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de mise en mémoire et d’information, sans l’accord préalable écrit de l’éditeur,
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Preface

“Mathematics is the queen of the sciences, and arithmetic the queen
of mathematics.” –Carl Friedrich Gauss

Number theory can be described as the study of the properties of integers.
To give you an idea, here are some examples of the problems we will be looking
at:
• When n = 71989 is expressed as an integer, what are the last two digits in
n?
• Show that n5 − n is divisible by 5 for all integers n.
• Show that there are an infinite number of primes of the form 4k + 3.
• What are all integer solutions to the equation 3x− 7y = 2?
• A number is called triangular if it can be expressed as the sum 1+2+· · ·+n

for some positive integer n. For example, 36 is triangular since 36 = 1 + 2 +
· · · + 8, and it is also square since 36 = 62. Prove that there are infinitely
many numbers that are both triangular and square.

We assume that readers are already familiar with basic number theory
concepts, such as divisibility and greatest common divisor, but this is not a
strict prerequisite – the keen student can begin right away. Our main goal is
to introduce readers to further concepts in number theory, and then show how
they can be applied to solve problems. Thus, this booklet is meant to serve
more as a problem-solving manual rather than a formal textbook, and proofs of
theorems are sometimes replaced by well-chosen examples, which I hope will be
more enlightening. However, all solutions are worked out in detail, as they would
have to be on a written test. Readers who are interested in finding out more about
number theory or problem solving are encouraged to consult the references at the
back.

Like most pursuits, mathematics requires active participation, rather than
passive spectating, to learn and appreciate the subject. What this means is that
you must actually attempt to solve the problems given in this booklet, rather than
go straight to the solutions.

For this purpose, problems are given at the end of each chapter, so set aside
some time and try to solve them. If you get stuck, then move on to another
problem, or come back to it later. A flash of inspiration may hit you when you
least expect it, even if you’re not consciously thinking about the problem. Only
turn to the solutions when you think you’ve tried everything – otherwise, you deny
yourself the pleasure and experience of having solved the problem yourself. Also
note that many of the problems allow for different approaches, so you may find a
solution that is different from ours which is still correct.

Above all else, we hope you enjoy reading and learning about number
theory and the problem-solving process. Thanks to Shawn Godin for some helpful
remarks. I welcome any suggestions, and especially corrections. Happy solving!

Naoki Sato
San Diego, California

June, 2009



1

1 Background

Before we begin, we go over some terminology, notation, and background material
that you should be familiar with.

The integers refer to the set {. . . , −3, −2, −1, 0, 1, 2, 3, . . . }, the
non-negative integers refer to the set {0, 1, 2, 3, . . . }, and the positive
integers refer to the set {1, 2, 3, . . . }. The term “number” will often refer
to a positive integer, but the context should make this clear.

A positive integer n > 1 is called prime if the only factors of n are 1 and
n; otherwise, n is called composite. If the prime p divides the product ab, then
p must divide one of a or b, and only primes have this property. We sometimes
write a|b to express the fact that a divides b, so that we can also express the above
as: if p|ab, then p|a or p|b. The Fundamental Theorem of Arithmetic states that
any positive integer n can be written in the form

n = pe11 p
e2
2 · · · pekk ,

where the pi are distinct primes and the ei are positive integers. Furthermore, this
form is unique, up to the order of primes.

The greatest common divisor, or gcd, of two integers a and b is the
greatest integer that divides both a and b, so that, for example, gcd(18, 24) = 6.
The least common multiple, or lcm, of two integers a and b is the least positive
integer that is a multiple of both a and b, so that lcm(18, 24) = 72. If a has the

prime factorization pe11 p
e2
2 · · · pekk , and b has the prime factorization pf1

1 p
f2

2 · · · pfkk ,
then

gcd(a, b) = p
min{e1,f1}
1 p

min{e2,f2}
2 · · · pmin{ek,fk}

k , and

lcm(a, b) = p
max{e1,f1}
1 p

max{e2,f2}
2 · · · pmax{ek ,fk}

k ,

thus, as before, lcm(24, 18) = lcm(23 ·3, 2 ·32) = 23 ·32 = 72. Two integers a and b
are called relatively prime if gcd(a, b) = 1; that is, the only factor a and b have
in common is 1.

For all a, b, gcd(a, b) · lcm(a, b) = ab. The gcd has the following fundamental
property: If d|a and d|b, then d| gcd(a, b). Similarly, if a|m and b|m, then
lcm(a, b)|m. For example, if we know that 18 divides n and 24 divides n, then we
can conclude that lcm(18, 24) = 72 divides n, but it is not necessarily true that
18 · 24 = 432 divides n.

For a positive integer n, n! (read “n factorial”) stands for the product
1 · 2 · · · (n− 1) · n, and 0! = 1.

Finally, “⇒” stands for “implies that”, as in “x = 2 ⇒ x2 = 4”, and “⇔”
stands for “if and only if”, as in “x2 = 4⇔ x = −2 or x = 2”.

Problems

1. Find the following: (a) gcd(182, 390). (b) lcm(45, 60). (c) gcd(n, 7n).



2

2. Find all pairs of positive integers m and n such that gcd(m,n) = 3 and
lcm(m,n) = 36.

3. (a) Let n be a positive integer. Show that n and n+ 1 are relatively prime.

(b) Prove or disprove: If m divides n(n+ 1), then m divides n or n+ 1.

4. Let a and b be relatively prime integers. Show that if a|n and b|n, then ab|n.

5. Let x and y be relatively prime integers, such that x > y. Find all possible
values of gcd(x+ y, x− y).

6. Show that if a+ b = gcd(a, b) + lcm(a, b), then a divides b or b divides a.

2 A First Step

All mathematics grows and develops by trying to solve interesting and intriguing
problems. In this spirit, let us consider the following problem:

Show that 32000 + 42000 + 52000 is divisible by 13.

It is simply stated, and simple to understand – we know exactly what “is divisible
by” means. However, it is quite another matter to attempt to actually solve the
problem, and do what is being asked. Let

N = 32000 + 42000 + 52000,

the number in question. The “obvious” approach is to take N and divide it by
13, but writing it out in full is out of the question; it has well over 1000 digits in
decimal notation, so that even a calculator would not help. What can we do?

It turns out that there is a powerful tool for solving such problems, reducing
them to a few simple calculations, called modular arithmetic. However, before
we can get to this, we must first lay down some background.

Recall that an integer a is divisible by another integer b if there exists a
third integer c such that a = bc. In such a case, we can also say that b divides
a; in other words, there is no remainder when we divide b into a (or there is a
remainder of 0). Division in general, however, does produce a remainder, and we
state this fact formally as the division algorithm.

The Division Algorithm. Let a be an integer, and let b be a positive
integer. Then there exist unique integers q and r (known as the quotient and
remainder, respectively) such that

a = qb+ r

and 0 ≤ r < b. Furthermore, b divides a if and only if r = 0.

For example, if we divide 3 into 20, then we obtain a quotient of 6 and a
remainder of 2, because 20 = 6 ·3+2, and 0 ≤ 2 < 3. Thus, the division algorithm
is merely a fancy way of saying that when you divide b into a, you always get
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some quotient q and a remainder r, with r less than b. Also, as the last bit says,
b divides a if and only if the remainder r is 0. Thus, analyzing remainders gives
us a way of determining divisibility.

Going back to our original problem, we now have a way of looking at each
piece of N , namely 32000, 42000, and 52000, separately. This is why we took our
discussion through remainders: we know that 32000 is not divisible by 13, but we
can try to determine what remainder it leaves when divided by 13, and the same
for 42000 and 52000.

But we still seem to face the same problem – the number 32000 is still too
large to write out or punch into a calculator; the exponent of 2000 is what makes
this number intractable. Perhaps we can find an answer by investigating what
happens among smaller powers of 3. Thus, for n ≥ 0, let a(n) be the remainder
of 3n when it is divided by 13. We calculate a(n) for the first few n:

n 0 1 2 3 4 5 6 7 8
3n 1 3 9 27 81 243 729 2187 6561
a(n) 1 3 9 1 3 9 1 3 9

It is apparent that a(n) seems to repeat every three numbers: 1, 3, 9, 1, 3,
9, and so on. Assume for now that this pattern continues indefinitely. Then we
can find a(2000) by determining where it lies in this cycle. We see that a(0) =
a(3) = a(6) = 1, so that, in general, if n is a multiple of 3, then a(n) = 1. Since
1998 is a multiple of 3, a(1998) = 1. Then a(1999) = 3, and a(2000) = 9, the
remainder we seek. We conclude that 32000 is of the form 13x + 9, or in other
words, 32000 = 13x+ 9 for some integer x.

If we do the same for 42000 and 52000, then we find that 42000 leaves a
remainder of 3 and that 52000 leaves a remainder of 1 upon division by 13, so that
42000 = 13y + 3 and 52000 = 13z + 1 for some integers y and z. Therefore,

N = 32000 + 42000 + 52000

= 13x+ 9 + 13y + 3 + 13z + 1

= 13x+ 13y + 13z + 13 = 13(x+ y + z + 1),

which shows that N is indeed divisible by 13. Notice that the values of x, y, and
z themselves are irrelevant, because they are absorbed into multiples of 13 – it is
the remainders that determine the divisibility of N .

This is the idea behind modular arithmetic: we can ignore the multiples,
and work only with the remainders. Note that our solution is not really complete,
because we assumed that a(n) repeats every third number without proving it.
Using modular arithmetic, we will see how we can calculate and prove this, and
similar assertions, quickly and easily.

Problems

1. (a) Find all pairs of non-negative integers (x, y) such that x2 − y2 = 84.
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(b) Show that for any non-negative integer a, the equation x2 − y2 = a3

always has a solution in non-negative integers.

(c) For which n among 1, 2, . . . , 20 does the equation x2− y2 = n have no
solutions in non-negative integers x and y?

2. (a) Find the smallest positive integer n such that 360n is a perfect square.

(b) Find the smallest positive integer n such that 2n is a perfect square and
9n is a perfect cube.

3. Show that any odd perfect square can be written in the form 8k+1, for some
integer k. (1992 Euclid Waterloo Contest)

4. A man’s age (less than 100) is a multiple of his grandson’s age this year, and
in fact, the same is true for the next five years. What are their ages?

3 Modular Arithmetic

Let us introduce some notation to make our lives easier, and agree to write a ≡ b
(mod m) (read “a is congruent to b modulo m”) if a and b leave the same
remainder when divided by m. (In such a relation, called a congruence, m is
called the modulus.)

Note that this is the same as saying that a and b differ by a multiple of m,
which turns out to be a better working definition. For example, 20−2 = 18 = 6 ·3,
so that 20 ≡ 2 (mod 3). As further examples, −2 ≡ 13 ≡ 3 (mod 5).

In number theory parlance, taking the integers modulo m partitions them
into m congruence classes, where two integers are in the same class if they are
congruent to each other modulo m. For example, in modulo 3, the three classes
are {. . . , −6, −3, 0, 3, 6, . . . }, {. . . , −5, −2, 1, 4, 7, . . . }, and {. . . , −7, −4,
−1, 2, 5, . . . }, which are the set of integers of the form 3k, 3k + 1, and 3k + 2,
respectively.

However, all this is more than just handy notation: we can add, subtract,
and multiply just as in ordinary arithmetic (but not divide – more on that later);
hence, the name modular arithmetic.

For example, we may wish to find the remainder of a sum, say 115+287+541,
when divided by 5 (which will in turn indicate whether it is divisible by 5). We can
calculate the sum first, then take the remainder: 115+287+541 = 943 = 5·188+3,
so that the remainder is 3. Or, we can take the remainders first, and then calculate
the sum: 115 ≡ 0 (mod 5), 287 ≡ 2 (mod 5), and 541 ≡ 1 (mod 5), so that

115 + 287 + 541 ≡ 0 + 2 + 1 ≡ 3 (mod 5),

and we obtain the same remainder. The difference between the two methods will
become more apparent as we tackle more complex problems. Now, for the record,
let us state and prove the laws of this new arithmetic.

The Laws of Modular Arithmetic. Let a ≡ b (mod m) and c ≡ d
(mod m). Then:
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(a) a+ c ≡ b+ d (mod m) and a− c ≡ b− d (mod m),

(b) ac ≡ bd (mod m),

(c) an ≡ bn (mod m) for any positive integer n, and

(d) for any polynomial p(x) in x with integer coefficients, p(a) ≡ p(b) (mod m).

Proof. Since a ≡ b (mod m) and c ≡ d (mod m), there exist integers k and
l such that a− b = km and c− d = lm.

(a) First, (a + c)− (b + d) = (k + l)m, so that (a + c) − (b+ d) is divisible
by m, and a+ c ≡ b+ d (mod m). Similarly, (a− c)− (b− d) = (k − l)m, so that
a− c ≡ b− d (mod m).

(b) We have that a = b+ km and c = d+ lm, so that

ac− bd = (b+ km)(d+ lm)− bd
= bd+ blm+ dkm+ klm2 − bd
= blm+ dkm+ klm2

= (bl + dk + klm)m,

so that ac− bd is divisible by m, and ac ≡ bd (mod m).

