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Foreword

This book is intended for secondary students with some experience in school
geometry. It is assumed that they have had enough elementary Euclidean geometry
to cover theorems about congruences of triangles, properties of isosceles and
right triangles, basic area theorems for triangles and quadrilaterals, properties
of circles and concyclic quadrilaterals. It is expected that the reader will have
been introduced to the definitions of translations, rotations and reflections, but
has not used them as a tool for solving geometric problems.

The modern student who wishes to master a topic has an ample supply
of material that can be accessed on the Internet. In particular, the sites
hitp://www.theartofproblemsolving.com and http://www.cut-the-knot.org are well
worth a visit. In addition, she can play with situations using dynamic software
such as The Geometer’s Sketchpad (hitp://www.dynamicgeometry.com) and Cabri
(http://www.cabri.com). Nevertheless, it seems to be useful to have something
that can be put on a bookshelf and can be used as a reference as well as a supply
of a few nice sample problems and their solutions. It should not be read like a
novel; the reader should pause at each definition and result to see whether it is
are understood and try to look at examples of whatever is being discussed. Before
reading the solutions of the problems, the reader should think about them first
and try to solve them first.

Many of the solutions are attributed to secondary students who participated
in correspondence programs. I am grateful to them for providing difference
perspectives that I was unaware of when I posed the problems. I would also
like to express my sincere gratitude to Bruce Shawyer of Memorial University in
Newfoundland for electronically realizing the many diagrams that a geometry book
requires.

I conclude this foreword with a some notation, terminology and standard
results for the convenience of the reader.
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NOTATION AND TERMINOLOGY

Altitude of a triangle: The line segment that passes through a vertex of a
triangle and is perpendicular to the opposite side.

Area of a figure: The area of a geometric figure is indicated by square
brackets: [-- -]

Centroid of a triangle: The point at which the medians intersect.

Circumcircle of a polygon: A circle that passes through the vertices of a
polygon. Its radius is called the circumradius.

Collinear points: Points that lie on a straight line.

Concylic quadrilateral: A quadrilateral through whose four vertices lie on a
circle.

Congruent geometric figures: Figures either of which can be obtained from
the other by a rigid transformation that preserves angles and lengths. Congruence
is indicated by the notation =.

Congruence theorems for triangles: Two triangles are congruent if any one of
the folling holds: (1) Two sides and the contained angle of one are correspondingly
equal to two sides and the contained angle of the second (SAS); (2) Three sides of
one are correspondingly equal to three sides of the second (SSS); (3) Two angles
of one and the side connecting them are correspondingly equal to two angles of
the second and the side connecting them (ASA).

Distance between points: The distance between points A and B is denoted
either by |AB| or AB, depending on context.

Incentre of a triangle: The point at which the three angle bisectors of a
triangle intersect; the centre of the incircle of the triangle.

Incircle of a polygon: A circle that is tangent to each side of a polygon. It
radius is called the inradius.

Median of a triangle: The line segment that joins a vertex of a triangle to
the midpoint of the opposite side.

Orthocentre of a triangle: The point at which the three altitudes of the
triangle intersect.

Pedal point: The point at which the altitude of a triangle from a vertex
intersects the opposite side.

Produced: A segment or half line is produced when the full line containing
it is drawn; the full line is called the production of the segment or half line.

Similar geometric figures: Geometric figures of the same shape, in which
one is a scaled version of the other. Figures whose linear dimensions are in a fixed
proportion. Similarity is indicated by ~.



1 Getting into the transformational spirit

The purpose of this book is not just to introduce a few techniques for solving
geometry problems, but to encourage a different way of thinking about geometry
among students who may have just been given a standard Euclidean approach.
The best way to begin is with a few examples.

Problem 1.1.

In the diagram, AD = BC and ZABD + /BDC = 180°. Show that
/BAD = /BCD.

D
Figure 1.1a.

Solution 1. This is quite a tough problem to tackle until we get the inspiration
to start moving things around. Note that we have two equal segments in the
situation as well as a pair of angles that are supplementary (add up to 180°). Let
us exploit this. Turn over the triangle BC'D so that the positions of B and D are
interchanged and C' goes to C".

D
Figure 1.1b.
Then /DBC’' + ZABD = /BDC + ZABD = 180°. and DC’ = BC = AD, so
that A, B, C' are collinear and triangle ADC" is isosceles, whereupon /BAD =
/DC'B = /BCD.
Solution 2. Another possibility is to lay one equal side on top of the other.
Suppose that we detach triangle BC'D and lay point B on D and C on A, so that
D falls on a position F, as in the diagram.



D
Figure 1.3b.
Since ZABD + /DEA = ZABD + ZBDC = 180°, it follows that ABDFE is a

concyclic quadrilateral. Also, ZBAD and ZDAEFE are subtended by equal chords
at the circumference of the circumcircle of ABDE, so they are equal. Hence
/BAD = /DAE = Z/BCD.

Problem 1.2. Suppose that we have a circle of radius r, and construct
as in the diagram, a rectangle whose sides OP and OQ lie along perpendicular
diameters. What is the length of PQ?

P

Figure 1.2.
Solution. The answer is immediate once we flip the rectangle over onto itself, so
that its diagonal goes from the centre O to the vertex on the circumference of the
circle.
Problem 1.3. The unit square is partitioned into four triangles and one
quadrilateral with areas a, b, ¢, d and e as indicated in the diagram below.

Figure 1.3.
Each of the three partitioning lines join a vertex to the midpoint of one of the
opposite sides. Determine the values of a, b, ¢, d, e.

Solution. It is straightforward to determine that a = %, b+d= %, c+e=
d+e= i, and so ¢ = d; this can be done for example by noting how the square
can be covered by four non-overlapping right triangles with arms of length 1 and
%. However, this gives us only four independent equations for five variables, and

it is not clear how we can find another condition to nail the values down.



However, we note that if we rotate the triangle with area e through 90°
clockwise, it falls on part of the triangle with area d, and one can see that by
expanding the linear dimensions by a factor of 2, it will exactly cover the larger
triangle. (Another way of looking at it is to note that one can cover the triangle
of area d by four copies of the triangle with area e.) Thus, d = 4e and we find that

1 111
(a,b,c,d,e) = (— 311 ) )

Problem 1.4. Suppose that a unit square is partitioned into 9 polygons
by various lines joining vertices to mid-points of sides as shown in the diagram.
What is the area of the quadrilateral TUVW in the middle?

A Q D
T
W,

P

R U
\%
B S C
Figure 1.4a.

Solution. It seems evident that TUVW is in fact a square. Let us pursue this a
little. Upon reflection, we realize that our intuition is fed by the symmetry of the
situation. So let us try to capture this ingredient. If we rotate the square through
an angle of 90° about its centre, then

A—-B,B—-~CC—-D,D—-AP—-Q,QQ—RR—SS5—P

(we will use “—” to mean “goes t0”). The segment AP falls on BQ. Since the
rotation is through a right angle, AP 1 BQ. Similarly, BQ 1. CR, CR 1 DS, so
that TUVW is at least a rectangle. But T, the intersection of AP and BQ falls
on U, the intersection of BQ) and C'R, and we find that T - U, U -V, V - W
and W — T; thus TU =UV =VW = WT.

To answer the question posed, let triangle AT'Q) be rotated about the point
Q, so that A falls on D and T on T”. Then T"DWT is a square equal to TUVW.
Similarly, we can rotate triangles BUR, CUS and DW P to form a cross consisting
of five congruent squares, one of which is TUVW and all of which have combined
area equal to that of the square. Accordingly, the area of TUVW is one-fifth of
that of ABCD.



T/
A Q D
T
B C
Figure 1.4b.

Problem 1.5. Suppose a rectangle of dimensions 9 x 16 is given. With two
straight cuts, partition it into three pieces that can be rearranged into a square.

Solution 1. The square, of course, will have side length 12. Begin by marking
off a length 12 along one of the larger sides of the rectangle, and we will try to
make this one side of the square. Slice from the mark to a vertex, as indicated in
the diagram.

16

12 4
Figure 1.5a.

Slide the trapezoid up so that its right side moves directly above the vertex of the
lower triangle. This leaves a triangular piece protruding on the left that can be
snipped and relocated to fill the triangular gap on the right.

16

12
Figure 1.5b.



Solution 2. There is an alternative approach. Make the first cut of length
12 from one vertex to the opposite longer side of the rectangle. Make a cut
perpendicular to this to obtain the following situation. Note that the two triangles
are similar.

16
o
o
111 12
9 12
I II
Figure 1.5¢.
Now sliding two of the three pieces will give the desired rearrangement.
o
12 12
9
II I
16 °
11
12 12
Figure 1.5d.

Exercise. One attempt at a solution is to make cuts from the two ends of one
of the long sides of the rectangle to the mid-point of the opposite side, and then
rearrange the pieces. Does this work? Justify your answer.

Figure 1.5e.
Problem 1.6. Let a rectangular piece of paper with vertices A, B, C, D be
given with AB > BC. It is folded in such a way that the fold passes through A
and a point E on BC' and the vertex B falls on a point F' on the side DC. Thus,
the triangle ABE is folded onto triangle AFE.



D o

E

A B
Figure 1.6a.

Devise a simple test to determine whether the area of triangle AE'F is less than
half the area of quadrilateral AECDj that is, [AEF] < :[AECD].

Solution. In the extreme case that AB = BC, then the fold is along the
diagonal AC, so that £ = C and F' = D. The triangle covers all of the remaining
(degenerate) quadrilateral. On the other hand, if AB is much longer than BC,
then the point F' will be close to C' and the triangle will cover much less than half
of the quadrilateral. Thus, the solution to the problem appears to turn on where
F falls on the side C'D.

We first show that, if F = G, the mid-point of CD, then [AEG] is exactly
half of [AEC D], or equivalently, [AEG] = [ECG]+[AGD)]. Let H be the mid-point
of AB, so that HG || BC; let K be the foot of the perpendicular from E to HG,
and let L be the intersection of AE and HK.

D G c D F
K E K E
L
L
A H B A H B
Figure 1.6b.

A 180° rotation about L carries AHL onto EKL. By noting congruent
halves of rectangles, we note that

[AEG] = |[EKG]+ |EKL)]+[ALG] = [EKG]+ [AHL] + [ALG]
[ECG] + [AHG] = [ECG] + [ADG] .

A modification of this argument works when F' # G. In this case, determine
H on AB so that HF || BC; let K be the foot of the perpendicular from E to
HF and L, the intersection of AE and HF. Then

[AEF] — [ECF] — [ADF|

ALF) - [AHL) + [EKL] + [EKF] — [ECF] — [ADF]
AHF] - [AHL) + [EKL) — [ADF]

ADF] - [AHL] + [EKL) — [ADF]

EKL] - [AHL) .

