + w| .

3.7. (a) Determine the set of complex numbers for which Re (wz) = c.

Solution. Let v = c/w = cw/|w|2. The point v is on the locus and
furthermore, Re (w(z − v)) = 0 for any point z on the locus. Therefore
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w(z − v) = ti for some real number t. Thus, for every point on the locus, we
have that

z = v + (t/w)i = (1/w)(c + ti) .

Conversely, any point z of this form satisfies the equation of the locus.
Geometrically, the equation of the locus is the line Re z = c rotated through
the angle −arg w.

(b) Determine the set of complex numbers z which satisfy |z| = k|z + 1| for
k > 0.

Solution. With z = x + yi, the equation can be written as

(k2 − 1)x2 + 2k2x + (k2 − 1)y2 + 1 = 0 .

When k = 1, the locus is the straight line Re z = − 1
2 . Otherwise the locus

is a circle (of Apollonius).

(c) Determine the set of complex numbers z which satisfy

|z − u| + |z − v| ≤ k

where u and v are complex and k is positive.

Solution. The locus includes all curves

|z − u| + |z − v| = c

where c ≤ k. The equation signifies that the sum of the distances from z
to u and v is a constant, and so is void when c < |u − v|, is the segment
joining u and v when c = |u − v| and an ellipse with foci at u and v when
c > |u − v|. Thus the locus of the inequality is void when k < |u − v|, a line
segment when k = |u − v| and the interior and boundary of an ellipse when
k > |u − v|.
(d) Determine the set of complex numbers z which satisfy

Im (z4) = (Re (z2))2 ,

and sketch this set in the complex plane.

Solution 1. Let z = x + yi and z2 = u + vi. Then u = x2 − y2, v = 2xy
and z4 = (u2 − v2) + 2uvi. Im (z4) = (Re (z2))2 implies that 2uv = u2.
Thus, u = 0 or u = 2v. These reduce to x2 = y2 or (x − 2y)2 = 5y2, so that
the locus consists of the points z on the lines determined by the equations
y = x, y = −x, y = (

√
5 − 2)x, y = (−

√
5 − 2)x.

Solution 2. Let z = r(cos θ + i sin θ); then z2 = r2(cos 2θ + i sin 2θ) and
z4 = r4(cos 4θ + i sin 4θ). The condition is equivalent to

r4 sin 4θ = (r2 cos 2θ)2 ⇔ 2 sin 2θ cos 2θ = cos2 2θ .

Hence cos 2θ = 0 or tan 2θ = 1
2 . The latter possibility leads to tan2 θ +

4 tan θ − 1 = 0 or tan θ = −2 ±
√

5. This yields the same result as
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Solution 3. Let z = x+yi. Then z2 = x2−y2 +2xyi and z4 = (x4−6x2y2 +
y4) + 4xy(x2 − y2)i. Then the condition in the problem is equivalent to

4xy(x2 − y2) = (x2 − y2)2 ,

which in turn is equivalent to y = ±x or y2 + 4xy − x2 = 0, i.e., y =
(−2 ±

√
5)x.

3.8. The condition can be rewritten as

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z4 .

Without loss of generality, we may translate the points in the complex plane
so that z1 + z2 + z3 = 0. In this case, we can show that z1 + z2 + z3 =
z1z2 + z2z3 + z3z1 = 0, so that z1, z2, z3 are roots of an equation of the
form z3 = c. Therefore, we can argue that they are at the vertices of an
equilateralt triangle.

3.9. (a) Determine the value of

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦ .

Solution 1. Note that the expression is equal to the real part of

(cos 5◦ + i sin 5◦)[1 + (cos 72◦ + i sin 72◦) + (cos 144◦ + i sin 144◦)

+(cos 216◦ + i sin 216◦) + (cos 288◦ + i sin 288◦)] .

Let ζ = cos 72◦ + i sin 72◦ so that ζ is a nonreal root of

0 = z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1) .

Hence 1 + ζ + ζ2 + ζ3 + ζ4 = 0; using de Moivre’s theorem, and taking the
real part of this equation, we find that

1 + cos 72◦ + cos 144◦ + cos 216◦ + cos 288◦ = 0 .

(Note that taking the imaginary part yields a triviality.)

Solution 2. A vectorial way of seeing that 1 + ζ + ζ2 + ζ3 + ζ4 = 0 is to note
that the vectors represented by the five roots of unity sum bound a closed
regular pentagon and so sum to zero.

Non-complex arguments. Before getting into the next solution, we will
discuss how to obtain the trigonometric ratios of certain angles related to
36◦. It is useful for you to know some of these techniques, as these angles
tend to come up in problems, and to be on the safe side in a contest, you
should try to include a justification for assertions that you make about these
angles. Here is one way to evaluate t = cos 36◦. Observe that

t = − cos 144◦ = 1 − 2 cos2 72◦

= 1 − 2(2t2 − 1)2 = −8t4 + 8t2 − 1
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from which we see that

0 = 8t4 − 8t2 + t + 1 = (2t − 1)(t + 1)(4t2 − 2t − 1) .

Since t is equal to neither 1 nor 1
2 , we must have that 4t2 = 2t + 1. Solving

this equation will give you an actual numerical value (can you justify your
choice of root?).

A very useful relation is 4 cos 36◦ cos 72◦ = 1. This can be checked
geometrically. Let PQS be a triangle for which ∠P = ∠S = 36◦ and
∠PQS = 108◦. Let R be a point on the side PS for which ∠PQR = 72◦

and ∠SQR = 36◦. Then PQ = PR, PQ = QS and QR = RS; let r be the
common length of PQ, PR, QS and let s be the common length of QR and
RS. Then cos 72◦ = s/2r and cos 36◦ = r/2s and the desired result follows.
An algebraic derivation of this result can also be given.

4 cos 36◦ cos 72◦ =
4 sin 36◦ cos 36◦ cos 72◦

sin 36◦

=
2 sin 72◦ cos 72◦

sin 36◦

=
sin 144◦

sin 36◦
= 1 .

We also have that

1 + 2 cos 72◦ − 2 cos 36◦ = 1 + cos 72◦ + cos 144◦ + cos 216◦ + cos 288◦ = 0 .

Solution 3. Let cos 36◦ = t. Then

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦

= [cos 5◦ + cos 293◦] + [cos 77◦ + cos 221◦] + cos 149◦

= cos 149◦[2 cos 144◦ + 2 cos 72◦ + 1]

= cos 149◦[−2 cos 36◦ + 2 cos 72◦ + 1] = 0 .

Alternatively, this is seen to be equal to

cos 149◦[−2t + 2(2t2 − 1) + 1] = cos 149◦[−2t + 4t2 − 1] = 0 .

Solution 4. [C. Huang]

cos 5◦ + cos 77◦ + cos 149◦ + cos 221◦ + cos 293◦

= cos 5◦ + 2 cos 185◦ cos 108◦ + 2 cos 185◦ cos 36◦

= cos 5◦[1 + 2(cos 72◦ − cos 36◦)]

= cos 5◦[1 − 4 sin 18◦ sin 54◦]

= cos 5◦[1 − 4 cos 72◦ cos 36◦] = 0 .
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3.9. (b) Using complex numbers, or otherwise, evaluate

sin 10◦ sin 50◦ sin 70◦ .

Solution 1. Let z = cos 20◦+i sin 20◦, so that 1/z = cos 20◦−i sin 20◦. Then,
by De Moivre’s Theorem, z9 = −1. Now,

sin 70◦ = cos 20◦ =
1

2
(z +

1

z
) =

z2 + 1

2z
,

sin 50◦ = cos 40◦ =
1

2
(z2 +

1

z2
) =

z4 + 1

2z2
,

and

sin 10◦ = cos 80◦ =
1

2
(z4 +

1

z4
) =

z8 + 1

2z4
.

Hence

sin 10◦ sin 50◦ sin 70◦ =
z2 + 1

2z
· z4 + 1

2z2
· z8 + 1

2z4

=
1 + z2 + z4 + z6 + z8 + z10 + z12 + z14

8z7

=
1 − z16

8z7(1 − z2)

=
1 − z7z9

8(z7 − z9)

=
1 + z7

8(z7 + 1)
=

1

8
.

Solution 2. We have that

sin 10◦ sin 50◦ sin 70◦ =
1

2
[cos 40◦ − cos 60◦] sin 70◦

=
1

2
[cos 40◦ sin 70◦ − 1

4
] sin 70◦

=
1

4
[sin 110◦ + sin 30◦] − 1

4
sin 70◦

=
1

4
[sin 110◦ − sin 70◦] +

1

8
=

1

8
.
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Solution 3. Observe that

sin 20◦ sin 70◦ sin 50◦ sin 10◦ = sin 20◦ cos 20◦ cos 40◦ cos 80◦

=
1

2
sin 40◦ cos 40◦ cos 80◦

=
1

4
sin 80◦ cos 80◦

=
1

8
sin 160◦ =

1

8
sin 20◦ .

Since sin 20◦ 6= 0, we can cancel this factor from both sides to obtain that
sin 10◦ sin 50◦ sin 70◦ = 1/8.

Solution 4. [O. Ivrii]

sin 10◦ sin 50◦ sin 70◦ =
1

2
sin 10◦[cos 20◦ − cos 120◦]

=
1

2
sin 10◦cos20◦ +

1

4
sin 10◦

=
1

4
[sin 30◦ − sin 10◦] +

1

4
sin 10◦

=
1

4
sin 30◦ =

1

8
.

Solution 5. [L. Chindelevitch] Observe that sin 10◦ sin 50◦ sin 70◦ =
cos 20◦ cos 40◦ cos 80◦ and that cos 6θ = −1/2 is satisfied by θ = ±20◦,
±40◦, ±80◦, ±100◦, ±140◦ and ±160◦. Now, cos 6θ is equal to the real
part of (cos θ + i sin θ)6, namely 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

Thus, the sextic equation 32x6 − 48x4 + 18x2 − 1 = −1/2 is satisfied by
x = ± cos 20◦, ± cos 40◦. ± cos 60◦. As the equation can be rewritten

x6 − 3

2
x4 +

9

16
x2 − 1

64
= 0 ,

the product of its six roots is −1/64. Thus

−(cos 20◦ cos 40◦ cos 80◦)2 = −1/64

and the result follows.

Solution 6. [A. Critch] Observe that sin 10◦ sin 50◦ sin 70◦ =
− cos 40◦ cos 80◦ cos 160◦, and that θ = 40◦, 80◦, 160◦ satisfy cos 3θ = −1/2.
Thus the cosines of 40◦, 80◦ and 160◦ are the roots of the cubic equation
4x3 − 3x + 1

2 = 0. The result follows, since the product of the roots of this
equation is −1/8.

3.9. (c) Determine sec 40◦ + sec 80◦ + sec 160◦.