(c) By using part (b) repeatedly, we get that a2 ≡ b2 (mod m), a3 ≡ b3

(mod m), . . . , and eventually an ≡ bn (mod m).

(d) Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0. By parts (b) and (c),
aia

i ≡ aibi (mod m) for all i. Summing over all i, by repeatedly using part (a),

p(a) = ana
n + an−1a

n−1 + · · ·+ a1a+ a0

≡ anbn + an−1b
n−1 + · · ·+ a1b+ a0

= p(b) (mod m).

�
Part (d) is the most important of these laws, because it encompasses all of

the others, and has the most breadth of application. It states, essentially, that
algebraic operations (that is, addition and multiplication) preserve congruence.

Now that those are out of the way, we can proceed to the business of using
modular arithmetic to solve some problems.

Example 3.1. Let N = 11 · 12 + 13 · 14 + 15 · 16.

(a) What is the units digit of N?

(b) What is the remainder when N is divided by 7?

Solution. (a) Intuitively, to find the units digits of N , we should be able to
drop everything but the units digits in all of our calculations. Modular arithmetic
justifies this intuition.
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More precisely, finding the units digit of N is the same as finding N modulo
10: two positive integers have the same units digit precisely when they are
congruent modulo 10. Hence, we need only compute N modulo 10:

N = 11 · 12 + 13 · 14 + 15 · 16

≡ 1 · 2 + 3 · 4 + 5 · 6
≡ 2 + 12 + 30

≡ 2 + 2 + 0

≡ 4 (mod 10).

Therefore, the units digit of N is 4. (If you just did this calculation in your head,
then you are well on your way to understanding modular arithmetic. But do not
worry if you did not, it should not take you long to pick it up.)

(b) Similarly, here we consider N (mod 7):

N = 11 · 12 + 13 · 14 + 15 · 16

≡ 4 · 5 + 6 · 0 + 1 · 2
≡ 20 + 0 + 2

≡ 6 + 2

≡ 8

≡ 1 (mod 7).

Therefore, N leaves a remainder of 1 when divided by 7.

Example 3.2. When n = 71989 is expressed as an integer, what are the last
two digits in n?

(1989 Canadian Invitational Mathematics Challenge)

Solution. Finding the last two digits of n is the same as finding n
modulo 100. Let us compute the first few powers of 7 modulo 100 to see if we can
find a pattern:

70 ≡ 1,

71 ≡ 7,

72 ≡ 7 · 7 ≡ 49,

73 ≡ 7 · 49 ≡ 343 ≡ 43,

74 ≡ 7 · 43 ≡ 301 ≡ 1,

75 ≡ 7 (mod 100),

and so on. We see that the powers of 7 modulo 100 cycle, with period 4, because
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74 ≡ 1 (mod 100). Therefore,

71989 = 74·497+1

= 74 · 74 · · · 74
︸ ︷︷ ︸

497

·71

≡ 1 · 1 · · · 1 · 7
≡ 7 (mod 100),

so that the last two digits of n are 07. Notice how a problem in modulo 100 at the
base level becomes a problem in modulo 4 at the exponent level.

Example 3.3. Show that n5 − n is divisible by 5 for all integers n.

Solution. Let f(n) = n5−n. Let us check the statement for n from 0 to 4:

n f(n) f(n) (mod 5)
0 0 0
1 0 0
2 30 0
3 240 0
4 1020 0

Thus, the statement holds for n from 0 to 4. It follows that f(n) ≡ 0 (mod 5) for
all integers n.

To see this, we use part (d) of the laws of modular arithmetic: Every integer
is congruent to one of 0, 1, 2, 3, or 4 modulo 5. For example, if n = 42, then n ≡ 2
(mod 5). By part (d), f(42) ≡ f(2) (mod 5). But we have shown that f(n) ≡ 0
(mod 5) for n = 0, 1, 2, 3, and 4, so that f(n) ≡ 0 for all integers n.

Remark. The polynomial

n(n− 1)(n− 2)(n− 3)(n− 4)

vanishes (becomes zero) for n = 0, 1, 2, 3, and 4. What do you get when you
expand it, and reduce the coefficients modulo 5?

Example 3.4. Let n be an integer of the form 4k+ 3. Show that n cannot
be written as the sum of two perfect squares.

Solution. To say that n is of the form 4k + 3 is the same as saying that
n ≡ 3 (mod 4), so that this is an indication to work modulo 4. The first few
perfect squares are 0, 1, 4, 9, 16, 25, etc. In modulo 4, these become 0, 1, 0, 1, 0,
1, etc. It seems that the even squares are always 0 modulo 4, and the odd squares
are always 1 modulo 4. We can show this through a similar approach as in the
previous problem:

n 0 1 2 3
n2 0 1 4 9
n2 (mod 4) 0 1 0 1

Hence, all squares are 0 or 1 modulo 4. This implies that the sum of two squares
is either 0 + 0 ≡ 0, 0 + 1 ≡ 1, 1 + 0 ≡ 1, or 1 + 1 ≡ 2 modulo 4. Therefore, the
sum of two squares can never be 3 modulo 4.
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Example 3.5. Let x1, x2, . . . , xn be positive integers. Show that some
subset of them adds up to an integer divisible by n.

Solution. Let

S1 = x1,

S2 = x1 + x2,

. . . ,

Sn = x1 + x2 + · · ·+ xn.

If Si ≡ 0 (mod n) for some i, then we can take the terms in Si. Otherwise,
each Si must fall into the same congruence class as one of 1, 2, . . . , n−1 modulo n;
in other words, all except the one with 0, for a total of n − 1 classes. But there
are n sums S1, S2, . . . , Sn, so that, by the Pigeonhole Principle, some sums Si
and Sj , where i < j, are in the same congruence class, which means that Si ≡ Sj
(mod n). The difference Sj − Si = xi+1 + xi+2 + · · · + xj ≡ 0 (mod n) gives a
desired subset.

Example 3.6. Solve the equation x2 + y2 = 3z2 in integers.

Solution. If x = 0, then y2 = 3z2, and y = ±z
√

3. Since
√

3 is irrational,
we must have y = z = 0.

Suppose now that x > 0. We have that x2 + y2 = 3z2 ≡ 0 (mod 3). We
can quickly verify that the only squares modulo 3 are 0 and 1, so that x ≡ y ≡ 0
(mod 3). Let x = 3x1 and y = 3y1, so that x2 + y2 = 9x2

1 + 9y2
1 = 3z2 ⇒

z2 = 3(x2
1 + y2

1) ≡ 0 (mod 3), so that z ≡ 0 (mod 3). Let z = 3z1, so that
9z2

1 = 3(x2
1+y2

1)⇒ x2
1+y2

1 = 3z2
1 , which is just our original equation x2+y2 = 3z2,

only all variables have been divided by 3.

Using the same reasoning, we get that x1 = 3x2, y1 = 3y2, and z1 = 3z2,
for some integers x2, y2, z3, so that x = 32x2, and in general, x = 3nxn for
some integer xn, for all positive integers n. However, this is a contradiction: The
positive integer x has only a finite number of factors of 3. The same argument
holds when x < 0. Therefore, (x, y, z) = (0, 0, 0) is the only solution.

Remark. This solution uses Fermat’s method of infinite descent.

Example 3.7. Show that there are an infinite number of primes of the form
4k + 3.

Solution. We proceed using proof by contradiction. Suppose that there are
only a finite number of primes of the form 4k + 3, or 3 modulo 4, say p1, p2, . . . ,
pn. Let N = 4p1p2 · · · pn − 1.

Since N is odd, the prime factors of N are all of the form 4k + 1 or 4k + 3.
However, N cannot be divisible by any prime of the form 4k+ 3 – by assumption,
p1, p2, . . . , pn are all the primes of the form 4k + 3, and N ≡ −1 (mod pi) for
all i.

Hence, N is the product of primes of the form 4k + 1, which implies that
N ≡ 1 (mod 4). However, N ≡ −1 (mod 4), contradiction. Therefore, there are
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infinitely many primes of the form 4k + 3.

Problems

1. Construct the addition and multiplication table for modulo 6.

2. Reduce the following numbers:

(a) 2500 (mod 11).

(b) 699 + 799 (mod 13).

(c) 1 + 3 + 5 + · · ·+ (2n− 1) (mod 2).

3. Find all digits a and b such that aabb is a four-digit perfect square.

4. Show that for every positive integer n, either 2n − 1 or 2n + 1 is divisible
by 3.

5. Prove that for all positive integers n, 1n + 8n − 3n − 6n is divisible by 10.

6. Prove or disprove: 2x ≡ 2y (mod n) if x ≡ y (mod n).

7. (a) Find all squares modulo 7.

(b) Let a and b be positive integers. Show that if a2 +b2 ≡ 0 (mod 7), then
a ≡ b ≡ 0 (mod 7).

8. Prove that
1 · 3 · 5 · · · 1993 + 2 · 4 · 6 · · · 1994

is divisible by 1995.

9. Show that every prime greater than 3 can be expressed in the form
√

24n+ 1
for some positive integer n.

10. Let a, b, and c be odd integers. Show that the quadratic equation ax2 +bx+
c = 0 cannot have rational roots.

11. The positive integers are listed in a table with six columns, as follows:

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
...

...
...

...
...

...

(a) Prove that every prime greater than 3 appears in the first or fifth
column.

(b) Prove that there are infinitely many primes in the fifth column.

12. Find all positive integers n such that the equation x2 − y2 = n has no
solutions in non-negative integers x and y.
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4 Linear Diophantine Equations and

Congruences

A certain problem asks the following:

A person wishes to mail a letter that will cost 29 cents. However, the
only stamps he has are in 5 cent and 7 cent denominations. What
combinations, if any, will work?

If we let x be the number of required 5 cent stamps, and y the number of
required 7 cent stamps, then the problem becomes solving the equation 5x+ 7y =
29. Equations, such as this one, that demand integer solutions are known as
Diophantine equations, named after the Greek mathematician Diophantus who
studied such equations.

The linear equation ax+ by = c

We first look at the linear diophantine equation ax+ by = c, where a, b, and
c are fixed integers, and x and y are integer variables. Let us determine just what
values the expression ax+ by can attain.

For example, take a = 4 and b = 10. What values can 4x+10y attain? Since
4x + 10y = 2(2x + 5y), all values must be multiples of 2. Is 2 itself attainable?
Yes, take x = −2 and y = 1: then 4x+ 10y = −8 + 10 = 2. We then realize that
all multiples of 2 are attainable – just multiply the values of x and y by the same
factor. For example, 12 is attainable because

12 = 6 · 2 = 6 · [4 · (−2) + 10 · 1]

= 4 · (−12) + 10 · 6.

In general, for the expression ax+ by, gcd(a, b) divides both a and b, so that
gcd(a, b) must divide ax + by, or in other words, ax + by must be a multiple of
gcd(a, b). We present a method that explicitly finds integers x and y such that
ax+ by = gcd(a, b).

The Euclidean Algorithm

Let a and b be positive integers, with a > b. By the division algorithm, there
exist integers q and r such that a = qb+ r, with 0 ≤ r < b, which can be found by
dividing b into a.

Let d = gcd(a, b). Then d divides both a and b, so that d divides a− qb = r,
which implies that d divides gcd(b, r). On the other hand, if we let d′ = gcd(b, r),
then d′ divides both b and r, so that d′ divides qb+ r = a, which implies that d′

divides gcd(a, b) = d. Therefore, d = d′, or gcd(a, b) = gcd(b, r).

The Euclidean algorithm is then the process of taking b and r, dividing r into
b, and repeating. By what we have just said, the gcd is preserved. The numbers
get smaller, so that eventually we will get a remainder of 0. At that point, the
last dividend is the gcd. Let us illustrate the algorithm with an example.



11

Consider the pair 21 and 36. Dividing 21 into 36, we get a quotient of 1 and
a remainder of 15. Then we take the numbers 21 and 15. Dividing 15 into 21, we
get a quotient of 1 and a remainder of 6. We take 15 and 6, and dividing 6 into 15,
we get a quotient of 2 and a remainder of 3, and finally 3 divides evenly into 6, so
that gcd(36, 21) = 3. These calculations can be nicely summarized as follows:

36 = 1 · 21 + 15,

21 = 1 · 15 + 6,

15 = 2 · 6 + 3,

6 = 2 · 3.
To see why this works, consider the more general case:

a = q1b+ r1,

b = q2r1 + r2,

r1 = q3r2 + r3,

. . . ,

rn = qn+2rn+1.

From a = q1b + r1, we get gcd(a, b) = gcd(b, r1). From b = q2r1 + r2, we get
gcd(b, r1) = gcd(r1, r2), and so on, until gcd(rn−1, rn) = gcd(rn, rn+1) = rn+1, so
that gcd(a, b) = rn+1.

Thus, the Euclidean algorithm calculates the gcd of two numbers, but
we can extract more information from our calculations. Using some clever
back-substituting, we can find x and y such that 36x+ 21y = gcd(36, 21) = 3:

3 = 15− 2 · 6
= 15− 2 · (21− 15)

= 3 · 15− 2 · 21

= 3 · (36− 21)− 2 · 21

= 3 · 36− 5 · 21.