= |
[
[
[

When F lies between G and C, the triangle EK L is similar to and smaller



than triangle AHL with [AEF] < $[AECD]. When F lies between G and D,
triangle EKL is similar to and greater than [AHL] and [AEF] > $[AECD].

One test that can be made is to fold the side BC' up to the side AD. If F
lies below the fold, then [AEF] < $[AECD]; if above, then [AEF] > 1[AECD)].

Comment. This is not the only test that can be devised; the reader is invited
to find other ways of solving the problem.

Problem 1.7. A cycloid is the locus of a point on the circumference of a
circle that rolls without slipping along a base line. An arch of the cycloid is that
arc on the curve that connects two successive positions where the moving point
touches the base line. If A is the area of the rotating circle, determine the area
between one arch of the cycloid and the base line along which the circle rolls.

Figure 1.7a.

Solution. The required area is twice the area under that part of the arch which
connects the point O on the base line to the point R at greatest distance from this
line. Let ON be that segment on the base line upon which the generating circle
rolls and let M R be parallel to this line, so that ONRM is a rectangle whose
dimensions are half the circumference of the circle and the diameter of the circle.
The area of rectangle ON RM is twice the area of the generating circle.

M Y R
P Q
o X N
Figure 1.7Db.

Let P be a typical point on the cycloid. Construct the chord PQ of the generating
circle at this position parallel to the base line. Let the generating circle at this
position touch ON at X and MR at Y, so that XY is a diameter. Let | - | denote
the length of a line segment and (-) denote the length of an arc on the circle. Then

IRY| = |NX| = |ON|-|OX]|
= (XY)—(PX) = (PY) = (QY).

Consider the locus of the point (). Since |RY| = (QY'), we can imagine a
circle of the same size as the generating circle rolling along the line RM, taking



the same positions as the generating circle in reverse, with @ a point on it tracing
out an upside-down cycloid joining R and O. This second cycloid is congruent to
the first. Indeed, a rotation of 180° about the centre of rectangle ON RM carries
one cycloid to the other.

Let B be the area between the two cycloids; that is, of the lens-shaped region
OPRQO. At each horizontal level, the length of the chord PQ is the same as the
length of the chord of the generating circle at the same level. Accordingly, the
drop-shaped region and the circle have the same area. (This presumption is known
as Cavalieri’s Principle.) Let C be the area between the cycloid OQR and the
base line ON; C is also the area of the region OPRY M.

We have that 24 = B+2C = A+ 2C, so that 2C' = A. The area under half
the arch of the cycloid is B + C = A 4+ C. Hence, the area under the complete
arch of the cycloid is 2(A + C) = 2A 4+ 2C = 3A4; that is, thrice the area of the
generating circle.

These seven problems illustrate how a dynamic approach can provide
insight into the underlying structure and lead to arguments that are natural
and convincing. We will pursue this theme and give a sytematic introduction
to transformations that will provide the tools for describing the procedures more
precisely.

We begin with some definitions of transformations that preserve distance
and angle.



2 Isometries

An isometry is a transformation of the plane onto itself that preserves distance.
That is, an isometry 7' is a one-one function that takes the plane onto itself
for which dist(P, Q) =dist(T'(P),T(Q)), where “dist” represents the (Euclidean)
distance between two points and P and @) are arbitrary points in the plane. We
will often use X — Y to represent Y = T(X). There are a number of useful
consequences of this definition; can you see why they are so?

1.

The image of a line under an isometry is a line (since each point on a line
through X and Y is uniquely determined by specifying its distances from X
and Y respectively).

. If, for two points P and Q, T(P) = P and T(Q) = Q, then T(X) = X for

every point X on the line through P and Q. (A point X for which T'(X) = X
is said to be fixed by T'.)

. If, for three non-collinear points, P, @, R, we have that T(P) = P, T(Q) =

Q, T(R) = R, then T(X) = X for every point X in the plane. An isometry
that fixes (carries to itself) every point of the plane is known as the identity.

If two lines [ and m intersect at angle «, their images T'(!) and T'(m) are
also lines that intersect at the same angle «. (This says that isometries are
conformal; they preserve angles.)

. If S is a plane figure with area o, then T'(S) is a figure with the same area

o. (In fact, the figure T'(S) has the same size and shape as S, and is said to
be congruent to S.)

Thus, isometries not only preserve distances, but also angles and area, and so,
preserve shape. There are three main classes of isometries:

A.

Reflections. Let a be a line, the axis. The reflection U, with axis a is that
isometry for which U,(A) = A when A lies on a and, when P does not lie
on a, U, (P) is located so that the axis right bisects the line segment joining
P and U,(P). Thus, U,(P) can be regarded as the mirror image of P in the
axis a.

Translations. A translation is an isometry that moves each point a fixed
distance in the same direction. It can be described in different ways. We
—
might refer to a translation by a vector AB which takes a point P to a point
— — — — — . .

Q@ so that OQ = OP + AB, or PQQ = AB. Or it could be described as a
mapping of the Cartesian plane of the form (z,y) — (x + a,y + b) for some
fixed pair (a,b).

Rotations. Let O be a point in the plane and 6 an angle, measured
counter-clockwise. A rotation Rp ¢ maps the point O to itself and any other
point P to a point P’ for which the (directed) angle ZPOP' = #.
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Exercise 2.1. Suppose that a line ¢ is carried by a rotation Rp g to the
line Rp,g(¢). Show that ¢ and Ry () intersect at an angle §. (Consider the
perpendiculars to the line from O.)

An isometry is direct if given any three non-collinear points A, B, C' and
their images A’, B’, C’, the vertices of both the triangle ABC and A’B’C’ can be
read off in the same order; that is, both clockwise or counter clockwise.

A /\ A’
i i B’S ;
B C
c’

Figure 2.1a.
Every rotation and every translation is direct.

An isometry is opposite if for any three non-collinear points, A, B, C' and
their images A’, B’, C’, the vertices of one triangle read in order have the opposite
sense to the vertices of the other read in order; that is, if you have to read one set
of vertices in the clockwise direction, the other are read in the counterclockwise

direction.
A /\ A
f i C/
B c ;
B/

Figure 2.1b.

Every reflection in an axis is opposite.
Any two isometries can be combined by following one by the other. Thus,
if T1 and T5 are isometries, then we can define their product or composite ToT7 by

(ITh)(P) = To(Ta(P))

for every point P. The identity isometry I has the property that T'=T1 = IT for
every isometry T. This operation, called composition, is associative: T3(T2T) =
(T5T%)T;. Do you see why?

Exercise 2.2. Give examples of pairs (U, V) of isometries for which UV =
VU and for which UV is distinct from VU.

Exercise 2.3. Show that the product of two direct or of two opposite
isometries is direct, while the product of a direct and an opposite isometry is
opposite.
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Recall that the identity isometry is that isometry that fixes each point in
the plane. Given an isometry T, we can define the inverse isometry, T—! by

T-YP) = Qifand only if T(Q) = P .

Thus, T~! “undoes” the effect of T by restoring each point to its original position.
Symbolically, each isometry T' and its inverse satisfy the relations

I =T77'=77'T.

Exercise 2.4. Show that I~ = I for the identity isometry I, that U, * = U,
for each reflection and that R519 = Ro,—¢ = Ro,3600—¢. What is the inverse of a
translation?

Here are some more isometry facts:

6. Anisometry is uniquely determined by its effect on three non-collinear points.
This means that, if for three points P, @), R not in a line and an isometry 7T,
we know T'(P), T(Q), T(R), respectively, then there is only one possibility for
T(X) for each X in the plane. To see this, refer back to fact 3. Suppose that
Ty and T are two isometries for which T1(P) = T»(P), T1(Q) = T>(Q) and
Ti(R) = Tz(R). Then P = T, 'Ty(P), Q = Ty 'T»(Q) and R = Ty 'T»(R),
so that T1_1T2 (X) = X for each X in the plane. But then, applying T to
both sides, we find that T5(X) = T7(X) for each X in the plane.

7. Suppose that the (non-degenerate) triangles ABC and A’ B’C” are congruent
with AB = A’B’, BC = B'C’ and CA = C'A’. Then there is a unique
isometry that takes ABC to A’B’C’. This isometry can be described in a
number of different ways. For example, it can be effected by the product
of a translation that takes A to A’ and B to some point B”, say, followed
by a rotation (if necessary) with centre A’ that takes B” to B’, and finally,
if necessary, by a reflection that takes the third vertex to C’. Or it could
be described as the product of two or three reflections that ensure that the
three vertices of ABC eventually fall on the three vertices of A’B'C’ (do
this).

8. The product of two reflections with distinct parallel axes is a translation in
a direction perpendicular to the axes through twice the distance between
the lines. Note that the translation depends only on the direction and the
directed distance between the lines and is independent of the poition of the
lines in the plane.

9. Suppose that a and b are two axes of reflection that intersect at the point
O at an angle of #. Then the product UpU, of the reflections is a rotation
with centre O through an angle 26 in the direction from a to b. This rotation
depends only on the intersection O of the lines and the directed angle between
them.

To establish this, we need specify that the product of the two reflections acts
on three non-collinear points in the same way as the rotation. This is clear
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10.

for the point O. Let P be any point on a and ) any point on b, both distinct
from O. Then UyU,(P) = P’ where ZP'OP = 20 and U;'U; '(Q) = Q'
where ZQOQ’ = 26. Since also OP = OP’ and OQ = OQ’, the three
non-collinear points O, P and Q' are treated the same by the product of
reflections and by the rotation.

Figure IF.9.

Let Ro,,o, and Ro, ., be two rotations. If O; = O,, then the product
Ro,,0, R0, o, 1s a rotation with centre O; = Oz through the angle a; + ag,
and is in fact the identity mapping when a; + as = 360° or a; = —as.

In the case that O; # O2 and a3 + as is equal to 0° or 360°, then
Ro,,0, R0, ,a,, the product of the two rotations is a translation. Finally,
if O1 # O2 and a1 + a2 is not a multiple of 360°, then the product of the

rotations is a rotation through an angle of a3 + as with a centre distinct
from O; and Os.

Let us see why the results in the second paragraph of 10 are so. First, let

a1 = a and as = —a for some angle a. Consider a parallelogram PO1QO- for
which 01P = 0102 = OQQ and ZPOlOQ = ZOlOQQ = «. Then

and

ROg,—aROl,a(P) = ROg,—a(O2) = 02

ROg,—aROl,a(Ol) = ROg,—a(Ol) = Q .
Q

O3

{2~

<4

(@

Figure IF.10a.
Consider what happens to the point Os. Let Ro, ,o(O2) = S where 015 =

0105 = O1P and Z050,5 = ZP0O102 = «. A reflection in 0105 interchanges P
and S, so that PO; = 03S5. Also
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ZOlpOQ = ZOlOQP = 401025 = 401502 = (1800—Oé) .