Solution 1. Let z = cos 40◦ + i sin 40◦. Then z9 = 1. In fact, since z9 − 1 =
(z − 1)(z2 + z + 1)(z6 + z3 + 1) and the first two factors fail to vanish,
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z6+z3+1 = 0. Also 1+z+z2+· · ·+z8 = (1+z+z2)(1+z3+z6) = 0. Observe
that cos 40◦ = 1

2 (z + 1
z
), cos 80◦ = 1

2 (z2 + 1
z2 ) and cos 160◦ = 1

2 (z4 + 1
z4 ), so

that the given sum is equal to

2

[

z

1 + z2
+

z2

1 + z4
+

z4

1 + z8

]

= 2

[

z

1 + z2
+

z2

1 + z4
+

z5

1 + z

]

= 2

[

z(1 + z + z4 + z5) + z2(1 + z + z2 + z3) + z5(1 + z2 + z4 + z6)

(1 + z)(1 + z2)(1 + z4)

]

= 2

[

z7 + z6 + 3z5 + z4 + z3 + 3z2 + z + 1

(1 + z)(1 + z2)(1 + z4)

]

= 2

[

(z + 1)(z6 + z3 + 1) + 3z2(z3 + 1)

(1 + z)(1 + z2)(1 + z4)

]

= 2

[

0 − 3z8

1 + z + z2 + z3 + z4 + z5 + z6 + z7

]

= 2

[−3z8

−z8

]

= 6 .

Solution 2. The values 40◦, 80◦ and 160◦ all satisfy cos 3θ = −1/2, or
8 cos3 θ− 6 cos θ +1 = 0. Thus, cos 40◦. cos 80◦ and cos 160◦ are the roots of
the cubic equation 8x3 − 6x+1 = 0, so that their reciprocals sec 40◦, sec 80◦

and sec 160◦ are the roots of the cubic equation x3 − 6x2 + 8 = 0. The sum
of the roots of this cubic is

sec 40◦ + sec 80◦ + sec 160◦ = 6 .

Solution 3. [T. Liu]

sec 40◦ + sec 80◦ + sec 160◦

=
cos 40◦ + cos 80◦

cos 40◦ cos 80◦
+

1

cos 160◦
=

2 cos 60◦ cos 20◦

cos 40◦ cos 80◦
+

1

cos 160◦

=
cos 20◦ cos 160◦ + cos 40◦ cos 80◦

cos 40◦ cos 80◦ cos 160◦

=
cos 180◦ + cos 140◦ + cos 120◦ + cos 40◦

cos 40◦(cos 240◦ + cos 80◦)

=
−1 − 1/2

(1/2)(− cos 40◦ + cos 120◦ + cos 40◦)
=

−3/2

−1/4
= 6 .

Solution 4. Let x = cos 40◦, y = cos 80◦ and z = cos 160◦. Then

x + y + z = 2 cos 60◦ cos 20◦ − cos 20◦ = 0
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and

xy + yz + zx

=
1

2
[cos 120◦ + cos 140◦ + cos 240◦ + cos 80◦ + cos 200◦ + cos 120◦]

=
1

2

[

− 3

2
+ x + y + z

]

= −3

4
.

Now

sin 40◦ cos 40◦ cos 80◦ cos 160◦ = 4 sin 80◦ cos 80◦ cos 160◦

= 2 sin 160◦ cos 160◦ = − sin 40◦

so that xyz = −1/8. Then the sum of the problem is equal to (xy + yz +
zx)/(xyz) = 6.

3.10. (a) A regular pentagon has side length a and diagonal length b. Prove
that

b2

a2
+

a2

b2
= 3 .

Solution 1. Let the pentagon be placed in the complex plane with its vertices
at the fifth roots of unity. If ζ is a primitive fifth root of unity, then the
expression to be evaluated is

|ζ2 − 1|2
|ζ − 1|2 +

|ζ4 − 1|2
|ζ2 − 1|2 = |ζ + 1|2 + |ζ2 + 1|2

= (ζ + 1)(ζ4 + 1) + (ζ2 + 1)(ζ3 + 1)

= (2 + ζ + ζ4) + (2 + ζ2 + ζ3) = 3 .

Solution 2. Let ABCDE be the regular pentagon, and let triangle ABC be
rotated about C so that B falls on D and A falls on E. Then ADE is a
straight angle and triangle CAE is similar to triangle BAC. Therefore

a + b

b
=

b

a
=⇒ b

a
− a

b
= 1 =⇒ b2

a2
+

a2

b2
− 2 = 1

so that b2/a2 + a2/b2 = 3, as desired.

3.10. (b) A regular heptagon (polygon with seven equal sides and seven
equal angles) has diagonals of two different lengths. Let a be the length of
a side, b be the length of a shorter diagonal and c be the length of a longer
diagonal of a regular heptagon (so that a < b < c). Prove that:

a2

b2
+

b2

c2
+

c2

a2
= 6 and

b2

a2
+

c2

b2
+

a2

c2
= 5 .
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Solution 1. There is no loss of generality in assuming that the vertices of
the heptagon are placed at the seventh roots of unity on the unit circle in
the complex plane. Then ζ = cos(2π/7) + i sin(2π/7) be the fundamental
seventh root of unity. Then ζ7 = 1, 1 + ζ + ζ2 + · · · + ζ6 = 0 and (ζ, ζ6),
(ζ2, ζ5), (ζ3, ζ4) are pairs of complex conjugates. We have that

a = |ζ − 1| = |ζ6 − 1|
b = |ζ2 − 1| = |ζ9 − 1|
c = |ζ3 − 1| = |ζ4 − 1| .

It follows from this that

b

a
= |ζ + 1| c

b
= |ζ2 + 1| a

c
= |ζ3 + 1| ,

whence

b2

a2
+

c2

b2
+

a2

c2

= (ζ + 1)(ζ6 + 1) + (ζ2 + 1)(ζ5 + 1) + (ζ3 + 1)(ζ4 + 1)
= 2 + ζ + ζ6 + 2 + ζ2 + ζ5 + 2 + ζ3 + ζ4

= 6 + (ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 6 − 1 = 5 .

Also

a

b
= |ζ4 + ζ2 + 1| b

c
= |ζ6 + ζ3 + 1| c

a
= |ζ2 + ζ + 1| ,

whence

a2

b2
+

b2

c2
+

c2

a2

= (ζ4 + ζ2 + 1)(ζ3 + ζ5 + 1) + (ζ6 + ζ3 + 1)(ζ + ζ4 + 1)

+(ζ2 + ζ + 1)(ζ5 + ζ6 + 1)

= (3 + 2ζ2 + ζ3 + ζ4 + 2ζ5) + (3 + ζ + 2ζ3 + 2ζ4 + ζ6)

+(3 + 2ζ + ζ2 + ζ5 + 2ζ6)

= 9 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6)

= 9 − 3 = 6 .

Solution 2. Suppose that the circumradius of the heptagon is 1. By
considering isosceles triangles with base equal to the sides or diagonals of
the heptagon and apex at the centre of the circumcircle, we see that

a = 2 sin θ = 2 sin 6θ = −2 sin 8θ
b = 2 sin 2θ = −2 sin 9θ
c = 2 sin 3θ = 2 sin 4θ
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where θ = π/7 is half the angle subtended at the circumcentre by each side
of the heptagon. Observe that

cos 2θ =
1

2
(ζ + ζ6) cos 4θ =

1

2
(ζ2 + ζ5) cos 6θ =

1

2
(ζ3 + ζ4)

where ζ is the fundamental primitive root of unity. We have that

b

a
= 2 cos θ = 2 cos 6θ

c

b
= 2 cos 2θ

a

c
= −2 cos 4θ

whence

b2

a2
+

c2

b2
+

a2

c2
= 4 cos2 6θ + 4 cos2 2θ + 4 cos2 4θ

= (ζ3 + ζ4)2 + (ζ + ζ6)2 + (ζ2 + ζ5)2

= ζ6 + 2 + ζ + ζ2 + 2 + ζ5 + ζ4 + 2 + ζ = 6 − 1 = 5 .

Also

a

b
=

sin 6θ

sin 2θ
= 4 cos2 2θ − 1 = (ζ + ζ6)2 − 1

= 1 + ζ2 + ζ5

−b

c
=

sin 9θ

sin 3θ
= 4 cos2 3θ − 1 = 4 cos2 4θ − 1

= (ζ2 + ζ5)2 − 1 = 1 + ζ4 + ζ3

c

a
=

sin 3θ

sin θ
= 4 cos2 6θ − 1

= (ζ3 + ζ4)2 − 1

= 1 + ζ6 + ζ ,
whence

a2

b2
+

b2

c2
+

c2

a2

= (3 + 2ζ2 + ζ3 + ζ4 + 2ζ5) + (3 + ζ + 2ζ3 + 2ζ4 + ζ6)

+(3 + 2ζ + ζ2 + ζ5 + 2ζ6)

= 9 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6)

= 9 − 3 = 6 .

Solution 3. Let A,B,C,D,E be consecutive vertices of the regular heptagon.
Let AB, AC and AD have respective lengths a, b, c, and let ∠BAC = θ.
Then θ = π/7, the length of BC, of CD and of DE is a, the length of AE is
c, ∠CAD = ∠DAE = θ, since the angles are subtended by equal chords of
the circumcircle of the heptagon, ∠ADC = 2θ, ∠ADE = ∠AED = 3θ and
∠ACD = 4θ. Triangles ABC and ACD can be glued together along BC
and DC (with C on C) to form a triangle similar to ∆ABC, whence

a + c

b
=

b

a
. (1)
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Triangles ACD and ADE can be glued together along CD and ED (with
D on D) to form a triangle similar to ∆ABC, whence

b + c

c
=

b

a
. (2)

Equation (2) can be rewritten as
1

b
=

1

a
− 1

c
. Whence b =

ac

c − a
.

Substituting this into (1) yields

(c + a)(c − a)

ac
=

c

c − a

which simplifies to
a3 − a2c − 2ac2 + c3 = 0 . (3)

Note also from (1) that b2 = a2 + ac.

a2

b2
+

b2

c2
+

c2

a2
− 6

=
a4c2 + b4a2 + c4b2 − 6a2b2c2

a2b2c2

=
a4c2 + (a4 + 2a3c + a2c2)a2 + c4(a2 + ac) − 6a2c2(a2 + ac)

a2b2c2

=
a6 + 2a5c − 4a4c2 − 6a3c3 + a2c4 + ac5

a2b2c2

=
a(a2 + 3ac + c2)(a3 − a2c − 2ac2 + c3)

a2b2c2
= 0 .

b2

a2
+

c2

b2
+

a2

c2
− 5

=
(a4 + 2a3c + a2c2)c2 + a2c4 + a4(a2 + ac) − 5a2c2(a2 + ac)

a2b2c2

=
a6 + a5c − 4a4c2 − 3a3c3 + 2a2c4

a2b2c2

=
a2(a + 2c)(a3 − a2c − 2ac2 + c3)

a2b2c2
= 0 .

Solution 4. [R. Barrington Leigh] Let the heptagon be ABCDEFG; let AD
and BG intersect at P , and BF and CG intersect at Q. Observe that |PD| =
|GE| = b, |AP | = c − b, |GP | = |DE| = a, |BP | = b − a, |GQ| = |AB| = a,
|CQ| = c − a. From similarity of triangles, we obtain the following:

a

c
=

c − b

a
=⇒ a

c
− c

a
+

b

a
= 0 (∆APG ∼ ∆ADE)

c − a

a
=

c

b
=⇒ c

a
− c

b
= 1 (∆QBC ∼ ∆CEG)
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c − b

a
=

b − a

b
=⇒ c

a
− b

a
+

a

b
= 1 (∆APG ∼ ∆DPB)

b − a

a
=

b

c
=⇒ b

a
− b

c
= 1 (∆ABP ∼ ∆ADB) .