Thus, we can take x = 3 and y = −5.

In general, this method always gives an x and y such that ax+by = gcd(a, b).
We can then multiply x and y by the appropriate factor to get every multiple of
gcd(a, b). Since ax + by can only attain multiples of gcd(a, b), these are exactly
the values that it does attain.

Values of ax+ by. Let a and b be positive integers. Then as x and y vary
over all integers, ax + by attains all multiples of gcd(a, b), and only multiples of
gcd(a, b).

Corollary. The positive integers a and b are relatively prime if and only if
there exist integers x and y such that ax+ by = 1.

Example 4.1. Prove that the fraction

21n+ 4

14n+ 3
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is irreducible for every positive integer n.

Solution. For all n, 3(14n+ 3)−2(21n+ 4) = 1, so that the numerator and
denominator are relatively prime.

Interesting historical side note: Wilhelm Fliess, a physician and colleague of
Sigmund Freud, created a theory centred around the numbers 23 and 28, based
on his research into human biorhythms. Martin Gardner, in Science: Good, Bad,
and Bogus, writes:

Fliess’s basic formula can be written 23x + 28y, where x and y are
positive or negative integers. On almost every page Fliess fits this
formula to natural phenomena, ranging from the cell to the solar
system. . . . He did not realize that if any two positive integers that have
no common divisor are substituted for 23 and 28 in his basic formula,
it is possible to express any positive integer whatever. Little wonder
that the formula could be so readily fitted to natural phenomena!

We now turn our attention to the linear equation ax+ by = c. By the result
that we have just established, this equation has a solution in x and y if and only
if c is a multiple of gcd(a, b). But given such a c, what do the solutions look like?

Let us take a look at an example, and graph the line x+ 2y = 5:

x

y

As we can see, some solutions are (−1, 3), (1, 2), (3, 1), and (5, 0). If we
let y be an arbitrary integer t, then x = 5 − 2t satisfies the equation, so that all
solutions are of the form (5−2t, t). In general, the solutions to the linear equation
ax+ by = c always have this format.

Solutions to ax+ by = c. Let a and b be positive integers, and let c be
an integer. Then the equation ax+ by = c is solvable in integers if and only if c is
a multiple of gcd(a, b). Furthermore, all solutions are of the form

(x, y) =

(
x0 + t · b

d
, y0 − t ·

a

d

)
,

where d = gcd(a, b), (x0, y0) is a specific solution of ax + by = c, and t is an
arbitrary integer.
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Proof. We have already established that c must be a multiple of gcd(a, b).
As stated, let d = gcd(a, b), and let (x0, y0) be a specific solution of ax + by = c,
so that ax0 + by0 = c. If ax+ by = c, then

(ax+ by)− (ax0 + by0) = a(x− x0) + b(y − y0) = 0

⇒ a(x− x0) = b(y0 − y)

⇒ a

d
· (x− x0) =

b

d
· (y0 − y).

Since b/d divides the right-hand side, b/d also divides the left-hand side. However,
a/d and b/d are relatively prime, so that b/d divides x − x0. Hence, let x − x0 =
t · b/d, where t is an integer. Then y0 − y = t · a/d. This gives us the solutions as
described. �

The specific solution (x0, y0) can be found via the Euclidean algorithm, or
trial and error.

Example 4.1. Find all integer solutions to the following equations:

(a) 3x+ 4y = 0.

(b) 3x− 7y = 2.

(c) 2x+ 8y = 3.

(d) 36x+ 21y = 6.

Solution. (a) First, gcd(3, 4) = 1, which divides 0, so that there are
solutions. A specific solution is (0, 0), so all solutions are given by (x, y) =
(4t,−3t).

(b) First, gcd(3, 7) = 1, which divides 2, so that there are solutions. A
specific solution is (3, 1), so that all solutions are of the form (x, y) = (3+7t, 1+3t).

(c) Since gcd(2, 8) = 2 does not divide 3, there are no solutions.

(d) First, gcd(36, 21) = 3, which divides 6, so that there are solutions. We
derived earlier that 3 ·36−5 ·21 = 2, so that a specific solution is (6,−10), so that
all solutions are given by (x, y) = (6 + 7t,−10− 12t).

The congruence ax ≡ c (mod m)

We now consider how to solve the congruence ax ≡ c (mod m). We have in
fact already solved it, when we solved the linear equation ax+ by = c. But before
we get ahead of ourselves, let us look at an example.

The linear equation 2x = 8 is solved easily enough; just divide both sides
by 2, and we get x = 4. But in modular arithmetic, things are not quite as
straightforward. For example, take the congruence 2x ≡ 8 (mod 10). If we try
the same strategy and divide both sides by 2, we get x ≡ 4 (mod 10). But in
doing this, we miss the solution x = 9, since 2 · 9 = 18 ≡ 8 (mod 10).

The reason this occurs is the existence of what are called zero divisors
– numbers that are not zero, but when multiplied, become zero. For example,
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neither 2 nor 5 are zero, but 2 ·5 = 10 ≡ 0 (mod 10). These zero divisors preclude
division in modular arithmetic: For example, we cannot divide the congruence
2 · 5 ≡ 0 (mod 10) by 2, because then we would get 5 ≡ 0 (mod 10), which is not
true. We must go back to the basics; in this case, the definition itself.

The congruence 2x ≡ 8 (mod 10) is equivalent to saying that 2x− 8 = 10k
for some integer k. We can divide this equation by 2, and obtain x−4 = 5k, which
in turn is equivalent to saying that x ≡ 4 (mod 5). Note that this does include
the solution x = 9.

For the general congruence ax ≡ c (mod m), this is equivalent to saying
that ax − c = km for some integer k, or ax −mk = c. This is a linear equation
in x and k, which we have already solved; only here, we are only interested in the
values of x. We saw that there is a solution if and only if gcd(a,m) divides c, and
in such a case, all solutions for x are given by

x = x0 + t · m
d
,

where x0 is a specific solution, and d = gcd(a,m). Note that this is equivalent to
saying that x ≡ x0 (mod m/d).

Example 4.3. Solve the following congruences:

(a) 7x ≡ 2 (mod 11).

(b) 9x ≡ 6 (mod 24).

(c) 2x ≡ 3 (mod 12).

Solution. (a) In this example, a = 7, c = 2, and m = 11, so that d =
gcd(a,m) = 1, which divides c. We find that a specific solution to the congruence
is x0 = 5. Therefore, the solution is x ≡ 5 (mod 11).

(b) In this example, a = 9, c = 6, and m = 24, so that d = gcd(9, 24) = 3,
which divides c. We find that a specific solution to the congruence is x0 = 6.
Therefore, the solution is x ≡ 6 (mod 8).

(c) In this example, a = 2, c = 3, and m = 12, so that d = gcd(2, 12) = 2,
which does not divide c, so that there are no solutions.

Before we leave this chapter, we describe one more important concept in
modular arithmetic. As we have indicated before, we do not have division in
modular arithmetic. But, we do have the next best thing. Going back to our first
example, we divided the equation 2x = 8 by 2 to obtain the solution x = 4. We
could have also multiplied both sides by 1/2, because 1/2 is the multiplicative
inverse of 2. In modular arithmetic, we do not have division, but we have
multiplicative inverses.

We say that x is the inverse of a modulo m if ax ≡ 1 (mod m), and write
x ≡ a−1 (mod m). We give a criterion for an integer to have an inverse.

Inverses. The inverse a−1 (mod m) exists, and is unique modulo m, if and
only if a is relatively prime to m.
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Proof. Recall that the integers a and b are relatively prime if and only if
there exist integers x and y such that ax+by = 1. Consider the following sequence
of statements:

(1) The inverse a−1 (mod m) exists.

(2) There exists an integer x such that ax ≡ 1 (mod m).

(3) There exist integers x and k such that ax− km = 1.

(4) The integers a and m are relatively prime.

Each statement is equivalent to the previous one, which shows that a−1

(mod m) exists if and only if a and m are relatively prime. Now, let x and x′ be
two inverses of a, so that ax ≡ ax′ ≡ 1 (mod m). Then xax ≡ xax′, or x ≡ x′

(mod m), since xa ≡ 1 (mod m), so that the inverse a−1 (mod m) is unique. �
As before, it is possible to compute inverses via the Euclidean algorithm

or by trial and error. These inverses also give us another way of solving linear
congruences.

Example 4.4.

(a) Compute 4−1 (mod 17).

(b) Solve the congruence 4x ≡ 14 (mod 17).

Solution. (a) We seek an x such that 4x ≡ 1 (mod 17). Using the methods
so far, we can find that the solution is x ≡ 13 (mod 17). Therefore, 4−1 ≡ 13
(mod 17).

(b) Multiplying both sides by 13, we obtain 13 · 4x = 52x ≡ x ≡ 13 · 14 ≡
182 ≡ 12 (mod 17). Therefore, the solution is x ≡ 12 (mod 17).

In general, if a−1 (mod m) exists, then the solution to the congruence ax ≡ c
(mod m) is x ≡ a−1c (mod m).

Finally, if we have a congruence of the form ax ≡ ay (mod m), and a is
relatively prime to m, then we can multiply both sides by a−1 to get x ≡ y
(mod m). This is sometimes called the cancellation law.

Problems

1. Find the following:

(a) gcd(66, 147),

(b) gcd(105, 273).

2. Find all integer solutions to the following equations:

(a) 2x+ 3y = 6.

(b) 44x+ 28y = 80.

3. Show that some multiple of 31 has 174 as its final three digits.
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4. Let a, b, x, and y be integers. Show that if ax + by = gcd(a, b), then x and
y are relatively prime.

5. Let S be the set of ordered pairs (3i+ 4j+ 5k, 8i− j+ 4k), where i, j, and k
vary over all integers, and T be the set of ordered pairs (m, 5m+ 7n), where
m and n vary over all integers. Show that S = T .

6. Let a, b, c, d be fixed integers with d not divisible by 5. Assume that m is
an integer for which am3 + bm2 + cm + d ≡ 0 (mod 5). Prove that there
exists an integer n for which dn3 + cn2 + bn+ a ≡ 0 (mod 5).

7. Let a be a zero divisor modulo m; that is, a is non-zero, and there exists a
non-zero b such that ab ≡ 0 (mod m). Prove that a does not have an inverse
modulo m.

5 Modular Arithmetic II

In this chapter we introduce the four pivotal theorems of modular arithmetic:
Fermat’s Little Theorem, Euler’s Theorem, Wilson’s Theorem, and the Chinese
Remainder Theorem.

We saw earlier that computing powers of integers modulo a certain number
was a key step in some of our problems. Fermat’s Little Theorem and Euler’s
Theorem can make these calculations easier.

We must first recall some algebra. By the binomial theorem, for a positive
integer n,

(x+y)n =

(
n

0

)
xn+

(
n

1

)
xn−1y+

(
n

2

)
xn−2y2 + · · ·+

(
n

k

)
xn−kyk+ · · ·+

(
n

n

)
yn,

where (
n

k

)
=

n!

k!(n− k)!
.

For all n, (
n

0

)
=

(
n

n

)
= 1.

Now suppose that n is a prime p, so that

(x+ y)p =

(
p

0

)
xp +

(
p

1

)
xp−1y+

(
p

2

)
xp−2y2 + · · ·+

(
p

k

)
xp−kyk + · · ·+

(
p

p

)
yp.

Let 1 ≤ k ≤ p− 1. Then p− k ≤ p− 1, so that both k! and (p− k)! do not contain
any factors of p. However, p! is divisible by p, so that

(
p

k

)
=

p!

k!(p− k)!
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is also divisible by p. Therefore, reducing the coefficients modulo p, we get

(x+ y)p =

(
p

0

)
xp +

(
p

1

)
xp−1y + · · ·+

(
p

k

)
xp−kyk + · · ·+

(
p

p

)
yp

≡ xp + yp (mod p).

For example, with p = 5,

(x+ y)5 =
5!

0!5!
x5 +

5!

1!4!
x4y +

5!

2!3!
x3y2 +

5!

3!2!
x2y3 +

5!

4!1!
xy4 +

5!

5!0!
y5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

≡ x5 + y5.

We now use this result to prove our first theorem.

Fermat’s Little Theorem (FLT). If p is prime, then np ≡ n (mod p).

Proof. We prove the result by induction on n. The result is clearly true for
n = 0. Assume that it is true for some integer n = k, so that kp ≡ k (mod p). By
the identity, (k + 1)p ≡ kp + 1p (mod p), so that

(k + 1)p − (k + 1) ≡ kp + 1− k − 1

≡ kp − k
≡ 0 (mod p).

Thus, the theorem is true for n = k + 1, and by induction, it is true for all n. �
You might also see this theorem stated as follows: If n is not divisible by p,

then np−1 ≡ 1 (mod p).

Example 5.1. Show that 274 + 374 is divisible by 13.

Solution. We can simplify the expression by using the fact that by FLT,
212 ≡ 312 ≡ 1 (mod 13). Hence,

274 + 374 = 26·12+2 + 36·12+2

≡ (212)6 · 22 + (312)6 · 32

≡ 22 + 32

≡ 0 (mod 13).

Example 5.2. Show that n5−n is divisible by 30 for all positive integers n.