N~

Applying Ro,,—, we find that Ro, _o(S) = T, where ZSO;T = « and
02T = 035 = POs. Therefore, ZPO;T = 2(1/2)(180° — ) + o« = 180°, so
that P, Oz and T are collinear. Thus, on the non-collinear points P, O; and Oa,
Ro,,—a R0, o behaves like a translation in the direction and distance of POs.

T

Figure IF.10b.

On the other hand, the composite of two rotations with different centres O;
and O» and angles respectively a1 and as that do not sum to a multiple of 360° can
be analyzed as follows. The diagram covers the situation that 180° > a3 > as > 0;
the reader can check how this can be adapted to other cases.

There is a point O not on the line O;05 that is carried to itself by the
composite of the two rotations. Let « = Z0,005 = £Z0,0’02. Note that 2a +
a1 + ag = 360°. Let

0! = R0,.0:(01) = Ros,05R01,0,(01)

and
0/2/ = R027a2(0/2) = RO27042R01’0¢1 (02)

See Figure IF.10c.

Observe that triangles OOYO2 and OO;0s are congruent and that
07001 = 360° —2a = a1 +aq. Because of the isometries, Ro,.a, R0y ,0,(0) = O
and Ro,,a, R0, ,0,(02) = OF, we have that OO; = OOY. Since triangle O20;0)
is isosceles, Z05,0201 = 90° — (a1/2), so that ZOJ020; = 90° — (a1/2) — a.
Hence,

401210201 = 90° — (041/2) — Qg + (052/2) = 90° — (051/2) — (a2/2) .

Thus,
ZO/QIOOQ = 180° — 240/2/0201 = a1 +ay.
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"
01

Figure IF.10c.

Since the three points O, O; and O are treated the same way by the composite
as by a rotation of centre O and Zaj + aw, the desired conclusion follows.

There is a more transparent way to obtain the result by suitably breaking
each rotation into a product of reflections. As shown in the diagram below, let
a be the line OO1, b be the line OO and ¢ be the line O105 produced. Then
Ro, 0 =Uc Uy, Roy,0, = Up - Ue, whence

RO2,a2RO1,a1 = U,UUU, = UpU, ,

a rotation with centre O through an angle oy + .

c
Oq O2
(@]

Figure IF.10d.

a

Another isometry that comes into play is the glide reflection. This is the
composite of a reflection and a translation in the direction of the axis of reflection.
It does not matter in what order the reflection and translation are taken in the
composition.

Exercise 2.5. Prove the various congruence theorems (SAS, ASA, SSS) for
triangles.
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3 Using isometries to solve problems

Problem 3.1. ABCD and BEFG are squares inside a semi-circle X DCFY
whose centre O is the mid-point of side AB. If the lengths of the sides of the
square ABCD are each 2a, determine the sidelength of the square BEFG. (Note
that the smaller square is uniquely determined by the larger one.)

X A o B EY
Figure 3.1a.

Solution. Consider a reflection in the axis which makes an angle of 45° to the
sides AB and BC' of the square and passes through O. Let the axis of reflection
meet BC' at U and let the image of B under the reflection be V. Then V lies on
the right bisector of AB and OB = BU = VU. Thus, OBUYV is a square. Since
2BU = 20B = AB = BC(, it follows that CU = BU. The image, W, of C under
the reflection must be on the circumference of the semicircle, and ZCUW = 90°,
CU =UW. If Z is the foot of the perpendicular from W to XY, then BZWU is
a square, and so must be the square BEFG. Hence, the sidelength of the smaller
square is a.

A (@] B Z
Figure 3.1b.

Problem 3.2. AB is a diameter of a circle and C is the mid-point of one
of the semicircular arcs AB. If P is any point on the opposite semicircular arc
AB, and if X and Y are the respective feet of the perpendiculars from A and B
to CP, then AX + BY = CP.

Comment. This obviously holds when P is the mid-point of the arc or P
coincides with A.

Solution. A rotation of 90° about the centre of the circle takes C' — A. The
chord CP falls on a chord AD that contains the point X.
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Figure 3.2.

Since P — D, the arc PD is one quarter of the circumference of the circle,
as is BC. The reflection in the diameter right bisecting the chord C'P takes the
circle to itself and interchanges C' and P. Since arc C'B is equal to arc PD, the
reflection must interchange B and D, and so must interchange lines BY and DX
(which are parallel to the axis). Since C'P is carried to itself by the reflection,
X and Y are each carried to points on C'P, from which it follows that X — Y.
Therefore, DX = BY, and therefore, AX + BY = AX + DX = AD =CP.

Comment. There are other ways of apprehending the situation. A 180°
rotation about the centre O of the circle interchanges A and B, and interchanges
the chord AD with a parallel chord through B. Thus, BY and AD are equidistant
from O, the centre of the circle.

Consider the reflection in the diameter d through the centre O parallel to AD
and Y B. This takes the chord AD to a chord on the opposite side of O through
B. Thus, X and Y are equidistant from d and so, the reflection interchanges X
and Y and interchanges B and D. The result follows from this.

Problem 3.3. A page is laid on a table. A second page is laid on top of it
(as indicated by a dotted line in the diagram). Does the top page cover more or
less than half of the area of the first page?

B A
I\
70N
70t N
4 6/9 \
7 / AN
s i N
4 \
4 \
4 \
d
. >G
4 ’
4 ’
EX .
7
N ; ,
N / ’
N / ,
N K ’
N
I s
c i~ D
] N ,
'S
‘ F

Figure 3.3.
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Solution. A subtle first point that has to be disposed of is to verify that the
edge of the top page actually passes through the point D, so that there is nothing
in the lower right corner of the bottom page that is not covered by the top page.
Let the bottom page have its vertices labelled ABC D and the top page AEFG as
indicated in the diagram. Let AH bisect the angle EAD. Consider the reflection
in the axis AH. This reflection carries AFE to AD, and AB to AG. Since the angle
CBA is equal to the angle FGA, BC' is carried onto GF'. Since F lies on the side
BC, its image D under the reflection must lie on GF. Observe that the top page
covers the triangle AED whose area is half that of either page, so that the top
page indeed covers more than half the bottom page, with respect to area.

Problem 3.4. The segments BE and C'F are altitudes of the acute triangle
ABC, where E and F are points on the segments AC and AB, respectively. ABC
is inscribed in the circle ) with centre O. Denote the orthocentre of ABC by H,
and the mid-points of BC and AH by M and K, respectively. Let ZCAB = 45°.

(a) Prove, that the quadrilateral M EKF is a square.

(b) Prove that the mid-point of both diagonals of M EKF is also the mid-point
of the segment OH.

(c¢) Find the length of E'F, if the radius of @) has length 1 unit.

Figure 3.4.

Solution. (a) Since AH is the hypotenuse of right triangles AFH and AHE,
we have that KF'= KH = KA = KFE. Since BC is the hypotenuse of each of the
right triangles BC'F and BC'E, we have that MB = MF = ME = MC. Since
/BAC = 45°, we have that triangles ABFE, HF B and ACF' are isosceles right
triangles, so that LZACF = ZABE = /FBH = /FHB = 45° and FA = FC,
FH = FB.

Consider a 90° rotation with centre F' that takes H — B. Then FA — F(C,
FH — FB, so that AFHA — AFBC and K — M. Hence, FK = FM and
ZKFM =90°.
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But FK = KFE and FM = MEF, so that MEKF is an equilateral
quadrilateral with one right angle, and hence is a square.

(b) Consider a 180° rotation (half-turn) about the centre of the square. It
takes K < M, F < E and H < H'. By part (a), AFHA = AFBC and
AH 1 BC. Since KH||MH' (by the half-turn), MH' 1| BC. Since AH = BC,
we have that BM = %BC = %AH = KH = MH’, so that BMH' is a right
isosceles triangle and ZCH'M = /BH'M = 45°. Thus, /BH'C = 90°. Since
/BAC = 45°, H' must be the centre of the circle through ABC. Hence H' = O.
Since O is the image of H by a half-turn about the centre of the square, this centre
is the mid-point of OH as well as of the diagonals.

(c) |[EF| = V2|FM| = V2|BM| = [OB] = 1.

Problem 3.5. Let ABC be an acute-angled triangle, with a point H inside.
Let U, V, W be, respectively, the reflected image of H with respect to axes BC,
AC', AB. Prove that H is the orthocentre of AABC' if and only if U, V', W lie on
the circumcircle of AABC.

i
U

Figure 3.5.

Solution 1. Suppose that H is the orthocentre of AABC. Let P, Q, R be
the respective feet of the altitudes from A, B, C'. Since BC right bisects HU, we
have that AHBP = AUBP and thus, ZHBP = ZUBP. Therefore,

LACB = /ZQCB = 90° - ZQBC = 90° — ZHBP
= 90°—-ZUBP = LPUB = ZAUB,

so that ABUC' is concyclic and U lies on the circumcircle of AABC'. Similarly V/
and W lie on the circumcircle.

Now suppose that U, V, W lie on the circumcircle. Let €;, €, €3 be the
respective reflections of the circumcircle about the axes BC, C A, AB. These three
circles intersect in the point H. If H' is the orthocentre of the triangle, then by
the first part of the solution, the reflective image of H' about the three axes lies
on the circumcircle, so that H' belongs to €1, €3, €3 and H = H’' or else HH' is
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a common chord of the three circles. But the latter does not hold, as the common
chords AH, BH and CH of pairs of the circles intersect only in H.

Solution 2. Let H be the orthocentre, and P, @), R, the pedal points as
defined in the first solution. Since ARH( is concyclic, we have that

/ZBAC+ /BUC = /Z/BAC + /BHC = ZRAQ+ ZRHQ@Q = 180°

and it follows that ABUC is concyclic. A similar argument holds for V and W.

[A. Lin] Suppose that U, V', W are on the circumcircle. From the reflection
about BC', we have that /BCU = ZBCH. From the reflections about BA and
BC, we see that BW = BH = BU, and so, since the equal chords BW and BU
subtend equal angles at C, that /ZBCW = ZBCU. Hence, /BCW = /ZBCH,
with the result that C, H, W are collinear and CW is an altitude. Similarly, AU
and BV are altitudes that contain H, and so their point H of intersection must
be the orthocentre.

Problem 3.6. (The Fermat problem.) Given three points in the plane,
determine a point such that the sum of the distances from it to the three given
points is minimum.

Solution. We consider first the case that no angle of the triangle ABC, whose
vertices are the three given points, exceeds 120°. In Figure 3.6a, A’ is the image of
A under a rotation of 60° with centre B. Let @ be an arbitrary point in the interior
of the triangle and @’ be its image under the same rotation. Since BQ = BQ’ and
ZQBQ' = 60°, triangle BQQ' is equilateral. Since A’B = AB and ZABA' = 60°,
triangle BAA’ is equilateral and ZA’AC = ZA’AB+ ZBAC < 60°+120° = 180°.
Hence, A and B lie on opposite sides of the line A’C.