Adding these equations in pairs yields

b

a
+

a

c
− c

b
= 1 =⇒ b2

a2
+

a2

c2
+

c2

b2
+ 2

(

b

c
− c

a
− a

b

)

= 1

and
c

a
+

a

b
− b

c
= 2 =⇒ c2

a2
+

a2

b2
+

b2

c2
+ 2

(

c

b
− b

a
− a

c

)

= 4 .

The desired result follows from these equations.

Solution 5. [of the second result by J. Chui] Let the heptagon be ABCDEFG
and θ = π/7. Using the Law of Cosines in the indicated triangles ACD and
ABC, we obtain the following:

cos 2θ =
a2 + c2 − b2

2ac
=

1

2

(

a

c
+

c

a
− b2

ac

)

cos 5θ =
2a2 − b2

2a2
= 1 − 1

2

(

b

a

)2

from which, since cos 2θ = − cos 5θ,

−1 +
1

2

(

b

a

)2

=
1

2

(

a

c
+

c

a
− b2

ac

)

or
b2

a2
= 2 +

a

c
+

c

a
− b2

ac
. (1)

Examining triangles ABC and ADE, we find that cos θ = b/2a and cos θ =
(2c2 − a2)/(2c2) = 1 − (a2/2c2), so that

a2

c2
= 2 − b

a
. (2)

Examining triangles ADE and ACF , we find that cos 3θ = a/2c and cos 3θ =
(2b2 − c2)/(2b2), so that

c2

b2
= 2 − a

c
. (3)

Adding equations (1), (2), (3) yields

b2

a2
+

c2

b2
+

a2

c2
= 6 +

c2 − bc − b2

ac
.

By Ptolemy’s Theorem, the sum of the products of pairs of opposite sides of
a concylic quadrilaterial is equal to the product of the diagonals. Applying
this to the quadrilaterals ABDE and ABCD, respectively, yields c2 = a2+bc
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and b2 = ac + a2, whence c2 − bc− b2 = a2 + bc− bc− ac− a2 = −ac and we
find that

b2

a2
+

c2

b2
+

a2

c2
= 6 − 1 = 5 .

Solution 6. [of the second result by X. Jin] By considering isosceles triangles
with side-base pairs (a, b), (c, a) and (b, c), we find that b2 = 2a2(1− cos 5θ),
a2 = 2c2(1 − cos θ), c2 = 2b2(1 − cos 3θ), where θ = π/7. Then

b2

a2
+

c2

b2
+

a2

c2
= 2[3 − (cos θ + cos 3θ + cos 5θ)] .

Now,

sin θ(cos θ + cos 3θ + cos 5θ)

=
1

2
[sin 2θ + (sin 4θ − sin 2θ) + (sin 6θ − sin 4θ)]

=
1

2
sin 6θ =

1

2
sin θ ,

so that cos θ+cos 3θ+cos 5θ = 1/2. Hence b2/a2+c2/b2+a2/c2 = 2(5/2) = 5.

3.11. Let z1, z2, z3, z4 be distinct complex numbers for which |z1| = |z2| =
|z3| = |z4|. Suppose that there is a real number t 6= 1 for which

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a
rectangle.

Solution. Let s = z1 + z2 + z3 + z4. Then

|s − (1 − t)z1| = |s − (1 − t)z2| = |s − (1 − t)z3| .

Therefore, s is equidistant from the three distinct points (1− t)z1, (1− t)z2

and (1−t)z3; but these three points are on the circle with centre 0 and radius
(1 − t)z1. Therefore s = 0.

Since z1 − (−z2) = z1 + z2 = −z3 − z4 = (−z4) − z3 and z2 − (−z3) =
z2 + z3 = −z4 − z1 = (−z4) − z1, z1, −z2, z3 and −z4 are the vertices of
a parallelogram inscribed in a circle centered at 0, and hence of a rectangle
whose diagonals intersect at 0. Therefore, −z2 is the opposite of one of z1,
z3 and −z4. Since z2 is unequal to z1 and z3, we must have that −z2 = z4.
Also z1 = −z3. Hence z1, z2, z3 and z4 are the vertices of a rectangle.
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THE QUADRATIC

§1. Exercises on Basic Properties

1.1. Let f(x) be a quadratic polynomial and suppose that we divide it
by x − u and obtain a remainder r, where u and r are constants, giving:
f(x) = (x − u)g(x) + r.

(a) Explain why the degree of g(x) is 1.

(b) Prove that r = f(u).

(c) Prove that u is a root of the equation f(x) = 0 if and only if there is a
linear polynomial g(x) for which f(x) = (x − u)g(x).

1.2. (a) How many different quadratic polynomials f(x) can you find for
which f(0) = 5, f(1) = 3 and f(2) = −7? Determine all of them.

(b) Determine all of the polynomials g(x) of degree not exceeding 2 for which
g(−3) = 2, g(−1) = −1 and g(4) = 0.

1.3. (a) Suppose that f(x) and g(x) are two polynomials of degree not
exceeding 2 for which f(u) = g(u), f(v) = g(v) and f(w) = g(w) for three
distinct numbers u, v and w. Prove that f(x) and g(x) must be the same
polynomial.

(b) Suppose that h(x) is a quadratic polynomial that vanishes at the two
distinct numbers u and v, i.e., h(u) = h(v) = 0. Prove that h(x) must be a
constant multiple of (x − u)(x − v).

(c) Let a, b, c be three distinct numbers. Determine a quadratic polynomial
h(x) for which h(a) = h(b) = 0 and h(c) = 1.

1.4. (a) Suppose that a, b and c are three distinct numbers and that f(x),
g(x) and h(x) are quadratic polynomials for which

h(a) = h(b) = g(a) = g(c) = f(b) = f(c) = 0

and

f(a) = g(b) = h(c) = 1 .

Let p(x) = uf(x)+vg(x)+wh(x) for some constants u, v and w. Determine
the values of p(a), p(b) and p(c).

(b) Suppose that p(x) is a polynomial of degree less than three for which
p(a), p(b) and p(c) are specified. Prove that, for every x,

p(x) = p(a)
(x − b)(x − c)

(a − b)(a − c)
+ p(b)

(x − a)(x − c)

(b − a)(b − c)
+ p(c)

(x − a)(x − b

(c − a)(c − b)
.

(c) Use the format of (b) to determine the polynomials f(x) and g(x) asked
for in Exercise 1.2. Check that you get the same answer as you did before.
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(d) Use (b) to give a necessary and sufficient condition involving an arbitrary
set {a, b, c} of numbers that the polynomial p has degree strictly less than 2.
[Hint: Look at the coefficient of x2 in (b).]

1.5. (a) For each of the quadratic polynomials

x2, 1 − x2,
1

2
x(x + 1), x2 + 3x + 3

construct a table listing in order nonnegative integral values of x, the
corresponding values of the polynomial and the difference between the values
of the polynomials at consecutive integers. What do you notice about the
sequence of differences? If you take differences of consecutive differences,
what happens?

(b) Let p(x) = ax2 + bx + c be a general quadratic polynomial. Verify that,
if q(x) = p(x + 1) − p(x) and r(x) = q(x + 1) − q(x), then q(x) is a linear
polynomial and r(x) is a constant polynomial.

(c) It is given that f(x) is a quadratic polynomial. Fill in the missing entries
in the following table:

x f(x) g(x) = f(x + 1) − f(x) h(x) = g(x + 1) − g(x)

0 5 4 ?

1 ? −1 ?

2 ? ? ?

3 ? ? ?

4 ? ? ?

What do you think f(x) is?

1.6. Exercise 1.4 provided an “all-at-once” method for constructing a
quadratic polynomial p(x) with assigned values p(a), p(b) and p(c) at the
respective distinct values a, b, c. An alternative approach is to build it up
by degree. The polynomial f(x) of lowest degree for which f(a) = p(a) is
clearly the constant polynomial f(x) ≡ p(a).

(a) The next step is to “correct” f(x) to a new polynomial g(x) which will
take the desired values at both a and b. Argue that g(x) must have the form
f(x) + r(x − a) for some constant r, and vertify that

r =
p(b) − p(a)

b − a
.

(b) Finally, argue that we can get the quadratic polynomial p(x) we want
by trying

p(x) = p(a) +

(

p(b) − p(a)

b − a

)

(x − a) + s(x − a)(x − b)
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where s is selected to make the right side equal to p(c) when x = c. Determine
the value of s that will achieve this.

(c) Use this method to obtain the polynomials asked for in Exercise 1.2.
Try it with the three values at which the polynomial is to be computed in
different orders.

1.7. Let p(x), q(x), r(x) be as given in Exercise 1.5.(b). Suppose that p(0),
q(0) and r(0) are given.

(a) Prove that, for each positive integer n,

p(n) = p(0) + q(0) + q(1) + · · · + q(n − 1)

q(n) = q(0) + r(0) + r(1) + · · · + r(n − 1) = q(0) + (n − 1)r(0) .

(b) Determine a formula for p(n) in terms of p(0), q(0) and r(0).

1.8. (a) Write down some values of the polynomial x2 + x + 1 for x =
0, 1, 2, 3, · · · . Observe that the product of two consecutive values in the list
occur elsewhere in the list. Formulate and prove a general result.

(b) Answer (a) for the polynomial x2 + x = x(x + 1).

(c) Any integer that is the product of two consecutive integers is called
oblong. Part (b) can be used to show that there are infinitely many triples
(a, b, c) of oblong numbers for which c = ab. Investigate the existence of
triples of oblong numbers no two of which are consecutive but for which the
product of two of them is equal to the third.

1.9. Let p(x) be a monic quadratic polynomial. (This means that the leading
coefficient is 1, so that it has the form p(x) = x2 + bx + c.) Suppose also
that its coefficients are integers.

(a) Prove that there exists an integer k such that p(0)p(1) = p(k). How
many possible such values of k are there?

(b) More generally, prove that for each integer n, there is at least one integer
m for which p(n)p(n + 1) = p(m).

(c) Are there any values of n for which the value of m determined in (b) is
unique?

1.10. Suppose that p(x) is a quadratic polynomial for which p(a) = p(b) for
distinct values of a and b. Prove that p(x) = r(x−c)2 +s for some constants
r and s, where c = − 1

2 (a + b).. Deduce that if p(u) = p(v) for some other
pair u, v of distinct numbers, then a + b = u + v.

1.11. Determine all quadratic polynomials f that satisfy

f(f(1)) = f(f(2)) = f(f(3)).
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1.12. Does there exist a quadratic polynomial f(x) with integer coefficients
and the unusual property that, whenever x is a positive integer which consists
only of 1’s, then f(x) is also a positive integer consisting only of 1’s (where
the representation is to base 10)?

Comments, Answers and Solutions

1.2. (a) f(x) = −4x2 + 2x + 5.

1.2. (b) Note that g(x) has the form (x − 4)(ax − b),

1.3. (a) The polynomial f(x) − g(x) vanishes when x = 0, 1, 2 and so is
divisible by the cubic a(x−1)(x−2), This is possible if and only if f(x)−g(x)
is the zeropolynomial.

1.3. (c) h(x) = (x − a)(x − b)/(c − a)(c − b).

1.6. (b) Let
p(x) = p(a) + r(x − a) + s(x − a)(x − b)

where r = (p(b) − p(a))/(b − a). Then

s =
1

(c − a)(c − b)

[

(p(c) − p(a)) − p(b) − p(a)

b − a
(c − a)

]

=
(p(c) − p(a))(b − a) − (p(b) − p(a))(c − a)

(c − a)(c − b)(b − a)

=
(p(c) − p(b))(b − a) − (p(b) − p(a))(c − b)

(c − a)(c − b)(b − a)

=
1

c − a

[

p(c) − p(b)

c − b
− p(b) − p(a)

b − a

]

.