Solution. In Example 3.3, we proved that n5 − n is divisible by 5 for all n,
and we can use the same approach here, but FLT offers a different approach.
First, 30 factors as 2 · 3 · 5.

By FLT, n2 ≡ n (mod 2) for all n. Multiplying both sides by n, we get
n3 ≡ n2 (mod 2). Repeating, we get n4 ≡ n3 (mod 2) and n5 ≡ n4 (mod 2).
Therefore, n5 ≡ n4 ≡ n3 ≡ n2 ≡ n (mod 2), which shows that n5 − n ≡ 0
(mod 2) for all n.
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Also by FLT, n3 ≡ n (mod 3) for all n. Multiplying both sides by n2, we
get n5 ≡ n3 (mod 3), so that n5 ≡ n3 ≡ n (mod 3), which shows that n5 − n ≡ 0
(mod 3) for all n.

Finally by FLT, n5 ≡ n (mod 5) for all n, or n5−n ≡ 0 (mod 5). Therefore,
n5 − n ≡ 0 (mod 2 · 3 · 5) for all n.

Example 5.3. Prove that the expression

x5

5
+
x3

3
+

7x

15

is always an integer for all positive integral values of x.
(1968 Descartes Waterloo Contest)

Solution. Putting the expression over a common denominator, it becomes

3x5 + 5x3 + 7x

15
.

Hence, we must show that 3x5 + 5x3 + 7x is divisible by 15 for all x.

Taking the expression modulo 3, 3x5 + 5x3 + 7x ≡ 2x3 + x (mod 3). By
FLT, x3 ≡ x (mod 3) for all x, so that 2x3 + x ≡ 2x + x ≡ 3x ≡ 0 (mod 3).
Hence, 3x5 + 5x3 + 7x is divisible by 3 for all x.

Taking the expression modulo 5, 3x5 + 5x3 + 7x ≡ 3x5 + 2x (mod 5). By
FLT, x5 ≡ x (mod 5) for all x, so that 3x5 + 2x ≡ 3x + 2x ≡ 5x ≡ 0 (mod 5).
Hence, 3x5 + 5x3 + 7x is divisible by 5 for all x.

Therefore, 3x5 + 5x3 + 7x is divisible by 15 for all x.

Example 5.4. Show that if p is a prime dividing x2 +1, then p = 2 or p ≡ 1
(mod 4).

Solution. We must show that p 6≡ 3 (mod 4). Using proof by contradiction,
suppose that p ≡ 3 (mod 4), so p = 4k + 3 for some k. Since p divides x2 + 1,
x2 ≡ −1 (mod p), so that

xp−1 = x4k+2 = (x2)2k+1 ≡ (−1)2k+1 ≡ −1 (mod p).

However, p does not divide x, so that, by FLT, xp−1 ≡ 1 (mod p), a contradiction.
Therefore, p 6≡ 3 (mod 4).

It is natural to ask whether the converse of Fermat’s Little Theorem is true;
that is, if an ≡ a (mod n) for some a and n, then is n a prime? The following
problem shows that this is not necessarily the case. (See also problem 3 at the end
of the chapter).

Example 5.5. A composite integer n is called a pseudoprime to base a if
an ≡ a (mod n). Show that 341 is a pseudoprime to base 2, but not to base 3.

Solution. We must show that 2341 ≡ 2 (mod 341). First, 341 factors as
11 · 31.
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By FLT, 210 ≡ 1 (mod 11), so that 2341 ≡ (210)34 · 2 ≡ 2 (mod 11), and
2341 − 2 ≡ 0 (mod 11). Also, 230 ≡ 1 (mod 31), so that 2341 ≡ (230)11 · 211 ≡
2048 ≡ 2 (mod 31), so that 2341−2 ≡ 0 (mod 31). Hence, 2341−2 ≡ 0 (mod 341).

However, 3341 ≡ 311 ≡ 32 · (33)3 ≡ 9 ·273 ≡ 9 · (−4)3 ≡ 9 · (−64) ≡ 9 · (−2) ≡
−18 ≡ 13 (mod 31), so that 3341 is not congruent to 3 modulo 341.

For our next result, we need to define some new terms. For a positive
integer n, let φ(n) denote the number of positive integers less than n that are
relatively prime to n. For example, the integers 1, 2, 3, 4, 5, and 6 are relatively
prime to 7, so that φ(7) = 6, and the integers 1, 3, 7, and 9 are relatively prime
to 10, so that φ(10) = 4.

By convention, φ(1) = 1, and it can be shown that if the prime factorization
of n > 1 is pe11 p

e2
2 · · · pekk , then

φ(n) = pe1−1
1 pe2−1

2 · · · pek−1
k (p1 − 1)(p2 − 1) · · · (pk − 1)

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

(See An Introduction to the Theory of Numbers, I. Niven, H. Zuckerman &
H. Montgomery, for a proof.)

Call a set a reduced residue system modulo n if it contains a unique
member belonging to each congruence class relatively prime to n. For example,
{1, 3, 7, 9} is a reduced residue system modulo 10, but so are {−9, 13, 17, 29}
and {11, −7, −23, 19}. A reduced residue system modulo n always contains φ(n)
members.

Euler’s Theorem. If a is relatively prime to n, then aφ(n) ≡ 1 (mod n).

Proof. Let S = {r1, r2, . . . , rφ(n)} be a reduced residue system modulo n.
We claim that the set T = {ar1, ar2, . . . , arφ(n)} is also a reduced residue system
modulo n.

First, since a is relatively prime to n, we have that ari is relatively prime
to n for all i. Secondly, each element of T is in a distinct congruence class: if
ari ≡ arj (mod m), then by multiplying both sides by the inverse of a, we get
ri ≡ rj (mod m), and we know that the ri are in distinct congruence classes.
Finally, since T contains φ(n) elements, it must contains one in each congruence
class relatively prime to n.

In other words, multiplying each element of S by a to get T simply permutes
the elements, with respect to congruence classes modulo n. Then the products
of the elements of S and T (and of any reduced residue system modulo n) are
congruent modulo n:

r1r2 · · · rφ(n) ≡ (ar1)(ar2) · · · (arφ(n))

= aφ(n)r1r2 · · · rφ(n)

⇒ aφ(n) ≡ 1 (mod n). �
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Note that Euler’s Theorem is a generalization of Fermat’s Little Theorem,
since φ(p) = p− 1 for any prime p.

Example 5.6. Let a be relatively prime to n. Show that a−1 ≡ aφ(n)−1

(mod n).

Solution. By Euler’s Theorem, aφ(n) ≡ 1 (mod n). We then get the result
by multiplying both sides by a−1 (mod n).

Example 5.7. Let a and b be two relatively prime positive integers. Show
that there exist positive integers m and n such that am + bn ≡ 1 (mod ab).

Solution. Let S = am+bn, where m = φ(b) and n = φ(a). Then, by Euler’s
Theorem, S = aφ(b) + bφ(a) ≡ 1 (mod a), or S − 1 ≡ 0 (mod a), and similarly,
S ≡ 1 (mod b), or S − 1 ≡ 0 (mod b). Therefore, S − 1 ≡ 0 (mod ab), so that
S ≡ 1 (mod ab).

Our next result, Wilson’s Theorem, is a pretty result concerning factorials.

Wilson’s Theorem. If p is a prime, then (p− 1)! ≡ −1 (mod p).

Proof. The simple strategy is to pair inverses modulo p among the
integers 1, 2, . . . , p − 1. Let us take an example, and let p = 13. Then the
inverse pairs modulo 13 are: 2 and 7, 3 and 9, 4 and 10, 5 and 8, and 6 and 11;
note that the integers 1 and 12 are their own inverses. Hence,

12! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12

≡ 1 · (2 · 7) · (3 · 9) · (4 · 10) · (5 · 8) · (6 · 11) · 12

≡ 1 · 1 · 1 · 1 · 1 · 1 · 12

≡ −1 (mod 13).

Likewise, for any prime p, only 1 and p − 1 are their own inverses, and the
rest of the integers may be paired off by inverses. To see this, let x be an integer
that is its own inverse. Then x ·x ≡ x2 ≡ 1 (mod p)⇒ x2−1 = (x−1)(x+1) ≡ 0
(mod p). Since p is a prime, p either divides x − 1 or x + 1, confirming that the
only solutions are x ≡ 1 and −1 (mod p). Hence,

(p− 1)! ≡ 1 · 2 · · · (p− 1)

≡ 1 · 1 · 1 · · · (p− 1)

≡ −1 (mod p). �

It turns out that an integer n is prime if and only if (n− 1)! ≡ −1 (mod n),
but (n − 1)! grows so quickly as n does, for large n, that this is not an effective
way of testing whether n is prime.

Example 5.8. Let {a1, a2, . . . , a100} and {b1, b2, . . . , b100} be reduced
residue systems modulo 101. Can {a1b1, a2b2, . . . , a100b100} be a reduced residue
systems modulo 101?

Solution. The answer is no. Since {a1, a2, . . . , a100} is a reduced
residue system modulo 101, its elements are a permutation of 1, 2, . . . , 100, with
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respect to congruence classes. Hence, a1a2 · · · a100 ≡ 1 · 2 · · · 100 = 100! ≡ −1
(mod 101), by Wilson’s Theorem. Similarly, b1b2 · · · b100 ≡ −1 (mod 101), so that
a1a2 · · ·a100b1b2 · · · b100 ≡ 1 (mod 101).

But if {a1b1, a2b2, . . . , a100b100} is a reduced residue systems modulo 101,
then a1b1a2b2 · · ·a100b100 ≡ −1 (mod 101), a contradiction.

For our last result, consider the following problem:

A teacher wishes to divide her students into groups. When she divides
them into groups of four, there are three left over. When she divides
them into groups of five, there are two left over. How many students
are in her class, given that there are less than 40?

Setting n to be the number of students in the class, the problem translates into
the following conditions:

n ≡ 3 (mod 4), n ≡ 2 (mod 5),

and 1 ≤ n < 40. The following result guarantees that certain simultaneous systems
of congruences always have a solution.

Chinese Remainder Theorem. Let m1, m2, . . . , mk be integers that are
pairwise relatively prime (that is, mi and mj are relatively prime for any distinct
i, j), and let a1, a2, . . . , ak be arbitrary integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

. . . ,

x ≡ ak (mod mk),

has a unique solution modulo m1m2 · · ·mk.

We omit a proof of this theorem, opting instead to go through a detailed
example, which should illustrate the idea of the proof.

Example 5.9. Solve the system

x ≡ 2 (mod 7),

x ≡ 4 (mod 9),

x ≡ 8 (mod 10).

Solution. First, consider the system

x ≡ 1 (mod 7),

x ≡ 0 (mod 9),

x ≡ 0 (mod 10).

The last two congruences say that x ≡ 0 (mod 90). Hence, we require multiples
of 90 that are 1 modulo 7, leading to the equation x = 90n = 7k + 1. The
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solutions to this are (n, k) = (6 + 7t, 77 + 90t), so that all solutions are of the form
x = 90n = 540 + 630t, or x ≡ 540 (mod 630). Call this solution e1. Similarly, we
find that the solutions to the systems

x ≡ 0 (mod 7),

x ≡ 1 (mod 9),

x ≡ 0 (mod 10),

and
x ≡ 0 (mod 7),

x ≡ 0 (mod 9),

x ≡ 1 (mod 10),

are x ≡ 280 (mod 630) and x ≡ 441 (mod 630), which we call e2 and e3,
respectively. Let x ≡ 2e1 + 4e2 + 8e3 (mod 630). Then x ≡ 2 · 1 + 4 · 0 + 8 · 0 ≡ 2
(mod 7). Similarly, x ≡ 4 (mod 9) and x ≡ 8 (mod 10). Thus, x ≡ 2 · 540 + 4 ·
280 + 8 · 441 ≡ 5728 ≡ 58 (mod 630) is a solution to our original system.

But can there be other solutions? The original system can be expressed as

x ≡ 58 (mod 7),

x ≡ 58 (mod 9),

x ≡ 58 (mod 10),

so that 7, 9, and 10 divide x−58, which implies that 630 divides x−58, or x ≡ 58
(mod 630). Hence, this is the unique solution.

Example 5.10. Prove that for each positive integer n there exist n
consecutive positive integers, none of which is an integral power of a prime number.
(1989 International Mathematical Olympiad)

Solution. Let the n consecutive integers be x, x+1, . . . , x+n−1. Observe
that if an integer has at least two distinct prime factors, then it cannot be a perfect
power of a single prime. Thus, let p1, p2, . . . , p2n be 2n distinct primes. It suffices
to find an x such that each term is divisible by at least two distinct primes, which
is the case when x satisfies the system

x ≡ 0 (mod p1p2),

x+ 1 ≡ 0 (mod p3p4),

. . . ,

x+ n− 1 ≡ 0 (mod p2n−1p2n),

or
x ≡ 0 (mod p1p2),

x ≡ −1 (mod p3p4),

. . . ,

x ≡ −(n− 1) (mod p2n−1p2n).

The Chinese Remainder Theorem guarantees that this system has a solution.
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Problems

1. Reduce the following numbers:

(a) 21000 (mod 7).