A
C
A/ Q/
Q
B
Figure 3.6a.

We have that
QA+QB+QC = AQ"+Q'Q+QC > A'C.

The positions of A’ and C are independent of Q. Thus, the minimizing position
of @ for the sum of the distances will occur when A’Q'QC' is a straight line. A
similar observation can be made with respect to the other vertices B and C'. Note
that A’ is a vertex of the equilateral triangle constructed externally on the side
AB of triangle ABC.
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Figure 3.6b.

Consider Figure 3.6b: threee quilateral triangles ABZ, BCX, ACY are
constructed externally on the sides of triangle ABC. (We have relabeled A’ as
Z.) Let P be the point of intersection of the circumcircles of triangles ABZ and
ACY. Then LZAPB = ZAPC = 120°, so that ZBPC = 120° and P also lies on
the circumcircle of triangle X BC.

Since angles ZPA and ZPB are subtended by equal arcs of the circumcircle
of ABZ, they are both equal to 60°. Hence, /ZPA+ ZAPC = 180°, so that Z,
P, C are collinear. Similarly, P lies on AX and BY, so that P is the common
point of the lines AX, BY, CZ.

P is the point that we are looking for. Since BPAZ is concyclic, ZBZP =
/BAP. From this, it can be seen that the image P’ of P under the rotation of
60° about B is on the line CPZ. Hence

PA+PB+PC = ZP'+ PP+ PC = ZC .

Y

Figure 3.6c.
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Now suppose that ZBAC > 120°. Let @ be any point inside triangle ABC'
and construct A’ and Q' as before. Now A’C lies outside the triangle and A’A
produced penetrates the triangle and intersects QC at some point R. (Observe
that AA” and QQ’ intersect outside the triangle beyond A’.) Then

A'A+ AC A'A+ AR+ RC = A'R+ RC

<
< AQ+QQ+QR+RC = AQ+BQ+CQ .
In this case, the minimizing point P coincides with A.

The case that the three points B, A, C are collinear, with A between B and
C, falls in this case, with A being the desired point.

Comment. The foregoing argument is due to Hofmann in 1929. This problem
has an interesting dual relationship with a second problem that was originally
posed by Thos. Moss in the Ladies’ Diary, or Women’s Almanack, and again in
1810 in the Annales de math. pures et appliqués; the solution was given in the
same journal in 1811-12. This is that, given three points in the plane, find the
largest equilateral triangle whose sides pass through the points.

Fasbender’s Theorem. (1845) Let A, B, C be three points for which no
angle of the triangle ABC exceeds 120°. Within the triangle ABC, there is a
point P for which the length PA + PB + PC' is at the same time

e the minimum distance sum QA + QB + QC for any point @ in the plane;

e the maximum altitude of an equilateral triangle circumscribed about triangle
ABC this equilateral triangle has sides perpendicular to the segments PA,
PB, PC.

Proof. With the point P determined as in Problem 3.6, construct through vertices
A, B, C, lines perpendicular to PA, PB, PC, respectively. These lines bound an
equilateral triangle whose altitude is equal to PA+ PB+ PC in length (why?). We
show that any other circumscribed equilateral triangles has at most this altitude.

A

Figure 3.6FTa.
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Consider any circumscribed equilateral triangle as in the following diagram.

Figure 3.6FTh.

For any point @ within the triangle, the altitude of the equilateral triangle is
equal to QU +QV +QW, which does not exceed QA+ QB+ QC. In particular, this
is true for the Fermat point P, so that the altitude does not exceed PA+ PB+ PC.
Since this altitude is realizable, the point P leads to a solution of the equilateral
triangle problem.

Problem 3.7. Let PQR be a given triangle. Let points A, B, C be located
outside of the triangle in such a way that ZPQC = ZPRB = 45°, ZQPC =
/ZRPB = 30°, and ZAQR = ZARQ = 15°. Prove that triangle ABC' is right
isoceles.

Figure 3.7a.

Solution. [J. Colwell] Let S be the image of R under a counterclockwise
rotation about A through 90°. Then AR = AS = AQ. Since ZQAS = 60°,
triangle QAS is equilateral and thus, ZSQR = 45°. Since triangle ARS is right
isosceles, ZARS = 45°, so that ZQRS = 30°. Therefore, the three triangles PCQ,
PBR and RSQ are similar, whence CQ : QP = SQ : QR.



23

Figure 3.7b.

Now LCQS = ZPQS + 45° = ZPQR. (If S lies outside of triangle PQR
on the far side of PQ, then ZCQS = 45° — LPQS = ZPQR.) Hence, triangles
CQS and PQR are similar, so that

CS:RP =CQ:QP = BR:RP = (CS = BR.
Also
/05Q = LPRQ — ZCSA = ZCSQ+60° = ZPRQ+45°+15° = ZBRA.

Since also AS = AR, we have that triangles CSA and BRA are congruent (SAS),
so that AC = AB and ZSAC = ZRAB. Hence,

/BAC = /BAS+ £SAC = /BAS+ /ZRAB = ZRAS = 90° .

Comment. This problem appears later as Problem 5.14, with a different
approach.

Problem 3.8. Within a triangle ABC, a point P is determined so that
/PAC =10°, ZPCA =20°, ZPAB = 30° and ZABC = 40°. What is ZBPC?

A

Figure 3.8a.
Solution. Since ZCAB = ZCBA = 40°, we have CA = CB. A reflection in
the right bisector of AB fixes C and interchanges A and B, as well as P and some
point Q.
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A B

Figure 3.8b.

Since ZACB = 100° and ZPCA = ZQCB = 20°, we have ZPCQ = 60°.
Since CP = CQ, triangle CPQ is equilateral and PQ = QC, it follows that
/BQC = ZAPC = 150° and ZBQP = 360° — 60° — 150° = 150°. A reflection
in BQ produced takes the segment QP to QC while fixing B and (). Hence,
triangles QCB and QPB are congruent, so that /BPQ = ZBC@Q = 20° and
ZBPC = 20° + 60° = 80°.

Problem 3.9. Triangle ABC is such that ZA = 20° and ZB = 80°. The
point D in side AB is determined so that AD = BC. What is ZADC?

C

Figure 3.9a.

Solution. A combination of a translation and a rotation takes A — B,
D—Cand C — E.
E

Figure 3.9a.
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Since LZABC = ZACB = 80°, we have AB = AC' = BE and triangle ABE
is isosceles with apex angle ABFE equal to 60°. Hence, triangle ABFE is equilateral
and thus, AF = AC and ZBAFE = 60°. Therefore, triangle ACE is isosceles
with apex angle CAFE equal to 40°. Hence, ZACE = ZAEC = 70°, so that
LADC = ZBCE = 80° + 70° = 150°.

Problem 3.10. Triangle ABC is equilateral with centroid M. Points D and
FE are located on the respective sides C'A and C'B for which CD = CE. The point

F' is determined for which DM BF is a parallelogram. Prove that the triangle
MFEF is equilateral.

A

Figure 3.10.

Solution. There is a translation that takes M — Band D — F. Let A — A’
and C — C’. Since MC = MB = CC’, we have that M BC’'C is a rhombus
with ZCMB = 120°. Therefore, MCC’ is an equilateral triangle. Similarly,
triangle M AA’ is equilateral, so that MA" = AA’ = MB. Also ZAMB =
/JAMB — ZAM A’ = 120° — 60° = 60°.

A 60° rotation about M takes C — C’, B — A’, so that CB — C'A’. Now
C'F =CD =CEFE, sothat E — F. Thus, ME = MF and ZEMF = 60°. The
result follows.

Problem 3.11. Determine the area between the graph of y = sin® z and
the r—axis for 0 < z < 7.

<
S5
-

oy =sinz

(0,0) (7, 0)

Figure 3.11a.
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Solution. The required area is twice that between the two graphs for 0 <

=
IA
N

2 2

Since cos? z = 1 — sin? , the graph of y = cos® z can be obtained from the
1

graph of y = sin?z by a reflection in the line y = 5 (that is, (u,v) is on the
graph of one curve if and only if (u,1 — v) is on the graph of the other). Since

cosx = sin(§ — x), the graph of y = cos? z can be obtained from the graph of
y = sin? z by a reflection in the line 2 = 7 (that is, (u,v) is on one graph if and

only if (3 —wu,v) is on the graph of the other).

(0,1)

(0,0)

Figure 3.11b.

Consider a reflection in the line y = % followed by a reflection in the line
x = 7. The composite of these two reflections is a rotation through 180° about
the point (7, %) that takes the graph of y = sin? z to itself and interchanges the
r-axis and the line y = 1. Hence, on the interval defined by 0 < z < 7, the area
between the graph and the z—axis is equal to the area between the graph and the
line y = 1. Hence, the area under the graph is half the area of the rectangle with
vertices (0,0), (%,0), (5,1), (0,1), namely %(%) = Z. It follows that the area

s

under the graph of y = sinz for 0 <z < 7is 5

Problem 3.12. At points A and B on a circle, equal tangents AP and
BQ are drawn in the same sense, as indicated in the diagram. Prove that AB
produced bisects the segment PQ).
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A P
Figure 3.12a.

Solution. [A. Brown] The reflection in the right bisector of AB fixes O, the
centre of the circle, carries the circle to itself and interchanges A and B.

'
\

Figure 3.12b.

Q' A P

It takes the point @ to @', so that AQ’ is tangent to the circle at A; thus Q’, A,
P are collinear and Q'Q||AB. Counsider the triangle PQ'Q. Then Q'A = AP and
AB produced is parallel to Q'Q. Therefore, AB produced must pass through the
mid-point of PQ.

Problem 3.13. Let POQ be a given angle. The following method is
suggested for trisecting the angle using straightedge and compasses. Select any
point B on OQ and drop a perpendicular to meet OP at A. Erect an equilateral
triangle ABC on the opposite side of AB to O. Join OC. Then OC trisects angle
POQ; that is, ZCOQ = 2ZCOP.

Determine those angles POQ for which the method actually works.
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Q
B
.-z C
T i
o A P
Figure 3.13.

Solution. Suppose that the trisection succeeds. A reflection in the axis
OP fixes O and A, and interchanges C' with some point D. Since ZPAC =
/PAB — ZCAB = 90° — 60° = 30°, we have that ZDAC = 60° and AD = AC.
Hence, triangle DAC is equilateral.

Since ZDOC = 2/POC = ZQOC and OD = OC, a rotation with centre
O and angle DOC takes D — C' and C to some point R on OQ. We have that
BC =CA =CD = CR. In the isosceles triangle COR, we find that

/CRO = =(180° — ZCOQ) = 90° — ZCOP .