This method can be generalized for polynomials f of higher degree. Suppose
that we have numbers a1, a2, · · · and that we want a polynomial f such that
f(a − 1) = b1, f(a2) = b2, · · · . We can systemize matters by calculating
what are known as divided differences. With f(a1) = b1 and f(a2) = b2,
then the divided difference of f for these two points is given by

∆(a1, a2; b1, b2) =
b2 − b1

a2 − a1
.

For brevity, we may write this as ∆(a1, a2) when the values of b1 and b2 are
understood. Observe that ∆(a1, a2) = ∆(a2, a1).

The second order divided difference is defined with reference to three points
in the domain of f :

∆2(a1, a2, a3; b1, b2, b3) =
1

a3 − a1
[∆(a2, a3; b2, b3) − ∆(a1, a2; b1, b2)] .

There are many interesting equivalences for divided differences. For example,
we see that

∆2(a1, a2, a3) =
1

a3 − a2
[∆(a1, a3) − ∆(a1, a2)] .
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To check that this is useful, consider the polynomial:

f(x) = b1 + ∆(a1, a2)(x − a1) + ∆2(a1, a2, a3)(x − a1)(x − a2) .

We have already noted that f(a1) = b1 and f(a2) = b2. Also,

f(a3) = b1 + ∆(a1, a2)(a3 − a1) + ∆2(a1, a2, a3)(a3 − a1)(a3 − a2)

= b1 + (a3 − a1)

[

∆(a1, a2) +
(∆(a2, a3) − ∆(a1, a2))(a3 − a2)

a3 − a1

]

= b1 + [∆(a1, a2)(a3 − a1) + ∆(a2, a3)(a3 − a2)
−∆(a1, a2)(a3 − a2)]

= b1 + [∆(a1, a2)(a2 − a1) + ∆(a2, a3)(a3 − a2)]

= b1 + (b2 − b1) + (b3 − b2) = b3 .

If we want to additionally make f(a4) = b4, we can define

∆3(a1, a2, a3, a4; b1, b2, b3, b4)

=
1

a4 − a1
[∆2(a2, a3, a4; b2, b3, b4) − ∆2(a1, a2, a3; b1, b2, b3)] .

Let

f(x) = b1 + ∆(a1, a2)(x − a1) + ∆2(a1, a2, a3)(x − a1)(x − a2)

+∆3(a1, a2, a3, a4)(x − a1)(x − a2)(x − a3) .

Then f(a4) is equal to

b1 + ∆(a1, a2)(a4 − a1) + ∆2(a1, a2, a3)(a4 − a1)(a4 − a2)

+ ∆3(a1, a2, a3)(a4 − a1)(a4 − a2)(a4 − a3)

= b1 + ∆(a1, a2)(a4 − a1) + (a4 − a1)(a4 − a2)

[

∆2(a1, a2, a3)+

(

∆2(a2, a3, a4) − ∆2(a1, a2, a3)

a4 − a1

)

(a4 − a3)

]

= b1 + ∆(a1, a2)(a4 − a1) + (a4 − a2)
[

∆2(a2, a3, a4)(a4 − a3)+

∆2(a1, a2, a3)(a3 − a1)
]

= b1 + ∆(a1, a2)(a4 − a1)+

(a4 − a2)

[

∆(a3, a4) − ∆(a2, a3)

a4 − a2
(a4 − a3) + ∆(a2, a3) − ∆(a1, a2)

]

= b1 + ∆(a1, a2)(a4 − a1) + ∆(a3, a4)(a4 − a3) − ∆(a2, a3)(a4 − a3)+

∆(a2, a3)(a4 − a2) − ∆(a1, a2)(a4 − a2)

= b1 + ∆(a1, a2)(a2 − a1) + ∆(a2, a3)(a3 − a2) + ∆(a3, a4)(a4 − a3)

= b1 + (b2 − b1) + (b3 − b2) + (b4 − b3) = b4 .

Thus, the function satisfies f(ai) = bi for 1 ≤ i ≤ 4.
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In an analogous way, we can define divided differences of higher order and
extend the interpolating polynomial indefinitely to accommodate as many
interpolation points as we require.

1.8. (a) (x2 + x + 1)[(x + 1)2 + (x + 1) + 1] = (x + 1)4 + (x + 2)2 + 1.

1.8. (c) x(x + 1) · (x + 1)(x + 2) = (x2 + 2x)(x2 + 2x + 1).

1.9. (a) p(0)p(1) = c + bc + c2 = p(c) = p(p(0)). The equation p(x) = p(c)
has two solutions x = c and x = −b − c.

1.9. (b) Let q(x) = p(n + x). Then

p(n)p(n + 1) = q(0)q(1) = q(q(0)) = p(n + q(0)) = p(n + p(n)) .

1.10. Let p(x) = rx2 + tx+w. Then p(a)−p(b) = 0 leads to r(a+ b)+ t = 0,
so that p(x) = rx2 − r(a + b)x + w.

1.11. Because f(x) is quadratic, it cannot be the case either that all of f(1),
f(2), f(3) are equal or that all of f(1), f(2), f(3) are distinct. There are
three possibilities: (i) f(1) = f(2) = u, f(3) = v; (ii) f(1) = f(3) = u,
f(2) = v; (iii) f(1) = u, f(2) = f(3) = v, for distinct values of u and v. In
the solution, we make use of the result of Exercise 1.10.

(i) We must have that f(x) = 4a(x − 3
2 )2 + b for some constants a and b,

from which f(1) = f(2) = a+ b and f(3) = 9a+ b. Therefore, from Exercise
1.10, 3 = f(1)+f(3) = 10a+2b. This is a necessary and sufficient condition
that f takes the same values at f(1) and f(3). Thus, f(x) must have the
form

f(x) = 4a

(

x − 3

2

)2

+

(

3

2
− 5a

)

= 4ax2 − 12ax + 4a +
3

2
.

(ii) We must have that f(x) = a(x−2)2+b for some constants a and b. Then
u = a + b and v = b, so that a + 2b = 4. Thus f(x) = (4 − 2b)(x − 2)2 + b.
A particular example is f(x) = 2(x − 2)2 + 1 = 2x2 − 8x + 9.

1.12. Let x be a number all of whose digits are 1. Then x must have the
form (1/9)(xn − 1) for some positive integer n. We calculate the square of
this in an attempt to get something that involves x. It can be checked that
x2 = (102n − 1)/81 − 2x/9. The desired polynomial is 9x2 + 2x.

§2. Exercises on polynomials of higher degree

The properties outlined for quadratics in Section 1 can be generalized to
polynomials of higher degree. This section will briefly introduce them.

2.1. Formulate and prove a generalization to Exercise 1.4 to give an expression
for a polynomial p of degree less than n that assumes the values p(ai) at the
distinct numbers ai (1 ≤ i ≤ n).
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2.2. The Remainder Theorem. Let f(x) be a polynomial of degree n ≥ 2
and let a be a real number. Suppose that f(x) be divided by x − a with
remainder r:

f(x) = g(x)(x − a) + r ,

where g(x) is a polynomial of degree n − 1. Prove that r = f(a).

2.3. The Factor Theorem. Prove that a is a root of the polynomial f(x)
(i.e., f(a) = 0) if and only if f(x) is divisible by the polynomial x − a, i.e.,

f(x) = (x − a)g(x)

for some polynomial g(x).

2.4. Suppose that f(x) is a polynomial of degree exceeding 2, and that f(x)
be divided by (x − a)(x − b) where a 6= b. Prove that the remainder is

f(b)

b − a
(x − a) +

f(a)

a − b
(x − b) .

2.5. Formulate and prove a generalization of Exercise 2.4 when the polynomial
f(x) of degree at least n is divisible by (x − a1)(x − a2) · · · (x − an).

2.6. In this exercise, we will generalize the method of Exercise 1.6 in the
special case that we construct the polynomial of smallest degree that assumes
specified values f(0), f(1), f(2), · · · . In this case, we define the ordinary
(undivided) differences by

∆0f(n) ≡ If(n) = f(n)

∆1f(n) = ∆f(n) = f(n + 1) − f(n)

∆2f(n) = ∆f(n + 1) − ∆f(n) = f(n + 2) − 2f(n + 1) + f(n)

and generally

∆kf(n) = ∆k−1f(n + 1) − ∆k−1f(n)

for k ≥ 2. There is a useful operational calculus that we can bring into play.
Define Ef(n) = f(n + 1). Then Ekf(n) = f(n + k) and ∆ = (E − I), so
that ∆k = (E − I)k. From the above, we see that

∆2f(n) = f(n + 2) − 2f(n + 1) + f(n) = E2f(n) − 2Ef(n) + If(n)

= (E − I)2f(n) .

By means of this operational calculus, we have the formula

∆kf(n) =

k
∑

j=0

(−1)j

(

k

j

)

f(n + k − j) .
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We can treat polynomials in I, E and ∆ as satisfying the regular rules of
algebra. In particular

f(n) = Enf(0) = (I + ∆)nf(0) =
n

∑

i=0

(

n

i

)

∆if(0) ,

for each positive integer k, facts that can be verified directly by unpacking
the operational notation.

We define the factorial power of x by

x(r) = x(x − 1)(x − 2) · · · (x − r + 1)

for each integer r ≥ 1, with x(0) = 1.

(a) Verify that that ∆x(r) = rx(r−1) for each nonnegative integer r.

(b) Deduce that f is a polynomial of degree n if and only if ∆nf(x) is a
nonzero constant and ∆n+1f(x) is identically 0.

(c) Prove the identity

n
∑

k=0

(−1)k

(

n

k

)

f(x + k) = 0

for all x whenever f(x) is a polynomial of degree strictly less than n.

Let f(x) be a polynomial. Establish that

f(x) = (I + ∆)xf(0) =

∞
∑

j=0

(

x

j

)

∆jf(0) ,

where
(

x
j

)

= x(x − 1) · · · (x − j + 1)/j! = x(j)/j!, and the series terminates
after a finite number of terms. When the differences at some point are known,
this gives us another way of representing a polynomial. Check this formula
on various polynomials of your choice. For example, use this formula and
a difference table to find the formula for the sum of the fourth powers of
integers from 1 to x inclusive.

2.7. Prove that, if a polynomial of degree n takes integer values at n + 1
consecutive integers, it takes integer values at every integer and is a sum
of polynomials of the form r

(

x
k

)

, for constant r and nonnegative integer k.
Thus, every polynomial in x taking integer values when x is an integer has
the form

∑n

k=0 ak

(

x
k

)

.

Comment

2.4, 2.5. Observe that, if f(x) = (x−a1)(x−a2) · · · (x−ak)g(x)+h(x), where
the degree of h(x) is less than k, then h(x) is a uniquely determine polynomial
whose values agree with those of f(x) when x = ai for (1 ≤ i ≤ k).
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§3. Exercises on Completing the Square and Transformations

3.1. Let f(x) be a real-valued function.

(a) Compare the graphs of the equations y = f(x) and y = f(2x).

(b) Compare the graphs of the equation y = f(x) and y = 4f(x).

(c) Corroborate your answers to parts (a) and (b) with the example f(x) =
x2.