(b) 3421 (mod 13).

(c) 11777 (mod 21).

2. (a) Let p be a prime, and let a be a positive integer such that a ≡ 1
(mod p− 1). Show that na − n ≡ 0 (mod p) for all integers n.

(b) Show that n13 − n ≡ 0 (mod 2730) for all integers n.

3. A number is called Carmichael (or an absolute pseudoprime) if it is a
pseudoprime to all bases. Show that 561 is Carmichael.

4. Let p be an odd prime, and let a be relatively prime to p. Show that
a(p−1)/2 ≡ ±1 (mod p). Note: Euler’s Criterion states that a(p−1)/2 ≡ 1
(mod p) if and only if a ≡ x2 (mod p) for some x relatively prime to p; in
other words, a is a quadratic residue.

5. The number 859−219 + 69 is divisible by an integer between 2000 and 3000.
Compute that integer. (No calculators allowed!)

(1991 American Regions Mathematics League)

Hint: Try testing the number modulo small primes. The largest prime factor
turns out to be 7.

6. Let p > 5 be a prime, and let N = 111...1, with p − 1 1s. Show that N is
divisible by p.

7. Explain what the following table has to do with the Chinese Remainder
Theorem:

0 1 2 3 4 5 6
0 0 8 16 24 4 12 20
1 21 1 9 17 25 5 13
2 14 22 2 10 18 26 6
3 7 15 23 3 11 19 27

8. Let p be a prime of the form 4k + 1, and let n = (p − 1)/2. Prove that
(n!)2 + 1 ≡ 0 (mod p).

9. Find the four smallest positive integers n, such that n8 − n2 is not divisible
by 504.



24

6 Pythagorean Triples

A special Diophantine equation is a2 + b2 = c2. The solutions (a, b, c) in integers
to this equation, such as (3, 4, 5) and (5, 12, 13), are called Pythagorean triples,
because Pythagoras’s Theorem states that this is the equation satisfied by the
sides of a right triangle. Here, we derive a formula that gives all Pythagorean
triples.

First, if a, b, and c have any common factors greater than 1, then we divide
them out. For example, from (6, 8, 10), we divide by 2 to get (3, 4, 5). Note that
if d divides any two of a, b, or c, then it divides the third: For example, if d|a and
d|b, then d2|a2 and d2|b2, so d2|c2, which implies that d|c.

Let d = gcd(a, b, c), and let (a1, b1, c1) = (a/d, b/d, c/d). Then the integers
a1, b1, c1 are pairwise relatively prime; in other words, gcd(a1, b1) = gcd(a1, c1) =
gcd(b1, c1) = 1.

If both a and b are odd, then c2 = a2 +b2 ≡ 2 (mod 4), and 2 is not a square
modulo 4, so that at least one of a or b must be even. Without loss of generality,
assume that b is even. Then both a and c must be odd.

Since a2 + b2 = c2, c2−a2 = (c+a)(c−a) = b2. By problem 5 of Chapter 1,
gcd(c+a, c−a) is 1 or 2. Since c+a and c−a are both even, gcd(c+a, c−a) = 2.
Therefore, (c+ a)/2 and (c− a)/2 are relatively prime. Their product is a perfect
square, so that each is also a square, say (c+a)/2 = m2 and (c−a)/2 = n2, where
m and n are relatively prime, which implies that c = m2 + n2 and a = m2 − n2.
Finally, b2 = (c+ a)(c− a) = 4m2n2, so that b = 2mn.

Both m and n cannot be even; otherwise, a, b, and c would all be even, and
we are assuming that they are relatively prime, and likewise if m and n are both
odd. Hence, one of m and n must be even, and the other odd.

We began by factoring the gcd d out of the triple. Let us put this factor back
in. Then the complete solution is given by (a, b, c) = (d(m2−n2), d(2mn), d(m2 +
n2)) and (d(2mn), d(m2 − n2), d(m2 + n2)), where m ≥ n are relatively prime
positive integers, with one even and one odd, and d an arbitrary positive integer.
We provide another solution, which uses geometry.

Again, assume that a, b, and c are relatively prime. We approach the
problem using the coordinate plane. Let P be the point (1,0), and let Q be the
point (a/c, b/c). Assume that Q 6= P . Since (a/c)2 + (b/c)2 = (a2 + b2)/c2 = 1,
Q lies on the unit circle (the circle centred at (0, 0) with radius 1).
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P (1, 0)

Q(a/c, b/c)

x

y

Let m be the slope of the line PQ. Then the equation of the line PQ is
y = m(x − 1). Furthermore, the point Q is in the first quadrant, so that the
slope m is negative and is less than or equal to −1. Since the coordinates of P
and Q are rational, so also is m. Let m = −s/t, where s and t are relatively prime
positive integers, and s ≥ t.

The point Q lies on the circle x2 + y2 = 1 and the line y = m(x − 1), and
thus, is the solution to both equations:

x2 + y2 = x2 +m2(x− 1)2 = (m2 + 1)x2 − 2m2x+m2 = 1

⇒ (m2 + 1)x2 − 2m2x+m2 − 1 = 0

⇒ (x− 1)[(m2 + 1)x− (m2 − 1)] = 0,

so that x = 1 or x = (m2 − 1)/(m2 + 1) = (s2 − t2)/(s2 + t2) = a/c. The first
solution corresponds to the point P , and the second to Q. For the second solution,
y = b/c = m(x − 1) = (−s/t)[−2t2/(s2 + t2)] = 2st/(s2 + t2). We conclude that
a = s2 − t2, b = 2st, and c = s2 + t2. The solution then proceeds as before.

Problems

1. Show that (3, 4, 5) is the only Pythagorean triple with three consecutive
integers.

2. Let (a, b, c) be a Pythagorean triple. Show that abc ≡ 0 (mod 60).

3. Show that for any odd integer a, there exist integers b and c such that (a, b, c)
is a Pythagorean triple.
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4. Find a sequence of integers (un) for which

(i) each un is a perfect square, and

(ii) each partial sum u1 + u2 + · · ·+ un is a perfect square.

5. Show that if (a, b, c) is a Pythagorean triple, then for any positive integer n,
there exist integers p and q such that (p, q, cn) is also a Pythagorean triple.

6. Let (x, y, z) be a Pythagorean triple. Find t such that the following are also
Pythagorean triples:

(a) (t− x, t− y, t+ z).

(b) (t− x, t+ y, t+ z).

(c) (t+ x, t− y, t+ z).

7. Find all triples of positive integers (a, b, c) such that a2 + c2 = 2b2. Hint:
What is (a+ c)2 + (a− c)2?

7 Pell’s Equation

No perfect square can be exactly double another perfect square, since
√

2 is
irrational, but there are some examples that come close, such as 172 = 289 =
2 · 122 + 1. This is a solution to an equation known as Pell’s Equation, namely
an equation of the form x2 − dy2 = N . Many problems reduce to an equation of
this type, so that it will be helpful to know how to solve them.

If d is a perfect square, then x2 − dy2 factors. If d is negative, then there
are a finite number of solutions. Thus, the most interesting cases are when d is
positive and not a perfect square. Also, we limit our analysis to the cases N = ±1.

First, let us look at expressions of the form a + b
√

2, where a and b are
integers. We will show that there is only one way to write down such a number;
that is, if a + b

√
2 = c + d

√
2, then a = c and b = d. In other words, all the

numbers of this form, such as 1−
√

2 and 2 + 3
√

2, are different.

Assume that a + b
√

2 = c + d
√

2, so that a− c = (d − b)
√

2. If d 6= b, then
we can write √

2 =
a− c
d− b .

But
√

2 is irrational, a contradiction. Therefore, b = d, so that a = c. In particular,
a+ b

√
2 = c+ d

√
2 implies that a− b

√
2 = c− d

√
2. This operation (of replacing√

2 by −
√

2) is called surd conjugation. We implicitly perform this when we
rationalize the denominator of a fraction; for example,

1

5 +
√

2
=

5−
√

2

(5 +
√

2)(5−
√

2)
=

5−
√

2

23
.

Now, let us look at an example of Pell’s equation, the equation x2 − 2y2 = 1.
Trying small numbers, we find that the two smallest solutions are (1, 0) and (3, 2).
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There is a trick that generates all the solutions, and it is as follows. First, 32 − 2 ·
22 = 1, which factors as (3 + 2

√
2)(3− 2

√
2) = 1.

Consider powers of 3 + 2
√

2:

(3 + 2
√

2)2 = (3 + 2
√

2)(3 + 2
√

2)

= 3 · 3 + 3 · 2
√

2 + 2 · 3
√

2 + 2 · 2 · (
√

2)2

= 9 + 6
√

2 + 6
√

2 + 8

= 17 + 12
√

2,

and

(3 + 2
√

2)3 = (3 + 2
√

2)(17 + 12
√

2)

= 51 + 36
√

2 + 34
√

2 + 48

= 99 + 70
√

2.

Observe that 172 − 2 · 122 = 1 and 992 − 2 · 702 = 1. It turns out that all
pairs generated this way are solutions, and we show why. Expanding,

(3 + 2
√

2)n

= 3n +

(
n

1

)
3n−1 · 2

√
2 +

(
n

2

)
3n−2 · (2

√
2)2 +

(
n

3

)
3n−3 · (2

√
2)3 + · · ·

= 3n +

(
n

2

)
3n−2 · 22 · 2 + · · ·

+

((
n

1

)
3n−1 · 2 +

(
n

3

)
3n−3 · 23 · 2 + · · ·

)√
2,

so that, if

xn = 3n +

(
n

2

)
3n−2 · 22 · 2 + · · · , and

yn =

(
n

1

)
3n−1 · 2 +

(
n

3

)
3n−3 · 23 · 2 + · · · ,

then xn + yn
√

2 = (3 + 2
√

2)n. But also

xn − yn
√

2

= 3n +

(
n

2

)
3n−2 · 22 · 2 + · · ·

−
((

n

1

)
3n−1 · 2 +

(
n

3

)
3n−3 · 23 · 2 + · · ·

)√
2

= 3n −
(
n

1

)
3n−1 · 2

√
2 +

(
n

2

)
3n−2 · (2

√
2)2 −

(
n

3

)
3n−3 · (2

√
2)3 + · · ·

= (3− 2
√

2)n,
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which is really just another example of surd conjugation. Hence,

(xn + yn
√

2)(xn − yn
√

2) = x2
n − 2y2

n

= (3 + 2
√

2)n(3− 2
√

2)n

= [(3 + 2
√

2)(3− 2
√

2)]n

= 1n = 1,

so that (xn, yn) is also a solution to x2 − 2y2 = 1. Finally, we can solve for xn
and yn from the simultaneous system of equations

xn + yn
√

2 = (3 + 2
√

2)n,

xn − yn
√

2 = (3− 2
√

2)n.

In general, it turns out that when N = 1, these are the only solutions, but
we omit a proof here.

Solutions to x2 − dy2 = 1. If d is a non-negative, non-square integer,
then the equation x2 − dy2 = 1 always has integer solutions. Letting (a, b) be the
lowest positive integer solution to x2 − dy2 = 1, all positive integer solutions are
of the form

(xn, yn) =

(
(a+ b

√
d)n + (a− b

√
d)n

2
,

(a+ b
√
d)n − (a− b

√
d)n

2
√
d

)
. (∗)

Furthermore, xn = 2axn−1 − xn−2 and yn = 2ayn−1 − yn−2 for all n ≥ 2.

For N = −1, the situation is similar. The equation x2 − dy2 = −1 might
not have any solutions, but if it does, then let (a, b) be the lowest solution. Then
taking (xn, yn) as in (∗), x2

n − dy2
n = −1 for n odd, and again these are all the

solutions. It also turns out that x2
n − dy2

n = 1 for n even.

Example 6.1.

(a) Find all positive integers solutions to x2 − 2y2 = 1.

(b) Find all positive integers solutions to x2 − 2y2 = −1.

Solution. (a) The lowest solution is (3, 2), so all solutions are given by

(xn, yn) =

(
(3 + 2

√
2)n + (3− 2

√
2)n

2
,

(3 + 2
√

2)n − (3− 2
√

2)n

2
√

2

)
.

The first few solutions are (3, 2), (17, 12), and (99, 70).

(b) The lowest solution is (1, 1), so that all solutions are given by

(xn, yn) =

(
(1 +

√
2)n + (1−

√
2)n

2
,

(1 +
√

2)n − (1−
√

2)n

2
√

2

)
,



29

where n is odd. The first few solutions are (1, 1), (7, 5), and (41, 29).

Example 6.2. A number is called triangular if it can be expressed as the
sum 1 + 2 + · · ·+n for some positive integer n. For example, 36 is triangular since
36 = 1 + 2 + · · · + 8, and it is also square since 36 = 62. Prove that there are
infinitely many numbers that are both triangular and square.

Solution. The sum 1 + 2 + · · ·+ n is equal to n(n+ 1)/2, so that we seek
pairs (n,m) such that

n(n+ 1)/2 = m2

⇒ n2 + n = 2m2

⇒ 4n2 + 4n = 8m2

⇒ 4n2 + 4n+ 1 = (2n+ 1)2 = 8m2 + 1

⇒ (2n+ 1)2 − 8m2 = 1.