1
2
Using an external angle for triangle OAB and the fact that C BR is isosceles, we
find that

/CRO = ZCBR = ZABQ —60°
90° + LZPOQ — 60° = 30° 4+ 3£COP .

Hence, 60° = 4ZCOP, so that ZPOQ = 45°. Thus, the method works only when
the angle to be trisected is 45°.



29

4 Dilations

Isometries are not the only transformation useful in solving geometric problems.
Dilations (also known as dilatations, homotheties or central similarities) are scale
transformations determined by a fixed point, called its centre, and a factor that
indicates the scale change.

A dilation D¢,y with centre C and factor A > 0 takes the point C to itself
and any other point P to a point P’ located on the ray C'P so that CP' = ACP.
Thus, C, P, P’ are collinear and P and P’ are on the same side of C. Note that,
if A = 1, we obtain the identity map; if 0 < A < 1, then P’ lies between C and P
and we get a contraction; if A > 1, then P lies between C' and P’ and we get an
expansion.

Figure 4.1.

We can define dilations with negative factors. The dilation D¢, —1, also
known as a reflection in the point C, is equivalent to a rotation of 180° with
centre C. A point P is carried to a point P’ for which C is the mid-point of the
segment PP’

In general, if A < 0, the dilation D¢ is the composite
D¢,—1- Dz = Dca - Do,-1 -

The point P is taken to the point P’ for which C' divides the segment PP’ in the
ratio 1 : |A|.

Pl
Q/
Figure 4.2a.
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A dilation is a transformation that preserves shape but changes scale. It is
direct. The image of a line is a parallel line; the image of a circle is a circle whose
radius is equal to |\| times that of the original circle. The image of any geometric
figure is a similar figure. The linear dimensions of the image are equal to |A| times
the corresponding dimensions of the original, and the area of the image is equal
to A? times the area of the original.

It is straightforward to see that the composite of two dilations with the same
centre is a dilation with the same centre whose factor is the product of the factors
of its components. We can use analytic geometry to investigate what happens to
the composite when the centres differ.

Let the dilation with centre (0,0) and factor A be followed by one with centre
(1,0) and factor u. (Why is there no loss of generality in our specification of the
centres?) Then the effect is given by

(@,y) — (Az,Ay) — (L,0)+p(Az =1, y) = (1 —p+ A, Auy) -

If Ay =1, then the composite is a translation parallel to the segment joining the
centres of dilation through the directed distance 1 — p.

Let A # 1. The composite has the fixed point
1—
o).
1—
We make a change of coordinates to put the fixed point at the origin. Let

I—p
1— A’

Then, in the new coordinate system, the image (X', Y”) of (X,Y) is given by

1—uw 1—p
X' =1- A | X - = X
v (X155 ) - (75) = wex

Y' = Ay = Y .

Thus, the composite is a dilation with centre ((1 — p)/(1 — An),0) and factor Ap.

Ezercise. Check that this is what you would expect when either A or u is
equal to 1.

As another exercise, let us consider the composite of a dilation and a
reflection. Let the centre of a dilation of factor A be (0,0) and let the axis of
reflection be the line of equation x = 1. Then the composite of the dilation
followed by the reflection is given by

(x,y) — Az, \y) — (2= Az, \y) .

If A = —1, the mapping is (z,y) — (—z,—y) — (2 + x,—y), which is a glide
reflection. When A # —1, there is a fixed point (2/(1 4+ A),0), so that we define
new coordinates (X,Y") that put this fixed point at the origin. Let

2
X=z——, Y =uy.
x 14+ ) y
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Then the composite, expressed in terms of the new coordinates, is given by
(X,Y) = (X',Y’), where

2 2
I o9 _ - _
X =2 )\(X+1+>\) T AX
and Y/’ = \Y. Thus, the composite is a dilation followed by a reflection in an axis
through the centre of the dilation.

FEzercise. Examine the composite of a dilation and a reflection when the
reflection comes first.

FEzercise. Investigate the composite of a dilation with translations and
rotations.

A spiral similarity is a rotation about a given point followed by a dilation
about the same point. The rotation and the dilation commute, so that one gets the
same result by applying the dilation first and then the rotation. A spiral similarity
preserves straight lines and angles, and carries any geometric figure to a similar
figure.

A central reflection (reflection in a point, half-turn) is a dilation with factor
—1. If O is the centre of the similarity, it takes a point P to a point P’ for which
PO = OP’; that is, O is the mid-point of PP’. In space, we have to distinguish
between a central reflection in a point from a half-turn (180° rotation) about an
axis perpendicular to a plane through the point. They have the same effect on the
plane, but differ on the rest of space. The first takes points from one side of the
plane to the opposite side, while the second keeps them on the same side of the
plane. We also have a dilation-reflection on a plane, which is a reflection followed
by a scaled decrease in the distance to the axis. Thus, a point P is taken to a
point P’ on the opposite side of an axis A for which the distance from P’ to a is
equal to A times the distance from P to a for some fixed positive real number .
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5 Using dilations to solve problems

Problem 5.1. Let ABCD be a parallelogram and let F be a point on the side AB
for which AE : EB =2 : 1. Suppose that BD and CFE intersect at F. Determine
BF : FD.

A D

B C
Figure 5.1.

Solution. Observe that DC = 3EB, so that a dilation with centre F' and
factor —3 takes the point E to E' on F'C, and B to B’ on F'D with E'B’ = 3EB.
Hence, it takes the segment FB to CD. In particular, BF goes to DF and
BF :FD=1:3.

Problem 5.2. Suppose that ABCD is a trapezoid with AB|/CD, and M
is the mid-point of AB. Suppose further that P is on the side BC but not equal
to Bor C. Let X =PDNAB,Q=PMNAC,Y = DQnN AB. Prove that M is
the mid-point of XY

X B M A Y

@ Figure 5.2.
Solution. Let N = CD N PQ. A dilation Hg with centre @ takes A — C,
M — N. A dilation Hp with centre P takes C — B, N — M. Then Hg followed
by Hp fixes M and takes A to B. This composite is a halfturn about M and takes
Y — D — X. The result follows.

Problem 5.3. Construct, using straightedge and compasses, a
parallelogram ABCD given A, C' and the distances r and s of B and D from
a given point F.
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Figure 5.3.

Construction. Consider the final diagram. The central reflection in the
mid-point M of the diagonals of the parallelogram interchanges A and C' and
interchanges B and D. Let E’ be the image of E. Then |E'D| = |EB], so that D
is located at the intersection of the circle with centre £ and radius EB and the
circle with centre E’ and radius ED. (FEzercise: Complete the construction and
prove that it works.)

Rider. When is the construction feasible?

Problem 5.4. Let ABC be a triangle with medians AU, BV, CW. Then
there is a triangle whose sides are equal to the lengths of AU, BV and CW and
whose area is equal to 3/4 of the area of triangle ABC.

Solution. The translation in the direction of ATV through the distance %|AB |
takes A — W, W — B, V — U and U goes to some point X. Since AU is equal
and parallel to W X, and since W B is equal and parallel to U X, the quadrilateral
WBXU is a parallelogram. Let WX intersect BC in Y. The dilation with centre
B and factor % takes A — W and the line AU to the parallel line WX, so that
U —Y and Y is the mid-point of BU as well as the mid-point of W X.

Now consider the translation in the direction BX. This takes B — X and
V — C, so that the median BV goes to XC. Hence WXC is a triangle whose
sidelengths are equal to the lengths of the medians. Furthermore

[WXC] = 2[WYC)] = 2(3/4)[WBC] = 2x(3/4)x (1/2)[ABC] = (3/4)[ABC].

A

X

Figure 5.4.
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Problem 5.5. The medians of a triangle intersect in a common point which
is two thirds of the way along the length of each median from its vertex.

Solution. Use the notation of Problem 5.4. Let the medians BV and CW
of the triangle intersect at G. The dilation with centre A and factor 1/2 takes
B — W and C — V, so that [WV| = (1/2)|BC|. Now consider the dilation with
centre G and factor —2. This dilation takes V to a point V’ on the lines GB
produced and W to a point W’ on GC produced, so that |[V/W’| = 2|[VW| and
V'W/||WV. Since |BC| = 2|WV| and BC||WV, the segment BC' can be none
other than the segment V'W’. Hence BG = 2GV and CG = 2GW. In a similar
way, it can be shown that the median from A must intersect BV and CW at the
point G.

A

Figure 5.5.

Recall that the circumcentre of a triangle is the intersection of the right
bisectors of its sides, that the orthocentre is the intersection of its altitudes and
the centroid is the intersections of its medians.

Problem 5.6. (The Euler line.) Let O, G and H be, respectively, the
circumcentre, centroid and orthocentre of a triangle ABC'. Then these three points
are collinear and HG = 2GO.

Figure 5.6.
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Solution. Let AU, BV, CW be the medians and AP, BQ, CR be the
altitudes of triangle ABC. The dilation with centre G and factor —1/2 takes
A—-U,B —V,C — W. The altitudes AP, BQ, CR of triangle ABC' are
carried to the altitudes of triangle UVW. In particular, AP goes to a line through
U and perpendicular to WV. But WV||BC, so this line is perpendicular to BC
and is none other than the right bisector of BC. Similarly, BQ goes to the right
bisector of AC' and C'R to the right bisector of AB. Hence, the intersection of the
altitudes of triangle UVW is the intersection of the right bisectors of the sides of
triangle ABC, namely the circumcentre O. Thus, the dilation takes H — O, and
the result follows.

Problem 5.7. (The nine-point circle.) Let H be the orthocentre of triangle
ABC'. Then the mid-points of the sides, the pedal points (feet of the altitudes)
and the mid-points of AH, BH, CH all lie on a common circle.

Solution. As before, let U, V', W be the mid-points of the sides, let P, @, R
the pedal points, let X, Y, Z be the respective mid-points of AH, BH, CH, and
let O be the circumcentre.

Figure 5.7.

If the circle exists, it must be the circumcircle of triangle UVW. Let S be
the centre of this circumcircle. The dilation with centre G (the centroid of triangle
ABC) and factor —1/2 must take H — O and O — S, with

GS:GO:HG =1:2:4,

so that H, S, G, O are collinear and SO : HO =3 :6 = 1: 2. Hence, S is the
mid-point of OH, and so must lie on the right bisector of PU (why?). Hence,
PS =US. Similarly, QS = VS and RS = WS. Since S is the circumcentre of
triangle UV W | it is equidistant from U, V, W, P, @, R. The dilation with centre
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H and factor 1/2 takes A — X, B — Y and C' — Z, so that the linear dimensions
of triangle XY Z are half the corresponding dimensions of triangle ABC, and the
sides of triangle XY Z are parallel to the respective sides of ABC'. Observe that
the linear dimensions of triangle UV W are half those of triangle ABC and the
sides of triangle UV W are parallel to the sides of triangle ABC. Hence, triangles
XY Z and UVW are congruent(SSS) and it remains to identify the isometry that
links them.