3.2. Let ax2 + bx + c be a quadratic polynomial with real coefficients.

(a) Verify that it equals

a

(

x +
b

2a

)2

− 1

4a
(b2 − 4ac)

(b) From (a), argue that, when a > 0, the quadratic assumes its minimum
value when x = −b/2a, while if a < 0, it assumes its maximum value when
x = −b/2a.

(c) Use this to describe a transformation in the plane that takes the graph
of the equation

y = ax2 + bx + c

to the graph of the equation y = x2.

3.3. One geometric definition of a parabola is that it is the locus of points
whose distance from a fixed point (the focus) is equal to its distance from
a fixed line (the directrix). It is asserted that the graph of the equation
y = ax2+bx+c is a parabola. Is this consistent with the geometric definition?
If so, what is the focus? What is the directrix? Look first at some special
cases, such as y = x2, y = x2 + c, y = ax2, y = x2 − 3x + 2.

3.4. Is it true that all parabolas are the same shape? Explain.

Comments, Answers and Solutions

3.2. (c) The required transformation is the composite of a vertical translation
of (b2 − 4ac)/4a upwards, a horizontal translation to the right of b/2a and a
vertical dilatation (that leaves points on the x−axis fixed) with factor 1/a.

3.3. For the parabola with equation y = x2, the focus is at (0, 1
4 ) and the

directrix is the line y = − 1
4 .

3.4. Yes. Any pair consisting of a line and a point not on the line can be
carried to any other such pair by a similarity transformation, that preserves
angles and relative distances.
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§4. Exercises on Solutions of Quadratics

4.1. Suppose that a 6= c and that x = (b − d)/(a − c) satisfies one of the
equations x2 − ax + b = 0 and x2 − cx + d = 0. Prove that this value of x
satisfies the other.

4.2. Let p(x) and q(x) be two quadratic polynomials with integer coeffients.
Suppose that there is an irrational number c for which p(c) = q(c) = 0.
Prove that one of the polynomials p(x) and q(x) is a constant multiple of
the other.

4.3. Let p(x) = x2 + bx + c. Suppose that p(0) and p(1) are solutions of the
quadratic equation p(x) = 0. What are the possible values of the pair (b, c)?

4.4. (a) Show that, for every quadratic equation (x − p)(x − q) = 0, there
exist constants a, b, c with c 6= 0 such that (x− b)(b−x) = c is equivalent to
the original equation and the following reasoning “either x− a or b− x must
equal to c” yields the correct answers “x = p or x = q”.

(b) Determine constants a, b, c with c 6= 0 so that the equation

(x − 19)(97 − x) = 0
can be “solved” in this manner.

[Round 25 of the International Mathematical Talent Search.]

4.5. Suppose x and y are integers. Solve the equation

x2y2 − 7x2y + 12x2 − 21xy − 4y2 + 63x + 70y − 174 = 0 .

[Problem 2332 from Crux Mathematicorum.]

4.6. Two nested concentric rectangles, are given, with corresponding sides
parallel and each side of the inner rectangle the same distance from the
corresponding side of the outer.

(a) Prove that, if the area of the inner rectangle is exactly half that of the
outer rectangle, then the perimeter of the inner rectangle is equal to the sum
of the lengths of the diagonals of the outer rectangle.

(b) Verify the result in (a) when the outer rectangle has dimensions 3 × 4,
8 × 15 and more generally (m2 − n2) × 2mn where m and n are positive
integers.

4.7. The illegal moves method for quadratics.

One method for solving quadratics is to factor them by what is known as
the “illegal moves method”. This is described below and you are invited
to analysis it and see whether or not it is legitimate and how it could be
justified.

Suppose that ax2 + bx + c has to be factored, where a, b, c are integers with
no common factors save 1, a is neither 0 nor 1, and the discriminant b2−4ac
is the square of an integer, so that the roots of the quadratic are rational.
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Follow these steps:

1. Remove the coefficient of the x2 term by multiplying it into the constant
term. This produces x2 + bx + ac.

2. Now factor x2 + bx + ac. Since this factors over the integers, there exist
integers b1 and b2 for which x2 + bx + ac = (x + b1)(x + b2).

3. Next, divide each of the constants by a: (x + b1/a)(x + b2/a).

4. Reduce the fractions to lowest terms:

(x + b1/a)(x + b2/a) = (x + u1/v1)(x + u2/v2) .

5. “Squeeze” the denominator of each fraction in front of the binomials to
get the desired factorization: (v1x + u1)(v2x + u2).

Here is how the method goes on an example: factor 6x2 − 7x − 3.

1. Remove the 6 and multiply it into the constant term: x2 − 7x − 18.

2. Factor the new trinomial: (x − 9)(x + 2).

3. Divide each constant by 6: (x − 9
6 )(x + 2

6 ).

4. Reduce fractions to lowest terms: (x − 3
2 )(x + 1

3 ).

5. Finally, move each denominator to the leading term: (2x − 3)(3x + 1),
which is the factored form of 6x2 − 7x − 3.

Comments, Answers and Solutions

4.1. For a quick argument, note that the stated value of x satisfies the
difference of the two equations.

4.2. Let a and c be the roots of p(x) = 0 and let b and c be the roots of
q(x) = 0. Observe that a− b = (a + c)− (b + c) and (a− b0c = ac− bc must
both be rational.

4.3. Observe that p(p(0)) = 0 if and only if c(c + b + 1) = 0. Let c = 0.
Then 0 = p(p(1)) if and only if (1 + b)2 + b(1 + b) = 0 or b = 0 and b = − 1

2 .
Suppose that b + c = −1, so that

p(x) = x2 + bx − (b + 1) = (x − 1)(x + b + 1) = (x − 1)(x − c) .

Then p(1) = 0 is a solution of the equation p(x) = 0 if and only if b = −1 or
c = 0.

4.4. (a) The two equivalent equations are x2 − (p + q)x + pq = 0 and
x2 − (a − b)x + (ab + c) = 0, so that p + q = a + b and pq = ab + c. Since
x = a + c and x = b − c satisfy the equations, we may take p = a + c and
q = b− c. Thus c = pq − ab = (b− a)c− c2, whence c = b− a− 1. Therefore
p = b − 1 and q = a + 1. We may take (a, b, c) = (q − 1, p + 1, p − q + 1).
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4.4. (b) (a, b, c) can be either (96, 20,−77) or (18, 09, 79).

4.5. The equation can be rewritten

0 = x2(y2 − 7y + 12) − 21x(y − 3) − 2(2y2 − 35y + 57)
= (y − 3)[(y − 4)x2 − 21x − 2(2y − 29)
= (y − 3)[y(x2 − 4) − (4x2 + 21x − 58)
= (y − 3)(x − 2)[y(x + 2) − (4x + 29)

= (y − 3)(x − 2)(xy + 2y − 4x − 29)
= (y − 3)(x − 2)[(x + 2)(y − 4) − 21] .

The solutions are

(x, y) = (s, 3), (2, t), (19, 5), (5, 7), (1, 11),

(−1, 25), (−3,−17), (−5,−3), (−9, 1), (−23, 3) ,

where s and t are arbitrary.

4.6. (a) Let x×y be the dimensions of the outer rectangle and z the difference
between corresponding sides of the two rectangles. Then 2(x−z)(y−z) = xy
implies that

9 = xy − 2(x + y)z + 2z2 =
1

2
[(x + y − 2z)2 − (x2 + y2)]

from which the result follows.

4.6.(b) The inner rectangle has dimensions (m2 − mn) × (n2 + mn).

4.7. Both the equations ax2 + bx + c = 0 and x2 + bx + ac = 0 yield the
same numerator in the quadratic formula for their roots so that the roots of
the former are equal to 1/a times the roots of the latter; from this, it is easy
to see how a factorization of the second quadratic induces a factorization of
the first. It may be that this comparison of the roots of the two quadratic
equations is what led to the promulgation of the method in the first place.

§5. Exercises on Inequalities

5.1. Let a and b be positive real numbers. Using the fact that the quadratic
equation 0 = (x − a)(x − b) = x2 − (a + b)x + ab has real roots and the
discriminant condition, verify the Arithmetic-Geometric Means Inequality

√
ab ≤ a + b

2
.

When does equality occur?

5.2. (a) Suppose that a, b, c, u, v, w are real numbers. Using the fact that
the quadratic polynomial

(ax + u)2 + (bx + v)2 + (cx + w)2

= (a2 + b2 + c2)x2 + 2(au + bv + cw)x + (u2 + v2 + w2)
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is always nonnegative, argue that it has either coincident real roots or nonreal
roots. Use the discriminant condition for this to obtain the Cauchy-Schwarz
Inequality

au + bv + cw ≤ (a2 + b2 + c2)
1

2 (u2 + v2 + w2)
1

2 .

When does equality hold?

(b) Generalize (a) to obtain an inequality for a1, a2, · · · , an and b1, b2, · · · , bn.

5.3. Consider the function

f(x) = x2(1 − x) .

(a) Verify that f(x) ≥ 0 when x ≤ 1 and f(x) < 0 when x > 1. What do
you think the graph of the equation y = f(x) looks like?

(b) Argue that, if 0 ≤ u ≤ 1, then the equation f(x) = f(u) has three real
solutions, one of which is x = u.

(c) On the interval {x : 0 ≤ x ≤ 1}, the function f(x) assumes a positive
maximum value m. Argue that the equation f(x) = k has exactly one
real solution when k < 0 or k > m, and exactly three real solutions when
0 < k < m. You can see this graphically by examining how lines of equation
y = k intersect the graph of y = f(x). Observe that the lines y = 0 and
y = m are tangent to the graph of y = f(x).

(d) Let u be any real number. By the factor theorem, f(x) − f(u) = (x −
u)g(x) for some polynomial g(x). Determine this polynomial g(x). Show
that g(u) = 0 if and only if u = 0 and u = 2

3 .

(e) Suppose that f(u) = m. Then the cubic equation f(x) − f(u) = 0 has
u as a double root in the sense that as k approaches m from below, two of
the intersection points of the line y = k with the graph of y = f(x) coalesce
into a single point, the point of tangency. Explain why

f(x) ≤ f(2/3) = 4/27

for 0 ≤ x ≤ 1. Thus, 4/27 is the maximum value assumed by f(x) when
0 ≤ x ≤ 1.

(f) As a check on the conclusion of (e), factor the polynomial

4

27
− f(x)

and show that it is non-negative when x ≥ −1/3.

§6. Exercises on Sum and Product of Roots

6.1. The roots of the quadratic equation x2 +bx+c = 0 are m and n. Verify
that b and c satisfy the quadratic equation

x2 + (m + n − mn)x − mn(m + n) = 0.

6.2. (a) Determine any solution in positive integers to the diophantine
equation

x2 + y2 + z2 + w2 = xyzw .
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(b) It is possible to show that the diophantine equation in (a) has infinitely
many solutions in positive integers by the following argument. Suppose that
we have found a solution (x, y, z, w) = (a, b, c, d). Consider the quadratic
equation

x2 − bcdx + (b2 + c2 + d2) = 0 .

One root of this equation is the integer a. Argue that there is a second root
a′ which is also an integer. Show that (x, y, z, w) = (a′, b, c, d) is another
solution of the equation in (a). Use this strategy, starting with the solution
you found in (a), to obtain a sequence of different solutions to the equation.