We have used a technique called “completing the square”, where we
manipulate the expression to get a square in the variable n. Let t = 2n + 1,
so that t2 − 8m2 = 1, which is a Pell’s equation. We find that the lowest solution
is (3, 1), so that all solutions are given by

(tk ,mk) =

(
(3 +

√
8)k + (3−

√
8)k

2
,

(3 +
√

8)k − (3−
√

8)k

2
√

8

)
.

However, since t = 2n + 1, we require t to be odd. We claim that tk is
odd for all k. First, t0 = 3 and t1 = 17. Also, tk = 6tk−1 − tk−2 for k ≥ 2.
Hence, tk ≡ tk−2 (mod 2). Since t0 and t1 are odd, tk is odd for all k. Setting
nk = (tk − 1)/2 gives an infinite number of values for n. The first few values of n
are 1, 8, and 49.

Problems

1. Let xn and yn be as in (∗). Show that xn = 2axn−1 − xn−2 and yn =
2ayn−1 − yn−2 for all n ≥ 2.

2. Let n be a positive integer. Show that there exists a positive integer k such
that

(
√

2− 1)n =
√
k −
√
k − 1.

3. What is the smallest integer n, greater than one, for which the
root-mean-square of the first n positive integers is an integer?

Note. The root-mean-square of n numbers a1, a2, . . . , an is defined to be

(
a2

1 + a2
2 + · · ·+ a2

n

n

)1/2

.

(1986 USAMO)
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4. The area K of a triangle with sides a, b, and c is given by Heron’s Formula:

K =
√
s(s− a)(s− b)(s− c),

where s = (a + b + c)/2, the semi-perimeter. Using this formula, it is easy
to calculate that the area of the triangle with sides 3, 4, and 5 is 6, and the
area of the triangle with sides 13, 14, and 15 is 84. Show that there are an
infinite number of positive integers n such that the area of the triangle with
sides n− 1, n, and n+ 1 is also an integer.

8 Tips

Here are a few tips when it comes to solving problems in number theory. You may
recognize a few from Chapter 1; they are good to remember.

• If a prime p divides the product ab, then p divides a or p divides b. More
generally, if p divides the product a1a2 · · ·an, then p must divide one of the
factors ai.

• For any integer n, n and n+ 1 are relatively prime. Hence, if a prime power
pk divides n(n+ 1), then pk divides either n or n+ 1. Also, if n divides m
and n+ 1 divides m, then n(n+ 1) divides m.

• More generally, if a and b are relatively prime integers, and a divides m and
b divides m, then ab divides m. Even more generally, if a1, a2, . . . , an are
pairwise relatively prime integers, and ai divides m for all i, then the product
a1a2 · · · an divides m. Hence, when trying to prove a congruence like x ≡ 0
(mod n), it may help to split up the prime factors of n and deal with each
individually. For example, to show that x ≡ 0 (mod 60), it suffices to show
that x ≡ 0 (mod 4), x ≡ 0 (mod 3), and x ≡ 0 (mod 5).

However, it is imperative that the ai be pairwise relatively prime. For
example, if n ≡ 0 (mod 4) and n ≡ 0 (mod 6), then we cannot conclude
that n ≡ 0 (mod 24). (To see this, take n = 12).

• For many number theory problems, a key step can be finding the right
modulus to work with. Sometimes it will be obvious, but other times it
will not be, so do not be afraid to experiment. Always try small moduli such
as 2, 3, and 4, and also ones that will simplify your expressions.

• For some problems, one must depart from modular theory and use basic
principles. For example, you may have a congruence like x ≡ 1 (mod 2n),
but working within modular arithmetic limits you to working modulo 2n. If
this doesn’t seem to be working, then try writing x = 1 + k2n and working
with this equation. (A good example of this is selected problem 4.)

• If you are having trouble solving a problem, try solving a simpler problem;
for example, look at a specific case, make an assumption, or change the
numbers in the problem. Work with small numbers to develop a pattern.
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9 Selected Problems

1. Show that, if n is a positive integer, 16n + 10n− 1 is divisible by 25.

(1974 Descartes Waterloo Competition)

Solution. By the binomial theorem,

16n = (1 + 15)n

= 1 +

(
n

1

)
15 +

(
n

2

)
152 + · · ·+

(
n

k

)
15k + · · ·+ 15n

≡ 1 + 15n (mod 25),

since
(
n
k

)
15k =

(
n
k

)
3k · 5k is divisible by 25 for k ≥ 2. Hence,

16n + 10n− 1 ≡ 1 + 15n+ 10n− 1 ≡ 25n ≡ 0 (mod 25).

Induction will also work.

2. Determine the smallest integer k such that 60n + k(71n) is divisible by 1441
for all odd positive integers n.

(1990 Descartes Waterloo Competition)

Solution. The problem probably means “smallest positive integer k”,
because for any integer k that works, so does k − 1441.

First, 1441 factors as 11·131. We consider these two prime factors separately.
Since n is odd, n = 2t+ 1 for some integer t. Then

60n + k(71n) ≡ 52t+1 + k · 52t+1

≡ 52t+1 · (1 + k) (mod 11),

so that 60n + k(71n) is divisible by 11 if and only if k ≡ −1 ≡ 10 (mod 11).
Also,

60n + k(71n) ≡ 602t+1 + k · (−60)2t+1

≡ 602t+1 + k · (−1)2t+1 · 602t+1

≡ 602t+1 − k · 602t+1

≡ 602t+1 · (1− k) (mod 131),

so that 60n + k(71n) is divisible by 131 if and only if k ≡ 1 (mod 131).
Solving for k leads to k ≡ 263 (mod 1441). The smallest positive integer
that satisfies this is clearly k = 263, which is the answer.

3. Call a number n automorphic if n2 ends with the number n. For example,
76 is automorphic since 762 = 5776. The following table lists automorphic
numbers in four columns, such that, beginning with the second row, each is
formed by appending a digit to the number above it on the left:



32

0 1 5 6
00 01 25 76

000 001 625 376
0000 0001 0625 9376

00000 00001 90625 09376
...

...
...

...

Show that the table can be extended indefinitely, and that these are the only
automorphic numbers.

Solution. Let xk be an automorphic number with k digits. Then we seek xk
such that x2

k ≡ xk (mod 10k), which becomes xk(xk − 1) ≡ 0 (mod 10k).

If k ≥ 2, then let xk−1 be the number formed by the last k − 1 digits
of xk . Then xk−1 ≡ xk (mod 10k−1), so that x2

k−1 − xk−1 ≡ x2
k − xk ≡ 0

(mod 10k−1). Hence, xk−1 is also automorphic. This says that any
automorphic number with k ≥ 2 digits must be formed by taking an
automorphic number with k − 1 digits, and appending another digit on the
left.

Now, 10k factors as 2k ·5k. Since xk and xk−1 are relatively prime, 2k must
divide one of them, and the same goes for 5k. This leads to four possible
cases:

x ≡ 0 (mod 2k), x ≡ 0 (mod 5k),

x ≡ 1 (mod 2k), x ≡ 1 (mod 5k),

x ≡ 1 (mod 2k), x ≡ 0 (mod 5k), and

x ≡ 0 (mod 2k), x ≡ 1 (mod 5k).

By the Chinese Remainder Theorem, each of these four cases has a
unique solution modulo 10k. Therefore, for any k, there are exactly four
automorphic numbers with k digits. (In fact, each of these four cases
corresponds to a column above.) Hence, the table lists all automorphic
numbers.

Additional Problem. Show that for any row, the sum of the numbers in
the last two columns of the table is 1 greater than a power of 10.

4. Prove that if p is a prime and a and k are positive integers such that pk|(a−1),
then pn+k|(apn − 1).

Solution. We proceed by mathematical induction. The result is clear for
n = 0. Assume that it is true for some integer n = t, so pt+k|(apt − 1), so

that ap
t

= 1 +mpt+k for some integer m. Then

ap
t+1

= (1 +mpt+k)p

= 1 +

(
p

1

)
mpt+k +

(
p

2

)
(mpt+k)2 + · · ·+ (mpt+k)p.
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Recall that
(
p
i

)
≡ 0 (mod p) for 1 ≤ i ≤ p − 1, so in the sum above, all

terms starting with the second are divisible by pt+k+1. Therefore, ap
t+1 ≡ 1

(mod pt+k+1), and the result holds for n = t + 1. By induction, the result
holds for all n.

5. Find all positive integer solutions x, y, z of the equation 3x + 4y = 5z.

(1991 International Mathematical Olympiad Short List)

Solution. One evident solution is (2, 2, 2). Taking both sides modulo 4,
we obtain (−1)x ≡ 1 (mod 4), so that x must be even. Taking both sides
modulo 3, we obtain 1 ≡ (−1)z (mod 3), so that z must also be even. Thus,
let x = 2u and z = 2v, where u and v are positive integers, so that the
equation becomes 32u + 22y = 52v, which implies that 22y = 52v − 32u =
(5v + 3u)(5v − 3u), so that both 5v + 3u and 5v − 3u are powers of 2.

Thus, let 5v + 3u = 2s and 5v − 3u = 2t, where s and t are non-negative
integers, with s > t. Then 2·5v = 2s+2t ⇒ 5v = 2s−1+2t−1 = 2t−1(2s−t+1).
The number 5v cannot have any factors of 2, so that t must be equal to 1,
and 5v = 2s−t + 1 = 2s−1 + 1. This implies 5v − 1 = 2s−1. If s = 3, then
v = 1, which leads to 32u + 22y = 9u + 4y = 25. The only solution to this
is u = 1 and y = 2, which gives us (x, y, z) = (2, 2, 2). Henceforth, assume
that s ≥ 4.

Looking again at the equation 5v − 1 = 2s−1, the left-hand side factors as

5v − 1 = (5− 1)(5v−1 + 5v−2 + · · ·+ 1) = 4 · (5v−1 + 5v−2 + · · ·+ 1),

so that 5v−1 + 5v−2 + · · · + 1 = 2s−3. The right-hand side is a power of 2
that is at least 2, so that it is even, giving that the left-hand side is even.
Each term in the left-hand side is odd, and there are v of them, so that v
must be even. Let v = 2n, where n is a positive integer. Then 52n − 1 =
(5n + 1)(5n − 1) = 2s−1, so that both 5n − 1 and 5n + 1 are powers of 2.
Note that 5n + 1 and 5n − 1 differ by 2, and the only powers of 2 that differ
by 2 are 4 and 2, so that 5n + 1 = 4 and 5n − 1 = 2, which does not lead to
any viable solutions. Therefore, the only solution is (x, y, z) = (2, 2, 2).

6. Let n be an integer. Prove that if 2 + 2
√

28n2 + 1 is an integer then it is a
square.

(1969 Kürschák Competition)

Solution. If 2 + 2
√

28n2 + 1 is an integer, then 28n2 + 1 must be a perfect
square; moreover, it must be an odd perfect square. Thus, let 28n2 + 1 =
(2k + 1)2 = 4k2 + 4k+ 1⇒ 7n2 = k(k + 1). Since k and k + 1 are relatively
prime, any prime factor of 7n2 must divide either k or k + 1, but not both.
Hence, k = 7a2 and k+ 1 = b2, or k = a2 and k+ 1 = 7b2, for some integers
a and b.
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If k = a2 and k + 1 = 7b2, then a2 + 1 = 7b2 ⇒ a2 ≡ −1 (mod 7), which we
can easily check is impossible. Therefore, k = 7a2 and k + 1 = b2. Then

2 + 2
√

28n2 + 1 = 2 + 2(2k + 1) = 4k + 4 = 4b2 = (2b)2.

7. Prove that the set of integers of the form 2k − 3 (k = 2, 3, . . . ) contains an
infinite subset in which every two members are relatively prime.

(1971 International Mathematical Olympiad)

Solution. We construct the set inductively.

Let 2 ≤ n1 < n2 < · · · < nk be k distinct positive integers such that any two
members in the set S = {2n1 − 3, 2n2 − 3, . . . , 2nk − 3} are relatively prime.

Let p1, p2, . . . , pt be the primes that divide the members of this set, and
let n = (p1 − 1)(p2 − 1) · · · (pt − 1) + 1. By Fermat’s Little Theorem, for all
1 ≤ i ≤ t,

2n − 3 = 2 · 2(p1−1)(p2−1)···(pt−1) − 3

= 2 · (2pi−1)(p1−1)···(pi−1−1)(pi+1−1)···(pt−1) − 3

≡ 2 · 1− 3

≡ −1 (mod pi).

Therefore, 2n−3 is relatively prime to pi for all i, so that 2n−3 is relatively
prime to every element in S. Add 2n − 3 to S. We repeat this construction
to generate an infinite number of elements.

8. Langford’s Problem. Let n be a positive integer. For certain n, it is
possible to arrange two of each of the integers 1, 2, . . . , n, in some order, such
that for each 1 ≤ i ≤ n, there are i integers between the two appearances
of the integer i. For example, for n = 3, the number 312132 is such an
arrangement. Show that for n ≡ 1 or n ≡ 2 (mod 4), there is no such
arrangement.

(Such arrangements exist for all other n, but this is very difficult to prove.)