The respective orthocentres of triangles XY Z and UVW are H and O. A
rotation of 180° about S interchanges O and H. It takes the line OU to a line
through H parallel to OU, namely HA. Since triangles XY Z and UVW are
congruent, we have that XH = UO, so that X must be the image of U under
the rotation. Similarly Y and Z are the respective images of V' and W. Hence
XS=US,YS=VSand Z5 = WS, and the result follows from this.

Problem 5.8. (The Pythagorean Theorem.) Let ABC be a right triangle
with hypotenuse BC. Then the area of the square on BC is equal to the sum of
the areas of the squares on AB and AC.

A

]

Figure 5.8.

Solution. Let D be the foot of the perpendicular from A to BC and let
a, b, ¢ be the respective lengths of the sides BC, AC, AB. A reflection about
the bisector of angle C' followed by a dilation of factor b/a takes triangle ABC' to
triangle DAC. Hence, [DAC] = (b/a)?|ABC]. Similarly, [DBA] = (¢/a)?|ABC].
Hence,

[ABC]

[DAC] + [DBA]

- (&) @) uma
(w;é

)mBq.

Therefore, a® = b% + 2, as desired.
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Problem 5.9. Let ABC be an arbitrary triangle, let F' and K be the
centres of the respective squares erected outwards on the sides AB and AC, and
let M be the mid-point of BC. Then FM 1 KM and FM = KM.

H

B M C

Figure 5.9.

Solution. Let the squares in question be ABDFE and ACGH. Since F' and M
are the respective mid-points of BE and BC, a dilation with centre B and factor
of 2 takes FF — FE and M — C, so that FM||EC and 2FM = EC. Similarly, using
a dilation with centre C, we find that M K ||BH and 2M K = BH. A rotation with
centre A through an angle of 90° takes B — F and H — C, so that BH = EC
and BH 1 EC. The result follows from this.

Problem 5.10. Let ABCD be any quadrilateral and let P, @, R, S be the
respective centres of the squares on sides AB, BC, CD, DA, respectively. Then
PR is equal to and perpendicular to @Q.S.

Figure 5.10.
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Solution. Let T be the mid-point of the diagonal BD. From Problem 5.9,
we see that PT = ST and PT 1 ST, and also that RT = QT and RT 1 QT.
Consider a 90° rotation about the point T that takes P — S and R — Q. It takes
the segment PR to the segment S@Q, and thus, the result follows.

Comment. Note that, in general, T' will not lie on either of the segments PR
or @S. A similar argument is possible using the mid-point of the diagonal AC.

Problem 5.11. Suppose that OAB and OA’ B’ are two equilateral triangles
with the same orientation; let S be the centroid of triangle OAB, and let M and
N be the respective mid-points of A’B and AB’. Prove that the triangles SM B’
and SN A’ are similar.

Figure 5.11.

Solution. The dilation with factor 2 and centre B followed by a 60° rotation
about O has the following effects: S — S’ — S, where S’ is the reflection of S in
OA, and M — A’ — B’. Hence, SB' =2S5SM.

The central similarity with factor 2 and centre A followed by a clockwise
60° rotation about O has the following effect: S — S and N — A’. Hence,
SA"=2S8N. Also ZMSB’' = 60° and ZNSA" = 60°. The result follows.

Problem 5.12. Suppose that ABC and CDE are similarly oriented
equilateral triangles, each external to the other, and that P, @), R are the respective
mid-points of AE, BC, CD. Prove that triangle PQR is equilateral. (see also
Problem 5.16)

Figure 5.12.
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Solution. The dilation with centre A and factor % takes ¥ — Pand C — M,
the mid-point of AC'. Since

PM = %EC = %C’D = RC

and PM||CE, the lines PM and C'D produced make an angle of 60°.

The rotation of 60° with centre () fixes @ and takes C — M. The line CR
goes through a line through M that makes an angle of 60° with CR, so that CR
must go to M P. It follows that triangle QM P is the image of triangle QC'R and
that R — P. Thus, triangles QM P and QCR are congruent. Hence PQ) = R(Q
and ZPQR = 60°, so that triangle PQR is equilateral.

Problem 5.13. Suppose that ABCDEZ is a regular octahedron whose
pairs of opposite vertices are (A, Z), (B, D) and (C, E). The points F, G, H are
chosen on the segments AB, AC, AD, respectively, such that AF = AG = AH.

Figure 5.13.

(a) Show that EF and DG must intersect in a point K, and that BG and EH
must intersect in a point L.

(b) Let EG meet the plane of AKL in M. Show that AK ML is a square.

Solution 1. (a) Since AF : AB = AG : GC, it follows that FG|BC|ED, while
FG < BC = ED. Hence, FGDE is a coplanar isosceles trapezoid and thus, EF
and DG must intersect in a point K. A 90° rotation about the axis AZ takes
B—-C,F—-G,C—-D, G—H,D— E, E— B. Hence, EFF — BG and
DG — FEH, so that BG and EH must intersect in a point L, which is the image
of K under the rotation.

(b) KE and AB intersect in F', so that the two lines are coplanar. Also
KF : KE =FG: ED = FG: BC = AF : FB so that AKAF ~ AEFB and
AK||EB. Hence, K lies in a plane through A parallel to BCDE. Because the
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90° rotation about the axis AZ (which is perpendicular to the planes BCDE and
AKL) takes K — L, we have AK = AL and ZK AL = 90°.

Consider a dilation with centre E and factor |[AB|/|FB|. Let I be on AE
with Al = AF. Then the dilation takes FF — K, H — L, I — A and the plane
of FGHI to the parallel plane AK L. The image of G under this dilation is the
intersection of EG and the plane of AK L, namely M. Thus, the square FGHI
goes to K M LA which must also be a square.

Solution 2. The dilation-reflection perpendicular to a plane through FG
perpendicular to BE and CD with factor |AF|/|FB| takes B — E, C' — D, and
fixes F' and G. The lines BF and C'G with intersection A gets carried to lines EF
and DG which intersect in a point K for which AK is perpendicular to the plane
and therefore, parallel to BE and CD, and the distance from K to the plane is
|AF|/|FB| times the distance from A to the plane.

Similarly, considering a dilation-reflection to a plane through GH
perpendicular to BC and DE with the same factor produces the point L with AL
perpendicular to this plane and thus, parallel to BC and ED. Thus, ZK AL = 90°.

The reflection in the plane AECZ fixes A, C, E, G and interchanges the
points in each of the pairs (B, D) and (F, H). Hence, the line pairs (EF, DG) and
(EH, BG) are interchanged as is the pair K and L. Thus, AK = AL and KL is
perpendicular to AEC'Z. The triangle AKL is in a plane through A parallel to
BCDE. The proof that AK ML is a square can be completed as in Solution 1.

Problem 5.14. Let PQR be a given triangle. Let points A, B, C be located
outside of the triangle in such a way that ZPQC = ZPRB = 45°, ZQPC =
/ZRPB = 30° and ZAQR = ZARQR = 15°. Prove that triangle ABC is right
isoceles.

Solution. [A. Chang] Determine the point S on the same side of QR as
A for which triangle QRS is equilateral. Then triangles QPC, QSA and PRB
are similar. The spiral similarity with centre @ consisting of a clockwise rotation
through 45° followed by a dilation with factor |PQ|/|QC| = |QS|/|QA| takes
C — P and A — S, so that CA — PS and |PS|/|CA| = |PQ|/|QC]|.

S
Figure 5.14.
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The spiral similarity with centre R consisting of a rotation through 45°
followed by a dilation with factor |PR|/|RB| = |RS|/|AR| takes B — P and A —
S. Hence, |PS|/|BA| = |PR|/|BR| = |PQ|/|CQ)|. Since |BA|/|PS| = |CA|/|PS]|,
BA = CA. Since a 45° rotation takes C'A along PS and a 45° rotation takes BA
along PS, it must be that ZCAB = 90°.

Comment. P. Milley had a similar approach. Note that a 45° rotation about
Q carries C to C’ on PQ and A to A’ on @S, and that C'A’||PS. Similarly, a 45°
rotation counterclockwise about R takes B — B” and A — A” with B”A"”||PS.
Problem 3.7 provides and alternative solution.

Problem 5.15. Let A be a point on a circle with centre O and let B be
the mid-point of OA. Let C' and D be points on the circle on the same side of OA
produced for which ZCBO = ZDBA. Let E be the mid-point of C'D and let F’
be the point on EB produced for which BF = BE.

(a) Prove that F' lies on the circle.

(b) What is the range of angle EAO?

C

Figure 5.15a.

Solution. [A. Wice] We first establish a Lemma.

Lemma. Let UZ be an angle bisector of triangle UVW with Z on VIV.
Then
Uz?> = UV-UW-VZ-WZ.

U

%4 A w
Figure 5.15b.
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Proof. By the Cosine Law,
UV? = UZ?+VZ?-2UZ-VZcos(LUZW)

and
UW? = UZ?+WZ*+2UZ - W Zcos(LUZW) .

Eliminating the cosine term yields that

UVEWZAUW?.VZ = (UZ*+VZ-WZ)WZ+VZ).

Now,
Uv:VZ =UW :WZ = (UV4+UW):(VZ+W2Z),
so that
ov - wWzZ =UW . -VZ
and

OV+UW) WZ =UW-(WZ+VZ).
These two equations yield that
UV2-WZ+UW?.VZ = (UV+UW)-WZ-UV
= WZ+VZ)-UW-UV .
It follows that UW - UV =UZ*+VZ -WZ.

(a) Let R be a point on the circle with BR 1 OA, S be the intersection of
CD and OA produced, and D’ be the reflection of D in OA. Observe that C, B,
D’ are collinear. (Without loss of generality, ZCBO < 90°.) Since SB is an angle
bisector of triangle SC'D’, from the Lemma, we have that

BS? = SC-SD'—~CB-D'B = SC-SD - BR?> = SC-SD — (SR? — BS?)

whence SC - SD = SR?. Using power of a point, we deduce that SR is tangent
to the given circle and OR 1 SR.

Figure 5.15¢c.
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Now

20A-AS +AS? = (OA+ AS)?> —OR? = RS? = BR? + (AB + AS)?
= 3AB% 4 AB? +2AB - AS + AS? |

from which we get 4AB - AS = 4AB? + 2AB - AS, whence AS = 2AB = OA.
Since OF 1L CD, we get that E lies on the circle with diameter OS.

Consider the reflection in the point B (dilation in B with factor —1). It
interchanges E and F, interchanges O and A, and switches the circles ADRC' and
OFRS. Since E lies on the latter circle, F' must lie on the former circle, and the
desired result (a) follows.