Comments, Answers and Solutions

6.2. You can start with the solution (x, y, z, w) = (2, 2, 2, 2).

§7. More Exercises on Polynomials of Higher Degree

7.1. Consider the equation x4 −2x3 −x2 −2x+1 = 0. Since the coefficients
(1,−1,−2,−1, 1) are symmetric about the middle one, it turns out that there
is a special method for solving such an equation which reduces to the solution
of quadratic equations.

(a) Prove that, if the equation has a nonzero solution x = u, then x = 1/u
also satisfies the equation.

(b) Verify that x = 0 does not satisfy the equation. Deduce that the equation
is equivalent to

(

x2 +
1

x2

)

− 2

(

x +
1

x

)

− 1 = 0 .

(c) Set t = x + 1
x

and verify that x2 + 1
x2 = t2 − 2. Verify that the equation,

with this substitution, becomes t2 − 2t − 3 = 0. Solve for t.

(d) Solve the equations x + 1
x

= −1 and x + 1
x

= 3, and argue that the
solutions to these two equations satisfy the original equation.

(e) Use the result in (c) to obtain a factorization of x4 − 2x3 − x2 − 2x + 1
as a product of two quadratic polynomials.

7.2. (a) Write down several examples of products of four consecutive integers,
such as 3 × 4 × 5 × 6 = 360.

(b) Observe that in each case the result is not a square. Why do you think
this is?

(c) Extending the observation in (b), it appears on the basis of numerical
evidence that the product of four consecutive integers is 1 less than a perfect
square. This suggests that we might introduce variables to check the truth
of this in general. What is the general form for the product of consecutive
integers?

(d) Consider f(x) = x(x + 1)(x + 2)(x + 3). Rewriting the terms (think why
one might want to do this) thus, f(x) = [x(x+3)][(x+1)(x+2)], verify that
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(x + 1)(x + 2) = x(x + 3) + 2 and so

f(x) = [x(x + 3)]2 + 2[x(x + 3)]

and use this to show that f(x) + 1 is the square of a quadratic polynomial.
What is this quadratic polynomial?

(e) Some might prefer to represent the product of four consecutive integers
are g(x) = (x − 1)x(x + 1)(x + 2). Is this equally valid? Why might one
choose this form? Prove that g(x) + 1 is equal to the square of a quadratic
polynomial.

7.3. In his paper, Recherches sur les racines imaginaires des équations,
published in Mem. de l’academie des sciences de Berlin (5) (1749), 1751,
222-288 = Opera omnia (1) 6, 78-141, Leonard Euler (1707-1783) presents
what turns out to be a subtly incorrect proof of a version of the Fundamental
Theorem of Algebra, that each polynomial with real coefficients can be
written as a product of linear and quadratic polynomials with real coefficients.
However, his argument works in the case of a quartic polynomial h(x) =
Ax4 + Bx3 + Cx2 + Dx + E with A 6= 0.

(a) Prove that h(x) can be a factored as a product of quadratic polynomials
if and only if h(kx) and h(x−k) can be so factored for any nonzero constant
k. [Hint: If h(x) = f(x)g(x) is an identity if x, what happens if you replace
x by kx and x − k?]

(b) Let k = −B/4A. Verify that the coefficient of x3 in h(x + k) is 0.

(c) From (a) and (b), argue that, without loss of generality, it is enough to
prove that any polynomial of the form

h(x) = x4 + ax2 + bx + c

can be factored as a product of real quadratics.

Henceforth, we will suppose that h(x) has this form.

(d) Suppose that b = 0 so that h(x) = x4 + ax2 + c. Let a2 ≥ 4c. Use the
theory of the quadratic to prove that h(x) can be written as a product of
the form (x2 − r)(x2 − s) for real values of r and s.

(e) Suppose that b = 0 and that a2 < 4c. Verify that c > 0 and that

x4 + ax2 + c = (x2 +
√

c)2 − (2
√

c − a)x2

so that h(x) can be factored as a difference of squares.

(f) We now turn to the case

h(x) = x4 + ax2 + bx + c ,

where b 6= 0. The polynomial h(x) can be factored as a product of quadratics
if and only if real numbers u, v, w can be found for which

x4 + ax2 + bx + c = (x2 + ux + v)(x2 − ux + w) .
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By expanding the right side and comparing coefficients on the two sides of
the equation, obtain the set of conditions

a = v + w − u2

b = u(w − v)
c = vw ,

which, in turn, are equivalent to

w + v = a + u2

w − v =
b

u
4vw = 4c .

Thus, if we can find a suitable real value of u, then the real values of v and
w can be obtained from the first two of these equations and we can write
out the desired factorization. Verify that

2w = u2 + a +
b

u

2v = u2 + a − b

u

and thus show that u must satisfy

u6 + 2au4 + (a2 − 4c)u2 − b2 = 0 .

(g) In (f), it suffices to show that the sextic equation is satisfied by some
real value of u. One way to do this is through a result called the Intermediate
Value Theorem for continuous functions, which applies in particular to
polynomials. Let

f(x) = x6 +2ax4 +(a2−4c)x2−b2 = x6(1+2ax−2 +(a2−4c)x−4−b2x−6) .

Verify that f(0) < 0 and that f(x) is positive for very large values of x. The
graph of f(x) is a continuous curve which lies below the x−axis when x = 0
but lies above the axis when x is large. Deduce that it must cross the axis
somewhere, and so there must be a real number u such that f(u) = 0.

(h) Here is an erroneous argument to show that f(0) < 0. (It was this
approach that got Euler into trouble with polynomials of higher degree.)
Can you spot the difficulty? As above, try

x4 + ax2 + bx + c = (x2 + ux + v)(x2 − ux + w) .

Each of the quadratics can be factored as a product of linear polynomials,
so that

x4 + ax2 + bx + c = (x − α)(x − β)(x − γ)(x − δ) .

By comparing coefficients, verify that α + β + γ + δ = 0, and that u is the
sum of two of the roots. There are six ways of pairing the roots and the
correspond to six possible values of u:

α + β , α + γ , α + δ ,
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β + γ , β + δ , γ + δ .

Observe that, for any possible value of u, its negative is also a possible value
of u, so that the sextic equation f(x) = 0 satisfied by u has the form

f(u) ≡ (u2 − λ2)(u2 − µ2)(u2 − ν2) = 0 .

The left side has an odd number ( 1
2

(

4
2

)

= 3) of terms, and so its constant
coefficient, f(0), being the product of three squares, must be negative.

Comments, Answers and Solutions

7.1 (c) t = −1, 3.

§8. Exercises on Rational Functions

8.1. Let f(x) = (x2 + 2x + 2)/(x + 1) be defined for all real values of x not
equal to −1.

(a) By considering the solvability of the quadratic equation

x2 + 2x + 2 = k(x + 1),
prove that f(x) cannot assume any value strictly between −2 and 2 but that
it can assume all other real values.

(b) By considering the signs of the expressions f(x) − 2 and f(x) + 2,
corroborate the result of (a).

(c) Use a calculator to obtain the graph of y = f(x). Does this validate (a)
and (b)?

(d) Verify that f(x) = x + 1 + 1
x+1 . Use this representation to obtain a

rough sketch of the graph of y = f(x). Does this agree with (c)? Describe
the asymptotes of the graph.

8.2. Use the techniques of Exercise 8.1 to analyze the range of values and
the graphs of the following rational functions:

(a)
x2 + x + 4

x + 1

(b)
x2 + 4x − 4

x + 2
.

8.3. Let a, b, c be parameters and let

f(x) =
x2 + bx + c

x + a
.

Assume that x + a is not a factor of x2 + bx + c. We are concerned with
conditions on a, b, c under which each real number can be written in the
form f(x) for some real x, i.e., for each real k, f(x) = k is solvable. Three
approaches will be followed in this and the next two problems.
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(a) Verify that f(x) = k is equivalent to

x2 + (b − k)x + (c − ak) = 0 .

(b) Verify that the discriminant of the quadratic equation in (a) is

k2 − 2(b − 2a)k + (b2 − 4c) = [k − (b − 2a)]2 − 4(a2 − ab + c) .

(c) Using (b), prove that f(x) = k is solvable for each real value of k if and
only if a2 − ab + c < 0.

(d) Prove that, if f(x) = k is solvable for each real value of k, then x2 + bx+
c = 0 must have real roots. Is the converse of this result true?

8.4. Let f(x) be the function of Exercise 8.3.

(a) Verify that

f(x) =
x2 + bx + c

x + a

= x + (b − a) +
c + a2 − ab

x + a

= (x + a) +
c + a2 − ab

x + a
+ (b − 2a) .

(b) Suppose that c + a2 − ab > 0 and that x > −a. Verify that

f(x) ≥ 2
√

c + a2 − ab + (b − 2a)

with equality if and only if x + a =
√

c + a2 − ab.

(c) Suppose that c + a2 − ab > 0 and that x < −a. Verify that

f(x) ≤ −2
√

c + a2 − ab + (b − 2a)

with equality if and only if x + a = −
√

c + a2 − ab.

(d) Deduce from (f) and (g) that f(x) = k is not solvable when c+a2−ab > 0
and

b − 2a − 2
√

c + a2 − ab < k < b − 2a + 2
√

c + a2 − ab .

(e) Suppose that c + a2 − ab < 0. Argue that, as x increases from −a, then
f(x) passes through all real values. Similarly argue that as x decreases from
−a, then f(x) passes through all real values. Observe that this result, along
with (d), corroborates the result of Exercise 8.3(c).

8.5. Let f(x) be the function of Exercise 8.3.

(a) Suppose the roots r, s of x2+bx+c = 0 are both real with r ≤ s. Observe
that x2 + bx + c < 0 if and only if r < x < s.
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(b) Suppose that r and s lie on the same side of −a. Without loss of
generality, let −a < r ≤ s. Argue that, when x > −a, f(x) must assume
a minimum value, say m2 when x = x2, while if x < −a, then f(x) must
assume a maximum value, say m1 when x = x1, where m1 < 0. We will
argue that m1 < m2 so that f(x) cannot assume any value between m1 and
m2. Consider f(x) − m2; this is a quadratic polynomial that vanishes when
x = x2 and is nonnegative when x when x > −a. Deduce that

f(x) − m2 =
(x − x2)

2

x + a

so that f(x) assumes the value m2 only when x = x2, and so never when
x < −a. Conclude that f(x) cannot assume any value between m1 and m2.

(c) Suppose that r and s lie on opposite sides of −a, so that r < −a < s.
Prove that f(x) > 0 for r < x < −a and that f(x) < 0 for −a < x < s.
Indeed, show that f(x) passes through all real values as x increases from or
decreases from −a.

(d) Deduce from (a) and (b) that f(x) = k us solvable for all real k if
and only if r < −a < s. Using the fact that r = 1

2 (−b −
√

b2 − 4c) and

s = 1
2 (−b +

√
b2 − 4c), show that this is equivalent to a2 − ab + c < 0.

(e) Suppose that the equation x2 + bx + c = 0 has nonreal roots. Observe
that this has two consequences: 4c > b2, and f(x) never assumes the value
0. Deduce that

a2 − ba + c > (a − b

2
)2 ≥ 0 .

(f) Using the results of parts (a) to (e), prove that f(x) = k is solvable for
each real value of k if and only if a2 − ba + c < 0.

Comments, Answers and Solutions

8.1. (a) The discriminant of the quadratic equation is

(2 − k)2 − 4(2 − k) = k2 − 4,
which is negative when |k| < 2. Hence the rational function does not assume
these values of k.