Solution. For 1 ≤ i ≤ n, let ai and bi be the positions of the first and
second appearances of i, respectively, so that, in our example 312132, a1 = 2
and b1 = 4. Then in general, bi − ai = i+ 1, so that

n∑

i=1

bi −
n∑

i=1

ai =

n∑

i=1

(bi − ai)

=
n∑

i=1

(i+ 1) =
n∑

i=1

i+
n∑

i=1

1

=
n(n+ 1)

2
+ n

=
n2 + 3n

2
.
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Also, a1, a2, . . . , an, b1, b2, . . . , bn, represent the integers 1, 2, . . . , 2n, so
that

n∑

i=1

ai +

n∑

i=1

bi =

2n∑

i=1

i =
(2n)(2n+ 1)

2
= 2n2 + n.

Therefore,

n∑

i=1

bi =
n2+3n

2 + 2n2 + n

2
=

5n2 + 5n

4
=

5n(n+ 1)

4
,

which is an integer if and only if n ≡ 0 or 3 (mod 4). This shows that n
cannot be 1 or 2 modulo 4, but it alone does not prove that there is an
arrangement if n is 0 or 3 modulo 4.

9. Let p = 2m−1, q = 13m−1, and r = 15m−5, where m is a positive integer.
Note that if m = 5, p and q are perfect squares but r is not. If m = 2, q and
r are perfect squares but p is not. Show that there is no single value of m
for which each of p, q, and r is a perfect square.

(1992 Euclid Waterloo Competition)

Solution. It suffices to show that there is no value of m that makes both p
and r perfect squares.

Therefore, suppose that p = 2m − 1 = x2 and r = 15m − 5 = y2 for some
integers m, x, and y. Then m = (x2 + 1)/2, and substituting, 15 · (x2 +
1)/2− 5 = y2, which becomes 15x2 + 5 = 2y2. Taking both sides modulo 5,
we get 0 ≡ 2y2 (mod 5), which implies that y2 ≡ 0 (mod 5), which in turn
implies that y is divisible by 5.

Let y = 5u. Then 15x2 + 5 = 2y2 = 50u2 ⇒ 3x2 + 1 = 10u2. Again
taking both sides modulo 5, we get 3x2 + 1 ≡ 0 ⇒ 3x2 ≡ −1 ≡ 4 (mod 5).
Multiplying both sides by 2, which is the inverse of 3 modulo 5, we get
6x2 ≡ x2 ≡ 8 ≡ 3 (mod 5). However, it is easy to check that 3 is not a
square modulo 5. Therefore, no such value of m can exist.

10. (a) For a positive integer n, let s(n) denote the sum of the digits of n, as
written in decimal notation. Show that n ≡ s(n) (mod 9).

(b) When 44444444 is written in decimal notation, the sum of its digits is
A. Let B be the sum of the digits of A. Find the sum of the digits of
B. (A and B are written in decimal notation)

(1975 International Mathematical Olympiad)

Solution. (a) Let akak−1 . . . a1a0 be the decimal digits of n, so that n =
10kak + 10k−1ak−1 + · · ·+ 10a1 + a0. Then

n = 10kak + 10k−1ak−1 + · · ·+ 10a1 + a0

≡ ak + ak−1 + · · ·+ a1 + a0

= s(n) (mod 9).
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(b) We seek s(B). First, let us calculate 44444444 (mod 9). We have that
4444 ≡ 7 (mod 9), so 44444444 ≡ 74444 (mod 9). Also, 4444 ≡ 4 (mod 6),
so by Euler’s Theorem, 74444 ≡ 74 (mod 9). Hence,

44444444 ≡ 74 ≡ 492 ≡ 42 ≡ 16 ≡ 7 (mod 9).

By part (a), s(B) ≡ 7 (mod 9). We should suspect that s(B) is in fact 7;
otherwise, s(B) will be very difficult to calculate. We show that indeed
s(B) = 7 by estimating A, then B, then s(B).

First, 44444444 < 100004444 = (104)4444 = 1017776. Therefore, 44444444 has
at most 17776 digits, which means that A is at most 9 · 17776 = 159984.

Of the numbers among 1, 2, . . . , 159984, the number with the greatest
s-value is 99999, so that B is at most 9 ·5 = 45. Of the numbers among 1, 2,
. . . , 45, the number with the greatest s-value is 39, so that s(B) is at most
3 + 9 = 12. Since s(B) ≡ 7 (mod 9), we conclude that s(B) must be equal
to 7.

11. Prove that if n is a non-negative integer, then 19 × 8n + 17 is not a prime
number

(1976 British Mathematical Olympiad)

Solution. Let f(n) = 19 · 8n + 17. Our strategy is to find integers that
divide f(n) for certain values of n.

For example, taking f(n) modulo 3, we find that f(n) = 19 · 8n + 17 ≡
(−1)n + 2 (mod 3). This is 0 when n is even, so that we may assume that n
is odd, say n = 2t+ 1.

Then f(n) = f(2t+ 1) = 19 · 82t+1 + 17 = 152 · 64t+ 17. Taking this modulo
5, it becomes f(n) ≡ 2 · (−1)t + 2 (mod 5). This is 0 when t is odd, so that
we may assume that t is even, say t = 2u.

Then f(n) = f(4u+ 1) = 19 · 84u+1 + 17 = 152 · 4096u + 17. Since 4096 ≡ 1
(mod 13), f(4u+ 1) ≡ 152 + 17 ≡ 169 ≡ 0 (mod 13). To summarize,

if n is even, then f(n) ≡ 0 (mod 3) (and f(n) > 3),

if n is of the form 4t + 3, or n ≡ 3 (mod 4), then f(n) ≡ 0 (mod 5) (and
f(n) > 5),

and if n is of the form 4t + 1, or n ≡ 1 (mod 4), then f(n) ≡ 0 (mod 13)
(and f(n) > 13).

Therefore, f(n) can never be a prime.



37

10 Solutions to Chapter Problems

Chapter 1

1. (a) 26. (b) 180. (c) Since n|7n, gcd(n, 7n) = n.

2. Since gcd(m,n) = 3, both m and n are multiples of 3. Let a = m/3 and b =
n/3, so that gcd(a, b) = gcd(m/3, n/3) = gcd(m,n)/3 = 1, and lcm(a, b) =
lcm(m/3, n/3) = lcm(m,n)/3 = 12. In other words, a and b are relatively
prime numbers whose product is 12. The only possibilities for (a, b) are
(1, 12), (3, 4), (4, 3), and (12, 1). (The pair (2, 6) is not a solution since
gcd(2, 6) = 2.) The corresponding solutions for (m,n) are (3, 36), (9, 12),
(12, 9), and (36, 3).

3. (a) Let d = gcd(n, n+1), so that d divides both n and n+1. Then d divides
their difference (n+ 1)− n = 1. Hence, d = 1.

(b) The statement is false. For example, 6 divides 8 · 9 = 72, but 6 does not
divide 8 nor 9.

4. If a|n and b|n, then lcm(a, b)|n. But lcm(a, b) = ab/ gcd(a, b) = ab.
Therefore, ab|n.

5. Let d = gcd(x + y, x − y), so that d|(x + y) and d|(x − y). Then d divides
(x+y) + (x−y) = 2x, and d divides (x+y)− (x−y) = 2y, so that d divides
gcd(2x, 2y) = 2 gcd(x, y) = 2. Hence, d = 1 or 2. We leave it to the reader
to check that both values are possible.

6. Multiplying both sides by gcd(a, b), the equation becomes

a gcd(a, b) + b gcd(a, b) = gcd(a, b)2 + gcd(a, b) · lcm(a, b)

= gcd(a, b)2 + ab

⇒ gcd(a, b)2 − a gcd(a, b)− b gcd(a, b) + ab = 0

⇒ (gcd(a, b)− a)(gcd(a, b)− b) = 0.

Therefore, gcd(a, b) = a or gcd(a, b) = b. If gcd(a, b) = a, then a divides b,
and if gcd(a, b) = b, then b divides a.

Chapter 2

1. (a) First, observe that x2 − y2 factors as (x + y)(x − y). Hence, both x+ y
and x − y must be factors of 84, whose product is 84, with x + y ≥ x − y.
We list all the possibilities:

x+ y x− y x y
84 1 − −
42 2 22 20
28 3 − −
21 4 − −
14 6 10 4
12 7 − −
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Note that we only get a valid solution when x + y and x − y are both even
or both odd. Thus, the only solutions for (x, y) are (22, 20) and (10, 4).

(b) We have that x2 − y2 = (x + y)(x − y) = a3. If we take x + y = a2

and x − y = a, then 2x = a2 + a = a(a + 1). Since either a or a + 1 must
be even, a(a + 1) is even, so that x = a(a + 1)/2 is an integer. Similarly,
y = a(a− 1)/2 is an integer. Thus, the equation x2 − y2 = a3 always has a
solution, namely (x, y) = (a(a+ 1)/2, a(a− 1)/2).

(c) The values of n are 2, 6, 10, 14, and 18.

2. (a) For 360n to be a perfect square, each prime must appear an even number
of times in the prime factorization. The integer 360 factors as 23 · 32 · 5, so
that n must have at least one factor of 2 and one factor of 5. Hence, the
smallest value of n is 2 · 5 = 10.

(b) For 2n to be a perfect square, each prime must appear an even number
of times in the prime factorization of 2n, and for 9n to be a perfect cube,
each prime must appear in multiples of 3 in the prime factorization of 9n.
We can assume that the only prime factors of n are 2 and 3.

The number of factors of 2 in n must be odd and a multiple of 3. It is easy
to check that the smallest such number is 3. The number of factors of 3 in n
must be even and two less (or one more) than a multiple of 3. It is similarly
found that the lowest such number is 4. Hence, the value of n we seek is
23 · 34 = 648.

3. Let n2 be an odd perfect square. If n is even, then n2 is as well, so that n
must be odd, meaning that n = 2m+ 1 for some integer m. Then

n2 = 4m2 + 4m+ 1 = 8 · m(m+ 1)

2
+ 1.

Since either m or m + 1 must be even, m(m + 1)/2 must be an integer.
Setting k = m(m+ 1)/2, we see that n2 is of the form 8k + 1.

4. Let a and b be the man’s and grandson’s age this year, respectively. Then
we seek a and b such that b|a, (b+ 1)|(a+ 1), (b+ 2)|(a+ 2), (b+ 3)|(a+ 3),
(b+ 4)|(a+ 4), and (b+ 5)|(a+ 5).

Let us consider the following problem: Given a positive integer n, which
values of m satisfy n|m and (n+1)|(m+1)? Clearly m = n is one value. Let
m′ be another value, so that n|m′ and (n+1)|(m′+1). Since n|m and n|m′, n
divides their difference m′−m. Similarly, (n+1)|(m+1) and (n+1)|(m′+1),
so that n + 1 divides their difference (m′ + 1)− (m + 1) = m′ −m, so that
both n and n+ 1 divide m′ −m.

But n and n + 1 are relatively prime, so that n(n + 1) divides m′ −m, or
m′−m is a multiple of n(n+ 1). Thus, for example, for n = 4, m = 4 is one
solution, and the next solutions are 4 + 4 · 5 = 24, 24 + 4 · 5 = 64, etc. We
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list all such values of n and m below, where n < m < 100:

n m
1 3, 5, 7, 9, . . .
2 8, 14, 20, 26, . . .
3 15, 27, 39, 51, . . .
4 24, 64, 84
5 35, 65, 95
6 48, 90
7 63
8 80
9 99

Going back to our original problem, we seek a value of a that is in the m
column in one row, such that a + 1 is in the next row, a + 2 is in the row
under that, and so on, until a+ 4. Looking at the rows for n = 4, 5, and 6,
we see that a+ 4 must be equal to 65, which gives us a = 61 and b = 1. We
check that these values work.

Chapter 3

1.
+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

2. (a) Looking at the first few powers of 2 modulo 11, we find that 210 = 1024 ≡
1 (mod 11). Therefore, 2500 = (210)50 ≡ 150 ≡ 1 (mod 11).

(b) Since 7 ≡ −6 (mod 13), 699 + 799 ≡ 699 + (−6)99 ≡ 699 + (−1)99 · 699 ≡
699 − 699 ≡ 0 (mod 13).

(c) Each of the terms is odd, and there are n terms, so that the sum is
congruent to 1 + 1 + · · ·+ 1 = n (mod 2). Hence, 1 + 3 + 5 + · · ·+ (2n− 1)
is 0 modulo 2 if n is even, and 1 modulo 2 if n is odd.

3. Algebraically, aabb equals

1000a+ 100a+ 10b+ b = 1100a+ 11b ≡ 0 (mod 11),

so that the square is divisible by 11. Since 11 is prime, the square is divisible
by 112 = 121. Checking all square multiples of 121 up to 10000, we find that
the only one that fits the pattern is 121 · 82 = 882 = 7744. Therefore, the
only solution is a = 7 and b = 4.
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4. The product of 2n−1 and 2n+1 is (2n)2−1 = 4n−1, and 4n−1 ≡ 1n−1 ≡ 0
(mod 3). Since 3 is prime, 3 must divide one of 2n − 1 and 2n + 1.