(b) The locus of E is that part of the circle with centre A that lies within
the circle with centre O. Angle FAO is maximum when E coincides with R,
and minimum when D coincides with A. Since triangle ORA is equilateral, the
maximum angle is 60° and the minimum angle is 0°.

Problem 5.16. ABC and A’ B’C are similarly oriented equilateral triangles
intersecting only at C; and P, ), R are the respective mid-points of AB’, BC,
A’C. Prove that triangle PQR is equilateral. (see also Problem 5.12)

A

Figure 5.16a.

Solution. Perform the following sequence of transformations:

(1) a dilation with centre C' and factor 2;
(2) a 60° counterclockwise rotation about B;
(3) a dilation with centre C' and factor 3.

The first and third preserve the direction of any line, while the second rotates
lines through an angle of 60°; thus, the three taken together have the net effect
of changing the direction of any line by 60°. The point @ is first taken to B,
and then finally returned to @, so that @ is fixed by the composite of the three
transformations.

Consider what happens to R. Transformation (1) sends R to A’. Suppose
that (2) sends A’ to A”. Since AA” is the image of C A’ under (2), AA” = C A" and
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AA"” makes an angle of 60° with CA’. But B’C makes and angle of 60° with C A’.
Therefore, AA”||B’C' and ACB’A"” is a parallelogram. Thus, A”C bisects AB at
P. Thus, the transformation (3) takes to A” to P. Therefore, the composite of the
three transformations takes R to P, and so takes QR to QP. Hence, ZPQR = 60°
and QR = RP, and the result follows.

A

Figure 5.16b.

Problem 5.17. A frustum (portion of a pyramid cut off by two parallel planes)
has triangular bases. The bottom base has area A and the top area B < A.
Inscribed in the frustum are two spheres, one touching the bottom base and the
three slant faces, the other touching the top base and the three slant faces, and
each touching the other. Prove that the lateral surface area (of the slant faces,
but not the bases) of the frustum is equal to

(VA+B) (VA+VB) .

Figure 5.17.

Solution. FExtend the slant edges to the apex point T to complete the
tetrahedron (triangular pyramid). Consider a dilation with centre T' and factor
B/A, which takes the base of area A to the base of area B. The sphere touching
the base of area A and the three slant faces of the frustum is the inscribed sphere of
the tetrahedron with apex T and base of area A. This gets carried by the dilation
to the inscribed sphere of the tetrahedron with apex T and base of area B. Let
the respective radii of these spheres by r and t.
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The lower sphere of the problem has radius r; let the upper sphere touching
it have radius s. Suppose that the triangular cross-section of area C' is tangent to
these two spheres. These two spheres are related by a dilation with centre T" and
factor 1/C/A that takes the base of area A to the base of area C, and the base of
area C' to the base of area B. Thus, the composite of the dilation with itself is the
dilation of factor /B/A, so that C/A = \/B/A, or C = v/AB. We have that

5 c A
t VB~ VB~
The tetrahedron of apex T' and base of area B is the union of four tetrahedra
whose common apex is the centre of the top sphere of radius ¢t and whose bases
are the slant faces and the triangle of area B. Let V be the lateral area of these

three slant faces of the tetrahedron with base of area B. Then, we see that the
area of the tetrahedron is (1/3)t(V + B).

The same tetrahedron is also the union of three tetrahedra with the centre
of the middle sphere of radius s as apex and whose faces are the three slant faces,
less the tetrahedron with the same apex and base of area B. Thus, the area is also
(1/3)s(V — B), and we deduce that t(V + B) = s(V — B), or B(s+t) = V(s —t).

Since the lateral area U of the tetrahedron with apex T and base of area A
is equal to (A/B)V, by the dilation, the desired area is equal to

V(A-B) (A—B)(s+1)

Uv-v = =
B (s—1t)
(A-B)(VA+VB) _ (VA+VB)(VA-VB)(VA+VB)
(VA—V/B) VA-VB
= (VA+VB)(VA+VB)(VA+VB) = (VA+VB)(VA+ VB)?,
as desired.

Problem 5.18. ABC is a right triangle with ZA = 90°. The point D on
BC' is such that AD L BC. Let U and V be the respective incentres of triangle
ACD and ABD. Prove that the bisector of angle A is perpendicular to UV

A

Figure 5.18.
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Solution. The composite of a rotation and dilation with centre D takes
triangle ADC to triangle BDA, and thus, takes DU to DV. We have that DU :
DV = AC : AB and ZUDV = ZCAB = 90°, so that triangles DUV and ACB
are similar. Since ZUDA = ZV DA = 45°, we have that AD bisects ZUDV.

The similarity that takes triangle DUV onto AC'B takes the altitude DF' of
triangle DUV to the altitude AD of triangle AC B, and the bisector DA of angle
UDV to the bisector AG of ZCAB. Hence, ZFDA = ZDAG, so that DF||AG
and AG L UV.
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6 Inversion in a circle

In this section, we will deal with a different sort of transformation that is a kind of
distorted reflection which does not preserve the exact shape of geometric objects
but never the less does have some interesting structural properties.

Let € be a circle with centre O and radius r, and let P be any point of the
plane other than O. We define inversion in the circle € as follows. Draw the ray
from O that passes through P. The image P’ of P is that point on the ray for
which OP-OP’ = r2. If P lies on the circle, then P’ = P. If P lies within (outside
of) the circle,then P’ lies outside of (within) the circle. Finally, this transformation
is an involution; this means that it has period 2, so that P” = (P') = P.

Inversion in a circle has two important properties. First, if P ranges over
a circle or a straight line, then so does P’. Secondly, inversion preserves angles;
if two curves intersect at an angle (defined as the angle of intersection of their
tangents), then the images of these curves intersect at the same angle.

Consider the first of these properties. If m is a line through O, then as P
ranges over M away from O, then P’ ranges over m towards O.

Suppose that m is a line that does not pass through O.

P/

Figure 6.1.

Let the perpendicular from O to the line meet it at L and let L’ be the image
of L under the inversion. Suppose that P is any point on m and P’ is its image.
Then, since OP - OP’ = OL - OL’; that is, OP : OL' = OL : OP’ and /POL =
ZL'OP’, triangles POL and L'OP’ are similar. Then ZOP'L’ = ZOLP = 90°,
and the locus of P is a circle with diameter OL'.

Now, let P travel along a circle ® that passes through O. Suppose that OD
is a diameter of the circle and that D’ is the image of D. Let P be any point on the
circle; denote its image by P’. Then it can be shown from OP - OP' = OD - OD’
that triangles OD'P and OPD are similar and ZOD'P = ZOPD = 90°. Thus,
P’ travels along a line through D’ perpendicular to OD.
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Figure 6.2.

Finally, let P travel along a circle € that does not pass through O. Let QR
be the diameter of & whose production passes through O, and let Q" and R’ be
the respective images of @@ and R. There are essentially two configurations for €.

Case (i). O lies in the interior of €. Let QR be the diameter of € that
passes through O; this diameter is collinear with Q’'R’, the image of QR. Since
triangles OPQ and OQ'P’ are similar, we have Z/OPQ = Z0Q'P’. Similarly, we
have Z/OPR = ZOR'P’. Hence,

/Q'P'R

180° — (LOQ'P + LOR'P')
= 180° — (ZOPQ + LOPR)
= 180°—90° = 90°,

whence we see that P’ lies on the circle with diameter Q'R’.

¢ ¢
P P
P/
P/
Q < R
Q o R @ Q o |R R
Figure 6.3.

Case(ii). O lies outside of €. Suppose that QR is a diameter with @ lying on
the segment OR. As before, ZOPQ = Z0Q'P’ and ZOPR = ZOR'P’. Therefore,
/Q'P'R' = JOR'P' — /OQ'P' = /OPR — /ZOPQ = /QPR = 90°, so that P
lies on the circle with diameter Q'R’.
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0 R i
Q' R Q Q QRO

Figure 6.4.

There is an alternative approach to this result. As before, & is a circle that
does not pass through O. For any point P on the circle, let P; be the second
point of intersection of the circle with the line OP (P; = P when OP is tangent
to €). Then OP - OP; is equal to a constant p. (This is true for secants passing
through O when O lies outside of & and for chords passing through O when O
lies inside €.) The mapping P < P; is a one-one mapping from € to €. Consider
the mapping P; — P’. Since OP - OP' = r and OP - OP; = p, it follows that
OP'/OP; = 1?/p, a constant. Hence, P, — P’ is a dilation with centre O that
takes the circle € to a circle € . Hence, P — P’ the composite of P — P; and
P — P’ takes € to a circle.

We can achieve the same result using analytic geometry. Without loss of
generality, let O be at the origin, and let € be the circle with equation 22 442 = 1.
Then, if P ~ (2',y)

T Y
P~ (@)= [ —— )

The general equation of a line or a circle is
d(z* +y*) +ax+by+c =0,

where the line corresponds to the case d = 0. We have that 22 +y"? = (22 +y?)71,

so that
T y c
0 = d b
+a<302+3/2>+ <$2+y2>+x2+y2

= d+ax +by +c(@? +y?),

and (2/,y’) lies on a circle when ¢ # 0 and a line when ¢ = 0.

Exercise 6.1. Prove, using coordinates, that inversion is its own inverse;
that is, applying it twice leads you back to where you started.

We move to the preservation of angle property. Let P be any point other
than O and let ¢ be any line that passes through P but not through O. The image
of £ under the inversion is a circle that passes through O and P’. Let m be the
tangent to the circle at P’. For any point ) on £, ZOPQ is equal to ZOQ'P’, the
angle subtended at the circumference of the circle by the chord OP’. But this is
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equal to the angle between OP’ and the tangent m. Therefore, £ and the image
circle make the same angle with the ray OP.

If we have two lines ¢; and /5, from the fact that each of the lines makes the
same angle with each ray as their respective images, it can be deduced that the
angle between ¢1 and /5 is the same as the angle between their images.

Exercise 6.2. Consider inversion in a circle with centre O and radius 7.
Suppose that P and () are points whose respective distances from O are p and g and
that |PQ| = d. Show that |P'Q’| = (dr?)/(pq). Check your answer independently

in the special cases that (i) ZPOQ = 0°, (ii) p = q¢ = 7, (iii) pg = 2, (iv) p = 0.
Solution 1. Since |OP'| - |OP| = |0Q’| - |0Q| = r?, triangles OP'Q’ and

OQP are similar and P'Q’ : PQ = OP' : OP. It follows that

doQ'| _ doQ'|0Q| _ dr?

OP| — "[OPIOQ] — pq

IP'Q| =

Solution 2. Let ZPOQ = 6. By the Law of Cosines,
d®> = |PQI* = p*+ ¢* — 2pqcosb

and
4 4 4 4 472
r r 2r r rid
IP'Q)? = =+ — — —cosh = —— (¢* +p* —2pgcosh) = —— .
2 @ g P2¢2 ( ) p2g2
Exercise 6.3. Let ® be a circle in the plane. Prove that the image of © is
equal to ® if and only if © intersects € at right angles.