8.1. (b) f(x) − 2 = x2(x + 1)−1 ≥ 0 for x > −1
and f(x) + 2 = (x + 2)2(x + 1)−1 ≤ 0 for x < −1.

8.1. (d) The asymptotes are the lines x = −1 and y = x + 1. There is a
relative minimum at (0, 2) and a relative maximum at (−2,−2).

8.2. (a) The range of values of (−∞,−5] ∪ [3,∞).

8.5. (d) r < −a if and only if −
√

b2 − 4c < b − 2a; s > −a if and only if√
b2 − 4c > b − 2a.

These two conditions together are equivalent to |b − 2a| <
√

b2 − 4c, or
b2 − 4ab + 4a2 < b2 − 4c.
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§9. Exercises on Second Order Recursions

9.1. Suppose that x = u and x = v satisfy the quadratic equation
x2 = px + q. Define

w0 = 2, w1 = u+v, w2 = u2+v2, w3 = u3+v3, · · · , wn = un+vn, · · · .

(a) Prove that, when n ≥ 2, then wn = pwn−1 + qwn−2.

(b) Check (a) when u and v are the solutions of the equations (i) x2 = 3x−2
and (ii) x2 = 3x + 2.

(c) Suppose that xn = 7un − 5vn, where u and v are as defined above. Is it
true that xn = pxn−1 + qxn−2 for n ≥ 2 for some numbers p and q?

9.2. Let xn be a sequence satisfying a second order recursion. This means
that two consecutive terms, say x0 and x1 can be chosen arbitrarily, and
that there are fixed multipliers p and q such that for all values of n, xn =
pxn−1 + qxn−2.

(a) Write out the first few terms of the following sequences satisfying a second
order recursion in each of the following cases:

(i) x0 = 0, x1 = 1, p = q = 1 (Fibonacci sequence);

(ii) x0 = 0, x1 = 1, p = 2, q = −1;

(iii) x0 = 1, x1 = 1, p = 2, q = 1;

(iv) x0 = 3, x1 = −2, p = 1, q = −2;

(v) x0 = 3, x1 = 2, p = 1, q = −1.

(b) Verify that a geometric progression {a, ar, ar2, ar3, · · · } satisfies the
recursion xn = pxn−1 + qxn−2 if and only if r is a solution of the quadratic
equation x2 = px + q.

(c) Suppose that the equation x2 = px + q has two distinct solutions x = r
and x = s. Let x0 and x1 be any two numbers. Solve the system of equations

y + z = x0

ry + sz = x1

for y and z. Prove that, if {xn} satisfies the second order recursion xn =
pxn−1 + qxn−2, then xn = yrn + zsn for each value of n.

(d) Use (c) to obtain the general term of the sequences in (a). Are there any
situations in which the method does not work? Why?

9.3. In this exercise, we examine the situation of a second order recursion
as described in Exercise 9.2 in which the associated quadratic equation x2 =
px + q has a double solution.

(a) Prove that x2 = px + q has a double solution if and only if q = −p2/4.
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In the notation introduced above, we thus are interested in investigating
sequences satisfying a recursion of the type

xn = pxn−1 −
p2

4
xn−2 . (∗)

We cannot proceed as in Exercise 14 to get the general solution of the
recursion as we have only a single solution of the related quadratic to
manipulate. Suppose that r is this root.

(b) Verify that r = p/2.

(c) Define yn by xn = rnyn. By substituting into (*), show that yn−yn−1 =
yn−1 − yn−2 for each value of n. What does this tell us about the nature of
the sequence {yn}?

(d) Verify that xn = (αn + β)rn satisfies (*).

(e) Imitate the strategy of Exercise 9.2 to show that every solution to the
recursion (*) is in the form given by (c).

(f) Solve the recursion xn = 6xn−1 − 9xn−2 (n ≥ 2) where x0 = −2 and
x1 = −3.

9.4. DeMoivre’s Formula

(a) Verify that the sequence defined by xn = cos nθ satisfies the recursion

xn+2 = (2 cos θ)xn+1 − xn

for n ≥ 0 with initial conditions x0 = 1 and x1 = cos θ.

(b) Verify that the sequence defined by xn = sinnθ satisfies the recursion

xn+2 = (2 cos θ)xn+1 − xn

for n ≥ 0 with initial conditions x0 = 0 and x1 = sin θ.

(c) Verify that the solutions of the quadratic equation t2 − (2 cos θ)t + 1 = 0
are cos θ + i sin θ and cos θ − i sin θ.

(d) Solve the recursions in (a) and (b) to obtain

cos nθ =
1

2
(cos θ + i sin θ)n +

1

2
(cos θ − i sin θ)n

and

sinnθ =
1

2i
(cos θ + i sin θ)n − 1

2i
(cos θ − i sin θ)n .

Deduce from this, De Moivre’s Rule:

(cos θ + i sin θ)n = cos nθ + i sin nθ .
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This idea is from the note

V.J. Matsko, De Moivre’s Rule, Recurion Relations, and Number Theory
Mathematics and Informatics Quarterly 8 (1998), 12-14.

9.5. Consider the problem of determining the value of ax4 + by4 when it is
given that

a + b = 23

ax + by = 79

ax2 + by2 = 217

ax3 + by3 = 691 .

One way to approach the solution is to derive from each pair of successive
equations the relations b(y−x) = 79−23x, by(y−x) = 217−79x, by2(y−x) =
691 − 217x. Therefore

y =
217 − 79x

79 − 23x
=

651 − 237x

237 − 69x

=
691 − 217x

217 − 79x
=

40 + 20x

−20 − 10x
= −2 .

Doing the same manoeuvre to isolate the value of x leads to x = −2.
However, it is straightforward to see that (x, y) = (−2,−2) cannot satisfy
the equation (otherwise the numbers on the right side would be in geometric
progression).

What goes wrong with the foregoing argument? Find a correct solution to
the problem.

Comments, Answers and Solutions

9.4. Observe that cos(n + 2)θ + cos nθ = cos[(n + 1)θ + θ] + cos[(n + 1)θ− θ]
and that a similar treatment obtains for sin(n + 2)θ + sin θ.

9.5. Note that the numbers x and y are the roots of a quadratic equation of
the form t2 = ut + v, so that

217 = 79u + 23v

and
691 = 217u + 79v .

This system has the solution (u, v) = (1, 6) and we find that ax4 + by4 =
691 + 6 × 217 = 1993. We can go ahead to obtain the values of all the
variables:

(a, b;x, y) = (−2, 25;−2, 3), (25,−2; 3,−2) .

Why did the first method not turn up these solutions?

The problem, as is often the case, is dealing with a fraction for which the
denominator can possibly vanish. The rational function (40 + 20x)/(−20 −
10x) is indeterminate when x = −2. However, the other rational functions
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appearing in the expression for y are well-defined and take the value 3 when
x = −2. And indeed we find that (x, y) = (−2, 3) appears as part of the
solution of the system. Observe that when x = 3, then all of the rational
functions yield the value −2 and we get (x, y) = (3,−2). When x assumes
some other value, then the rational functions assume different values and the
equations for y do not hold. A similar phenomenon occurs when we solve
for x in terms of y.

§10. Exercises on Geometry and Trigonometry

10.1. (a) Sketch the parabola with equation y2 = 4x. Consider the family
of parallel chords with equation y = mx + b, where m is a fixed parameter
and b is allowed to vary. Argue that the midpoint of the chord of equation
y = mx+ b is given by (X,Y ) where X = 1

2 (x1 +x2) and Y = mX + b, with
x1 and x2 the two solutions of the quadratic equation

(mx + b)2 = 4x or m2x2 + (2bm − 4)x + b2 = 0 .

(b) Without solving the quadratic equation in (a), use the relationship
between the coefficients and roots to obtain an expression for X. Show
that Y does not depend on b. What does this tell you about the locus of
(X,Y )?

(c) Redo parts (a) and (b) by setting up an equation in y rather than x and
computing Y = 1

2 (y1 + y2) directly.

10.2. A diameter of a conic section is the locus of the midpoints of a family
of parallel chors.

(a) Sketch the ellipse with equation (x2/9) + (y2/4) = 1 along with some
chords in the family y = x + k where k is a parameter. (This could be done
with a calculator or with some geometric computer software. In the latter
case, try to trace the midpoints of the chords.)

(b) Follow the strategy used in Exercise 10.1 to show that the locus of the
midpoints of the chords is a straight line.

(c) Generalize to the general conic section of equation

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 .

Corroborate your findings by taking particular choices of coefficients and
chord slopes and graphing them with a computer or calculator.

10.3. Suppose that, in a triangle ABC, one angle B and two sidelengths
a = |BC| and b = |AC| are known. What is the length of the remaining side?
One way to obtain this is to use the Law of Cosines b2 = a2 + c2 − 2ac cos B
to obtain c = |AB|. Let us rewrite this third sidelength as a variable x and
arrange the equation to

x2 − (2a cos B)x + (a2 − b2) = 0 . (∗)

(January 30, 2012 / 14:10:26)

75252-1 ATOM-Volume-XIII-jan29-2012_p59.pdf  .1



52

This is a quadratic equation, and so will have two solutions, which could be
real or nonreal, positive or negative, or coincident. In this exercise, we will
see how this relates to the geometry of the situation.

(a) Verify that the discriminant D of the quadratic in (*) is 4(b2−a2 sin2 B).
Explain why D is nonnegative if and only if a, b and B correspond to data
for a feasible triangle. What happens if D = 0? Explain how the geometry
supports the fact that (*) has a single solution is this case.

(b) Suppose that a, b and B are data for a feasible triangle. By considering
the sum of the roots, explain why (*) has at least one positive solution.

(c) Determine conditions on a and b that (*) has (i) exactly one, (ii) exactly
two, positive solutions. Relate this to the geometric possibilities for the
triangle. In the case where there is a negative solution, explain how it might
be interpreted.

10.4. Let a, b, c be real numbers. We consider solutions of the quadratic
equation az2 + bz + c = 0 where z = x + yi is a complex number.

(a) Show that the complex equation az2 + bz + c = 0 is equivalent to the
system of real equations:

a(x2 − y2) + bx + c = 0 (1)
axy + by = 0 (2)

(b) Considering (2) in the form y(ax + b) = 0, describe its locus.

(c) Show that (1) can be written in the form

(

x +
b

2a

)2

− y2 =

(

1

2a

)2

(b2 − 4ac) .

Describe the locus of this equation in the three cases: (i) b2 = 4ac; (ii)
b2 > 4ac; (iii) b2 < 4ac.

(d) The solutions of the system (1) and (2) are represented in the plane by
points (x, y) that lie on the intersection of the loci of (1) and (2). When
b2 = 4ac, show that there is a single such point and that it lies on the real
axis. When b2 > 4ac, show that there are two points on the real axis, each
a reflection of the other in the line Re z = −b/2a. When b2 < 4ac, show
that there are two points not on the real axis that are mirror images of each
other with respect to the real axis. Explain how this is consistent with what
you already now about real and imaginary roots of a quadratic.

Comments, Answers and Solutions

10.1. (b) (X,Y ) = (−(bm − 2)/m2, 2/m). The locus is parallel to the axis
of the parabola.

10.3.(a) D ≥ 0 ⇐⇒ b ≥ a sin B. Note that a sin B is the length of the
perpendicular dropped from C to the line AB; this length cannot exceed the
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distance from C to any other point on this line. If D = 0, the triangle has a
right angle at A.