Exercise 6.4. Let © be a circle whose centre coincides with the centre of
the circle of inversion. Must ©’ be a circle with the same centre?

Exercise 6.5. Given two non-intersecting circles, prove that there is an
inversion that carries them to concentric circles.

Solution. Let the two circles have centres C; and Cy and respective radii rq
and r5. We suppose that the distance between C7 and C5 is the positive number
d. There are two cases, according as one circle lies within the other.

Case (i). Let the circle €; with centre C4 lie inside the circle €5 with centre
C5. The strategy is to find a circle € which intersects both these circles at right
angles and then determine an inversion that takes € and the line C;C5 of centres
into straight lines that will intersect the images of C; and C5 at right angles. This
can happen only if these images both have centres at the intersection of these lines.

The first step is to determine a point P on C;Cs which has tangents PT}
and PTy of equal length to €; and €, respectively. Let d = |C1C3|. We select
x = |PCs| to satisfy 22 —rf = (z + d)? — r, or

1
r = ?d(rgfr%ftf) .
Let € be the circle of centre P and radius |PT}| = |PT5|. This circle € intersects
C1C5 at right angles.
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C1 Cy P

Figure 6.5.

Select, as circle of inversion, any circle whose centre O lies on the intersection of
C1C5 and €. The inversion in this circle carries € and C1C5 to a perpendicular
pair of straight lines intersecting at some point . Since € and C;C5 intersect
both €; and €, at right angles, the perpendicular lines € and C;Cs intersect &
and €} at right angles. Thus, these lines must contain diameters of both circles
¢} and &%, so that €] and € are concentric. (Note that the positions of €} and
¢, will vary with the radius of the circle of inversion.)

Case(ii). Let the circles €; and €, lie outside of each other.

Figure 6.6.

Follow the same strategy to select P between Cy and Cy to make x = |PC1|
satisfy 22 — r? = (d — x)? — 2, or
Lo o 2
Tr = ﬁ(d +7"1—7-2) .
Let € be the circle with centre P and radius |PT1| = | PT5| and invert in any circle
whose centre is an intersection of € and C7C5.

Query. What happens if the given pair of circles are already concentric?

The last exercise has an interesting consequence, which is left to the reader
to establish. Let €; and €5 be any two non-concentric circles with €; lying inside
¢5. We construct a chain of circles ®; as follows. Let ©; be any circle interior to
¢, and exterior to €; that touches both €; and €. For ¢ > 1, let ®; be a circle
that touches €; - € and ®;_1, as illustrated in the diagram.
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Figure 6.7.

We say that the chain closes in on itself, if for some positive integer n
exceeding 1, ©,, = ®;. This means that, when we we go around the circles,
we eventually get to a circle in the chain that touches the first circle ®;. The
chain may go around the circles some whole number k of times for this to happen.
Remarkably, if the chain closes in on itself for some values of n and k, it will close
in on itself for the same values of n and k regardless of the position of the starting
circle ®;. The proof is a straightforward consequence of Exercise 6.4, when we
realize that the result is clearly true for a concentric pair of circles.
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7 Problems involving inversions

Problem 7.1. Let € be a circle of inversion with centre O. Given a point P
distinct from O and not on €, provide a straightedge-and-compasses construction
for its image P’ with respect to its inversion in €.

Solution. We first make the following observation. Let @ be a point inside
and R a point outside of the circle € such that @ is the midpoint of the chord ST
and RS and RT are tangent to €. Then the triangles TQO and RTO are similar,
whereupon TO : OQ = OR : TO and OQ -OR = TO?. Thus, Q and R are images
of each other with respect to inversion in €.

R

Figure 7.1.

If P is outside €, then we can determine where the tangents from P touch €
(Exercise: How is this done?) and then locate P’ as the intersection point of OP
and the chord joining the points of tangency.

If P is inside € and distinct from O, then construct the chord ST with
midpoint P and locate P’ as the intersection of the tangents to € at S and T.

Problem 7.2. Suppose that O, A, B, C, D are points in the plane for
which O is fixed and A, B, C, D are variable subject to the constraints that the
lengths of OA and OC' are equal and fixed, and the lengths of AB, BC, C'D and
DA are equal and fixed (so that ABCD is a rhombus). Prove that if B moves on
a circle that passes through O, then D moves along a straight line, and also that
if B moves on a straight line, then D moves along a circle that passes through O.

Figure 7.2.
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Solution. What we are being asked to prove suggests that B and D should
be related by inversion in a circle that is centred at O. To that end, we try to
show that OB - OD is constant.

First, we establish that O, B, D are collinear. Triangles OBA and OBC are
congruent (SSS), as are triangle OAD and OCD. Hence B and D both lie on the
bisector of angle AOC.

Let AC and BD intersect at P. Observe that AC L BD and P lies on the
bisector of angle AOC. By Pythagoras’ Theorem, we have that OA? = (OB +
BP)? + AP? and AB? = BP? + AP?, so that

OA? — AB?> = OB* +20B-BP = OB-(OB+2BP) = OB-0OD.

Since the left side of the equation is constant, so is the right and B and D are
images of each other with respect to some circle whose centre is O. The result
follows.

Comment. This result is at the root of the Peaucellier-Lipkin Linkage that
is designed to transfer the circular motion of one point to the linear motion of
another, and vice versa.

Problem 7.3. Suppose that AB is a chord of a circle € and that © is a
second circle lying inside € that is tangent to € at C' and tangent to the chord AB
at ©. Prove that C'D passes through the midpoint E of the arc AB of € on the
opposite side of AB to C.

m
A B

D

E
Figure 7.3.

Solution. Before embarking on the solution, we observe that there is a unique
circle that is tangent to a line p at the point P and passes through another point
Q; the centre of the circle is the intersection of the line through P perpendicular
to p and the right bisector of PQ.

Consider the circle § with centre E and radius EA = EB. The inversion in
the circle § fixes the points A and B so that the line AB and the given circle €
are images of each other.
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The circle ©, which is tangent to both the line AB and the circle €, is
carried to a circle with the same properties. By the observation at the outset of
this solution, this means that the circle © is mapped to itself under the inversion
and that the points C' and D of tangency are interchanged. It follows that C', D
and FE are collinear.

Comment. An alternative proof can be had by showing that the circle € is
the image of the circle © under a dilation with centre C.

Problem 7.4. Let A be a point on a circle with centre O and let B be the
midpoint of OA. Let C and D be points on the circle on the same side of OA
produced for which Z/CBO = ZDBA. Let E be the midpoint of C'D and let F' be
the point on EB produced for which BF = BE.

(a) Prove that F lies on the circle.

(b) What is the range of angle EAO?

Figure 7.4.

Solution 1. [Y. Zhao] (a) When ZCBO = ZDBA = 90°, the result is
obvious. Wolog, suppose that Z/CBO = ZDBA < 90°. Suppose that the
circumcircle of triangle O BD meets the given circle at G. Since OB DG is concyclic
and triangle OGD is isosceles,

Z0BC = ZABD = 180° - Z0OBD = Z0GD = Z0DG = ZOBG ,

so that G = C' and OBDC is concyclic.

Let H lie on OA produced so that OA = AH. Since OB - OH = OAZ?, the
inversion in the given circle with centre O interchanges B and H, fixes C' and D,
and carries the circle OBDC' (which passes through the centre O of inversion) to
a straight line passing through H, D, C. Thus C, D, H are collinear.

This means that CD always passes through the point H on OA produced
for which OA = AH. Since E is the midpoint of C'D, a chord of the circle with
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centre O, ZOFEH = ZOFED = 90°. Hence F lies on the circle with centre A and
radius OA.

Consider the reflection in the point B (the dilation with centre B and factor
—1). This takes the circle with centre O and radius OA to the circle with centre
A and the same radius, and also interchanges E and F'. Since E is on the latter
circle, F' is on the given circle.

(b), E lies on the arc of the circle with centre A and radius OA that joins O
to the point R of intersection of this circle and the given circle. Since RB L OA,
and OA = OR = RA, ZRAO = 60°. It can be seen that ZFEAO ranges from 0°
(when CD is a diameter) to 60° (when C =D = R). &

Problem 7.5. Suppose that ABCDEF is a convex hexagon for which
LA+ ZC + ZE = 360° and

AB CD EF _ |

BC DE FA
Prove that

AB FD BC |

BF DE CA

Solution. [Y. Zhao] Consider inversion in a circle with centre F'. Then

360° = JFAB+ /BCD+ /DEF
= LFAB+ /ZBCF+ /ZFCD+ ZDEF
= /A'BF+/FB'C'+/C'D'F+ /FD'E'
= /A'B'C'+/C'D'E,
whence LC'B'A" = ZC'D'E’'. (Draw a diagram and check the position and
orientation of the angles.)
In the following, we use Exercise 6.2 and suppress the factor r?, where r is

the radius of the circle of inversion. Then

A'B" C'D ( AB FB-FC) ( CD FD-FE>

B'C" D'E' ~ \FA-FB  BC FC-FD  DE
AB CD EF

FA BC DE
so that A’B’ : B'C" = D'E’ : C'D’. This, along with Z/C'"B'A’" = /C’' D’ E’ implies
that AC'B’A’ ~ AC'D'E’, so that A’B’ : A/\C' = D'E’' : E'C' or A’B’' - E'C’ =
A'C'-E'D'.

Therefore
AB FD EC A'B’ , 1 FD'-FE' E'C’ FC' - FA
BF DE CA FA - FDB FD’ D'E’ FE' - FC' CcrA
AIB/ EIC/

a0 EBD L
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as desired.

Problem 7.6. Suppose that ABC' is a right triangle with /B < ZC <
ZA = 90°, and let R be its circumcircle. Suppose that the tangent to K at A
meets BC produced at D and that E is the reflection of A in the axis BC. Let
X be the foot of the perpendicular from A to BE and Y the midpoint of AX.
Suppose that BY meets R again in Z. Prove that BD is tangent to the circumcircle
of triangle ADZ.

Solution. [Y. Zhao] Let AZ and BD intersect at M, and AE and BC
intersect at P. Since PY joints the midpoints of two sides of triangle AEX,
PY||EX. Since LZAPY = ZAEB = LZAZB = LAZY, the quadrilateral AZPY is
concyclic. Since ZAYP = ZAXFE = 90°, AP is a diameter of the circumcircle of
AZPY and BD is a tangent to this circle.

Let O be the centre of the circle K. The triangles OPA and OAD are similar,
whereupon OP - OD = OA2?. The inversion in the circle £ interchanges P and
D, carries the line BD to itself and takes the circumcircle of triangle AZ P to the
circumcircle of triangle AZD. As the inversion preserves tangency of circles and
lines, the desired result follows.
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