10.3. (b) The sum of the roots of 2a cos B. When B < 90◦, this is positive
and so at least one root is positive. When B = 90◦, then 0 ≤ D = 4(b2−a2),
and there is one real root

√
b2 − a2. When B > 90◦, then b > a and both the

sum and product of the roots are negative, so exactly one root is positive.

10.3. (c) When B < 90◦, there is exacly one positive root when a ≤ b.
Sketch diagrams to illustrate the situations according as a is less than, equal
to or greater than b.

§11. Exercises on Approximation

11.1. Let c be a positive real number. A standard way to approximate the
square root of c is to begin with a positive guess u and then proceed to a
new guess v = 1

2 (u + c/u). (Note that c/u is another approximation to
√

c
that lies on the other side of

√
c to u.) This is repeated over and over until

the desired degree of approximation is reached.

(a) Verify that if c = 2 and the first guess is 1, then this process yields the
sequence of approximants: 1, 3

2 = 1.5, 17
12 = 1.416667, 577

408 = 1.414216 (where
the decimals forms are not exact).

(b) Use the process to approximate
√

3.

(c) Show that u <
√

c if and only if c/u >
√

c and that u >
√

c if and only
if c/u <

√
c. Noting that v is the average of u and c/u, explain why it is

reasonable to expect that v might be a better approximation than u.

(d) Verify that

v −
√

c =
1

2u
(u −

√
c)2 .

Deduce that every approximation beyond the first exceeds
√

c, and prove
that from this point on the sequences decreases. Why does the sequence
tend towards

√
c?

11.2. We look at the geometry of the situation of Exercise 10.1. As before,
we have that c > 0.

(a) Let x > 0. Use the Arithmetic-Geometric Means Inequality (Exercise
4.1) to prove that 1

2 (x + c/x) ≥ √
c. with equality if and only if x =

√
c.

(b) Verify that

1

2

(

x1 +
c

x1

)

− 1

2

(

x2 +
c

x2

)

=
1

2
(x1 − x2)

(

1 − c

x1x2

)

.

Use this to argue that 1
2 (x+c/x) is a decreasing function of x for 0 < x <

√
c

and an increasing function of x for
√

c < x.
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(c) With the same axes, sketch the graphs of both of the curves y = x and
y = 1

2 (x + c/x) for x > 0. Where do these curves intersect? What are the
asymptotes of the second curve?

(d) Using the graphs in (c), we can illustrate the behaviour of the
approximating sequence for

√
c described in Exercise 10.1. Let u1 > 0 be

the first approximant. Locate on your sketch a possible position of (u1, 0).
Let u2 = 1

2 (u1 + c/u1). Locate (u1, u2), (u2, u2) and (u2, 0). These three
points will be on the respective curves y = 1

2 (x + c/x), y = x and y = 0. We
continue on in this way. Suppose that un has been found. Let

un+1 =
1

2

(

un +
c

un

)

.

Locate (un, 0), (un, un+1), (un+1, un+1) and (un+1, 0). Describe from your
diagram what eventually happens to the terms of the sequence {un}.
11.3. The recursion of Exercise 11.1 can be defined when c is negative, even
though c does not have a real square root in this case. What will happen?
To focus the discussion, consider the case c = −1.

(a) Sketch the curve

y =
1

2

(

x − 1

x

)

for real nonzero x, and attempt an anlysis as in Exercise 10.2.(d), using
various starting points. In this case, you may find it helpful to use a
calculator or computer to generate the terms of the sequence of
“approximants”, or even to use the computer to draw the whole situation
for you.

(b) To get a handle on the situation, we note that any real number can be
written in the form x = cot θ for some number θ lying strictly between 0 and
π. Consider the transformation

T : x −→ 1

2

(

x − 1

x

)

.

If x = cot θ, show that the image of x under this transformation is cot 2θ.
Thus, in terms of θ the mapping is conjugate (essentially the same in its
mathematical structure) to U : θ → 2θ (modulo π) (this simply means that
if you add, subtract two angles or multiply by a constant, you add an integral
multiple of π to put the result of the operation in the interval (0, π) using a
kind of “clock arithmetic”).

(c) Does the transformation T have any fixed points? (These are points x for
which T (x) = x. You can answer this question directly, but also by looking
at the mapping U and reinterpreting what you find in terms of T .)

(d) Let U2(θ) = U(U(θ) and for n ≥ 3, let Un(θ) = U(Un−1(θ)). Determine
a simple expression for Un(θ).
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(e) Does the transformation T have any points of period 2? (This asks
whether there are any numbers u for which T (u) = v for some number v and
T (v) = u, so that two applications of the mapping T take the point back to
itself.) Answer this question directly by looking at the equation

T (T (x)) = x .

Now answer it by working through the operator U . For what values of θ does
U(U(θ) = 4θ differ from θ by a multiple of π. Are your results consistent?

(f) A point p is a point of period k for T if and only if T k(p) = p, where
T 1(x) = T (x) and T k(x) = T (T k−1(x)) for k ≥ 2. Either directly or working
through the operator U , determine if T has points of period k for k is a
positive integer exceeding 1. Use a calculator to work out the approximate
values of such points and check the result by applying the operator T .

§12. Exercises on the Logistic Dynamical System

We suppose that k is a positive parameter and define the function pk(x) =
kx(1 − x) for 0 ≤ x ≤ 1. We can use pk to define a dynamical system as
follows:

Begin with any point x0 in the closed interval [0, 1] ≡ x : 0 ≤ x ≤ 1. For
each nonnegative integer n, define xn+1 = pk(xn).

12.1. One can use graphical methods in helping us visualize how the sequence
defined for the dynamical system behaves. Suppose that we have a sketch of
the curves with equations

y = pk(x)

and
y = x .

For each nonnegative integer n, plot the points (xn, 0) and (xn, pk(xn)) =
(xn, xn+1). By drawing lines parallel to the axes and making use of the line
y = x, indicate geometrically how the point (xn+1, 0) can be found. Thus,
we can indicate on the x−axis the progress of the sequence {xn}.
12.2. Consider the case 0 < k < 1. Sketch the curves as indicated in (a)
and use your diagram to argue that limn→∞ xn = 0. Verify this analytically,
by first verifying that 0 < xn+1 < kxN whenever 0 < x0 < 1.

12.3. Suppose that k > 1. Determine a number u for which 0 < u < 1 and
pk(u) = u.

12.4. Consider the case 1 < k < 2. Sketch the curves as in (a), being careful
to indicate on which side of the line x = 1

2 the curves intersect. Analyze
the types of behaviour of the sequence for values of x0 in the closed interval
[0, 1].

12.5. Consider the case 2 < k < 3. Sketch the curves as in (a) and analyze
the behaviour or sequences {xn}. Verify that

xn+1 − u = k(xn − u)(1 − u − xn)
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and use this to check that, when xn > 1 − u, xn+1 − u and xn − u have
opposite signs and |xn+1 − u| < |xn − u|. Analyze the behaviour of the
sequence {xn} for various cases of x0 in [0, 1].

12.6. Let k > 1 and let u be as defined in part (c). Determine p′k(u) in
terms of k, where p′k denotes the derivative of pk. Prove that |p′k(u)| < 1
if and only if 1 < k < 2. What effect do you think that the value of the
derivative of pk at u has on the behaviour of sequences {xn} that start off
with a value x0 close to u?

12.7. We study the possibility of sequences {xn} of period 2, i.e., there are
two distinct values v and w for which xn = v when n is even and xn = w
when n is odd, so that the sequence proceeds {u, v, u, v, · · · }. To do this, we
define the second iterate of pk:

qk(x) = pk(pk(x)) = kpk(x)(1 − pk(x)) .

Determine the polynomial qk and specify its degree. Prove that if pk(v) = w
and pk(w) = v, then qk(v) = v and qk(w) = w.

12.8. To solve the equation x = qk(x), we can write it in the form

x − qk(x) = 0 .

Explain why x − pk(x) is a factor of the left side, and use this fact to write
the left side as a product of quadratics. Thus determine v and w.

12.9. For the cases 1 < k < 2, 2 < k < 3, k = 3 and k < 3, show on a graph
the location of v and w.

12.10. Investigate the behaviour of the sequence {xn} when k > 3. You
may find a pocket calculator of some use in this enterprise.

§13. Exercises on Composition of Quadratics

The function f(x) is said to be the composite of functions g and h if f(x) =
g(h(x)). The binary operation that takes the ordered pair (g, h) to f is called
composition. The functions g and h are said to commute under composition
if g(h(x)) = h(g(x)). A polynomial is monic if its leading coefficient (i.e.
the coefficient of the highest power of the variable is equal to 1.

13.1. Suppose that g and h are polynomials. How is the degree of the
composite f(x) = g(h(x)) related to the degrees of g and h?

13.2. Prove that two linear polynomials commute under composition if and
only if one of the following conditions hold:

(a) one of them is the identity polynomial x;

(b) both of them have the form x + k for some values of the constant k;

(c) both of them have a common fixed point, i.e., a number c that gets
mapped to itself by both polynomials.
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13.3. (a) Suppose that f(x) is a monic quadratic polynomial with integer
coefficients, then for each integer m, there is an integer n for which
f(m)f(m + 1) = f(n). Determine a formula that indicates n as a function
of m.

(b) The result of (a) has an interesting generalization found by James
Rickards: a monic quartic polynomial (of degree 4) is the composite of two
monic quadratic polynomials if and only if the sum of two of the roots of the
quartic is equal to the sum of the other two.

(c) Generalize the result of (b) so that the polynomials need not to be monic.

Comments

13.3. (a) First, we note that if f(x) = x2 + bx + c, then

f(0)f(1) = c + bc + c2 = f(c) = f(f(0)) .

Let m be any integer and define g(x) = f(m + x). Then

f(m)f(m + 1) = g(0)g(1) = g(g(0)) = g(f(m)) = f(m + f(m))

so that n = m + f(m) is the desired integer.

Observe that, if the roots of f(x) = 0 are r and s, then the roots of
f(x + 1) = 0 are r− 1 and s− 1. Thus, f(x)f(x + 1) is a quartic polynomial
whose four roots satisfy the relationship r + (s− 1) = (r − 1) + s and which
has the form g(h(x)) where g(x) = f(x) and h(x) = x + f(x)).

(b) Suppose that the quartic polynomial f(x) = u(x)v(x) where
u(x) = (x − a)(x − b), v(x) = (x − c)(x − d) and a + b = c + d. Then
v(x) = u(x)+k for some constant k. Then f(x) = g(h(x)) where h(x) = u(x)
and g(x) = x(x + k).

On the other hand, let f(x) = g(h(x)), where g and h are monic quadratic
polynomials with g(x) = (x − r)(x − s).

Then f(x) = g(h(x)) = (h(x)−r)(h(x)−s). The sum of the roots of h(x)−r,
being the negative of the linear coefficient of this polynomial, is equal to the
sum of the roots of h(x) − s.

There is another criterion which determines when a quartic polynomial
ax4 +bx3 +cx2 +dx+e is the composite of two quadratics: 4abc−8a2d = b3.
(Polynomials, by E.J. Barbeau, Springer, 2003, p. 266) Problem 931 in
the College Mathematics Journal 47:4 (September, 2010), 329, requires the
solver to show that for any polynomial f(x), f(f(x) + x) = f(x)g(x) for
some polynomial g(x) and that the remainder when g(x) is divided by f(x)
is f ′(x) + 1, where f ′ is the derivative of f .
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