You may have noticed that 2n−1 is divisible by 3 when n is even, and 2n+1
is divisible by 3 when n is odd. Prove this.

5. Since 10 = 2 · 5, we consider modulo 2 and 5 separately.

For all n ≥ 1,

1n + 8n − 3n − 6n ≡ 1n + 0− 1n − 0 ≡ 0 (mod 2),

so that the expression is divisible by 2. Similarly,

1n + 8n − 3n − 6n ≡ 1n + 3n − 3n − 1n ≡ 0 (mod 5),

so that the expression is divisible by 5. Hence, it is divisible by 10.

6. There are many counter-examples. For example, 1 ≡ 4 (mod 3), but 21 ≡ 2
(mod 3) and 24 ≡ 1 (mod 3). This shows that exponentiation does not
necessarily preserve congruence.

7. (a) We check the squares modulo 7:

n 0 1 2 3 4 5 6
n2 0 1 4 9 16 25 36
n2 (mod 7) 0 1 4 2 2 4 1

Thus, the squares in modulo 7 are 0, 1, 2, and 4.

(b) Checking all possible sums of two squares modulo 7, as derived in part (a),
we find that the only sum that gives 0 is 0 + 0. Hence, both squares must be
divisible by 7.

8. Each summand contains 997 factors, so that

1 · 3 · 5 · · · 1993 + 2 · 4 · 6 · · · 1994

≡ 1 · 3 · 5 · · · 1993 + (−1993) · (−1991) · (−1989) · · · (−1)

≡ 1 · 3 · 5 · · · 1993 + (−1)997 · 1 · 3 · 5 · · · 1993

≡ 1 · 3 · 5 · · · 1993− 1 · 3 · 5 · · · 1993

≡ 0 (mod 1995).

9. We must show that for any prime p > 3, there exists an integer n such that
p =
√

24n+ 1. Squaring both sides, this becomes p2 = 24n+ 1. Thus, the
problem becomes showing that p2 ≡ 1 (mod 24), or p2 − 1 ≡ 0 (mod 24).
The number 24 factors as 3 · 8, so that we consider these factors separately.

Since p > 3, p is congruent to 1 or 2 modulo 3. In either case, p2 ≡ 1
(mod 3), so that p2 − 1 ≡ 0 (mod 3).
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Also, since p2 is an odd perfect square, by problem 3 at the end of Chapter 2,
p2 ≡ 1 (mod 8), or p2 − 1 ≡ 0 (mod 8). Hence, p2 − 1 ≡ 0 (mod 24).

Here is another solution: In Problem 11, it is shown that every prime p ≥ 5
is of the form 6k ± 1, where k is a positive integer. Then

p2 = 36k2 ± 12k + 1 = 12k(3k ± 1) + 1.

If k is even, then 12k is a multiple of 24, and if k is odd, then 3k ± 1 is
even, so that 12(3k ± 1) is a multiple of 24. Hence, in either case, p2 ≡ 1
(mod 24).

10. The roots of the quadratic are given by the quadratic formula:

−b±
√
b2 − 4ac

2a
.

For these roots to be rational, b2 − 4ac must be a perfect square. We claim
that b2−4ac cannot be a perfect square, thus showing that the roots cannot
be rational.

Suppose that b2 − 4ac is a perfect square, say d2.
First, note that b2 − 4ac ≡ b2 ≡ 1 (mod 2), since b is odd. By problem 3 of
Chapter 2, odd squares are congruent to 1 modulo 8, so that

d2 ≡ b2 ≡ 1 (mod 8)⇒ b2 − d2 = 4ac ≡ 0 (mod 8).

This implies that 4ac = 8n for some integer n, from which we get ac = 2n.
But a and c are odd, so that their product ac is odd as well, a contradiction.
Therefore, b2 − 4ac cannot be a perfect square.

11. (a) The numbers in the columns are of the form 6k+1, 6k+2, 6k+3, 6k+4,
6k + 5, and 6k + 6 (or 6k), respectively.

All numbers of the form 6k, 6k + 2, and 6k+ 4 are divisible by 2, and thus,
cannot be primes greater than 2. Also, all numbers of the form 6k + 3 are
divisible by 3, and thus, cannot be primes greater than 3. This leaves only
the forms 6k + 1 and 6k + 5, which represent the first and fifth columns,
respectively.

(b) We follow Example 3.7. Suppose that there are a finite number of primes
of the form 6k + 5, say p1, p2, . . . , pn. Let N = 6p1p2 · · · pn − 1.

Now, N is divisible neither by 2 nor 3, since N ≡ −1 (mod 6). Therefore, by
part (a), N is only divisible by primes of the form 6k+1 or 6k+5. However,
N cannot be divisible by any prime of the form 6k+ 5 either, since N ≡ −1
(mod p) for any such prime p.

Hence, N is divisible only by primes of the form 6k + 1, which implies that
N ≡ 1 (mod 6). But N ≡ −1 (mod 6), a contradiction. Therefore, there
are an infinite number of primes of the form 6k + 5.
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12. If n is odd, then n = 2m+ 1 for some non-negative integer m. Then we can
take x = m+ 1 and y = m.

If n is divisible by 4, so that n = 4m for some integer m, then we can take
x = m+ 1 and y = m− 1.

This leaves the case that n is twice an odd number. Then n = 2(2m+ 1) =
4m + 2 for some m, so that n ≡ 2 (mod 4). But x2 is 0 or 1 modulo 4, so
that the only possible values of x2 − y2 are −1, 0, or 1 modulo 4, and the
equation x2 − y2 = n cannot have any solutions.
Therefore, the equation x2−y2 = n has no solutions in non-negative integers
exactly when n ≡ 2 (mod 4), which agrees with our answer to problem 1(c)
of Chapter 2.

Chapter 4

1. (a) 3. (b) 21.

2. (a) (−6 + 3t, 6− 2t). (b) (40 + 7t,−60− 11t).

3. The problem is equivalent to showing that the congruence 31x ≡ 174
(mod 1000) has a solution. Since gcd(31, 174) = 1, the congruence does
have a solution. (We are only asked to show that there is such a multiple,
not find it explicitly.)

4. Let u = a/ gcd(a, b) and v = b/ gcd(a, b). Then a/ gcd(a, b) ·x+ b/ gcd(a, b) ·
y = ux+ vy = 1. Hence, x and y are relatively prime.

5. We show that S = T by showing that every ordered pair in S is also in T ,
and vice-versa.

Let (3i+ 4j + 5k, 8i− j + 4k) be an ordered pair in S, where i, j, and k are
integers. To show that this ordered pair lies in T , we must find integers m
and n such that m = 3i+ 4j+ 5k and 5m+ 7n = 8i− j+ 4k. We can simply
solve for n, to get

n =
8i− j + 4k − 5m

7

=
8i− j + 4k − 5(3i+ 4j + 5k)

7

=
−7i− 21j − 21k

7
= −i− 3j − 3k,

which is an integer.

Now, let (m, 5m+ 7n) be an ordered pair in T , where m and n are integers.
To show that this ordered pair lies in S, we must find integers i, j, and k
such that 3i + 4j + 5k = m and 8i − j + 4k = 5m + 7n. Multiplying the
second equation by 4, we get 32i − 4j + 16k = 20m + 28n. Adding this to
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the first equation, we get 35i + 21k = 21m + 28n. Dividing by 7, we get
5i+ 3k = 3m+ 4n.

Since 4 = 2 · 5− 2 · 3, we can take i = 2n and k = m− 2n. Thus,

5i+ 3k = 5(2n) + 3(m− 2n) = 3m+ 4n.

Then, solving for j in the equation 8i− j + 4k = 5m+ 7n, we get

j = 8i+ 4k − 5m− 7n = 8(2n) + 4(m− 2n)− 5m− 7n = n−m.

6. Assume that am3 + bm2 + cm + d ≡ 0 (mod 5). If m ≡ 0 (mod 5), then
d ≡ 0 (mod 5), but we are given that d is not divisible by 5, so that m is
relatively prime to 5, and m−1 (mod 5) exists. Let n ≡ m−1 (mod 5), so
that am3n3 + bm2n3 + cmn3 + dn3 ≡ a+ bn+ cn2 + dn3 ≡ 0 (mod 5).

7. Suppose that a−1 (mod m) exists. Multiply the congruence ab ≡ 0 (mod m)
by a−1 to get b ≡ 0 (mod m), but b is non-zero modulo m, a contradiction.

Chapter 5

1. (a) By FLT, 26 ≡ 1 (mod 7), so that

21000 = 26·166+4 = (26)166 · 24 ≡ 1 · 16 ≡ 2 (mod 7).

(b) By FLT, 312 ≡ 1 (mod 13).
Since 421 ≡ 1 (mod 12), 3421 ≡ 31 ≡ 3 (mod 13).

(c) By Euler’s Theorem, 11φ(21) = 1112 ≡ 1 (mod 21).
Since 777 ≡ 9 (mod 12),

11777 ≡ 119 ≡ (112)4 · 11

≡ 1214 · 11 ≡ 164 · 11

≡ 2562 · 11 ≡ 42 · 11

≡ 176 ≡ 8 (mod 21).

2. (a) Since a ≡ 1 (mod p− 1), a = 1 + k(p− 1) for some integer k.
If n ≡ 0 (mod p), then na−n ≡ 0 (mod p). Otherwise, n is relatively prime
to p, so that, by FLT, np−1 ≡ 1 (mod p), and

na = n1+k(p−1) = n · (np−1)k

≡ n · 1 ≡ n (mod p).

Therefore, na − n ≡ 0 (mod p) for all n.

(b) First, 2730 factors as 2 · 3 · 5 · 7 · 13. Note that for each of the values
p = 2, 3, 5, 7, and 13, p is prime, and p− 1 divides 12 = 13− 1, so that, by
part (a), n13 ≡ n (mod p) for all n. Hence, n13 ≡ n (mod 2 · 3 · 5 · 7 · 13).
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3. First, 561 factors as 3 · 11 · 17. Hence, it suffices to show that for each of the
values p = 3, 11, and 17, n561 ≡ n (mod p) for all n.

We find that for each value of p, p − 1 divides 560 = 561 − 1, so that, by
part (a) of problem 2, n561 − n ≡ 0 (mod 3 · 11 · 17) for all n.

4. Let x = a(p−1)/2. Then by FLT, x2 = ap−1 ≡ 1 (mod p), which implies that
x2 − 1 = (x− 1)(x+ 1) ≡ 0 (mod p). Therefore, x ≡ 1 or −1 (mod p).

5. Let N = 859 − 219 + 69. Note that 85 ≡ 21 (mod 64),
and 69 = 29 · 39 ≡ 0 (mod 64), so that N ≡ 219 − 219 + 0 ≡ 0 (mod 64).

Also, N ≡ 09 − 19 + 19 ≡ 0 (mod 5), and N ≡ 1− 0 + (−1)9 ≡ 0 (mod 7),
and 64 · 5 · 7 = 2240, so that this is the factor we seek.

6. The number 9N is a number with p − 1 9s, so that 9N = 10p−1 − 1. The
prime p is greater than 5, so that p is relatively prime to 10. By FLT,
10p−1− 1 ≡ 0 (mod p), so that 9N ≡ 0 (mod p). Since p > 3, 9 is relatively
prime to p, which implies that N ≡ 0 (mod p).

7. The table acts as a look-up table. Let a be an integer between 0 and 3, and
b an integer between 0 and 6. Then the solution to the system

x ≡ a (mod 4),

x ≡ b (mod 7),

is the entry in the row headed by a and column headed by b.

8. Writing it out,

(n!)2 = 1 · 2 · · ·n · n · (n− 1) · · · 1
≡ 1 · 2 · · ·n · (n− p) · (n− p− 1) · · · (1− p)
≡ 1 · 2 · · ·n · (−1) · (p− n) · (−1) · (p− n+ 1) · · · (−1) · (p− 1)

≡ (−1)n · 1 · 2 · · ·n · (n+ 1) · (n+ 2) · · · (2n) (mod p),

since p = 2n + 1. Also, p = 4k + 1 for some integer k, so that 2n + 1 =
4k+1⇒ n = 2k, so that n is even, and the expression becomes 1·(p−1)! ≡ −1
(mod p), by Wilson’s Theorem. Hence, (n!)2 ≡ −1 (mod p).

9. First, 504 factors as 23 · 32 · 7.

If n ≡ 0 (mod 3), then 3|n, so that 9|(n8 − n2). Otherwise, n is relatively
prime to 3, and thus, relatively prime to 9.
By Euler’s Theorem, nφ(9) = n6 ≡ 1 (mod 9), so that n8 ≡ n2 (mod 9).
Therefore, n8 − n2 ≡ 0 (mod 9) for all n.

By FLT, n7 ≡ n (mod 7) for all n, so that n8 − n2 ≡ 0 (mod 7) for all n.

Finally, let us list n8 − n2 (mod 8):

n 0 1 2 3 4 5 6 7
n8 − n2 (mod 8) 0 0 4 0 0 0 4 0
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Hence, n8 − n2 is not divisible by 8, and by extension 504, yielding if
n ≡ 2 or 6 (mod 8), or equivalently, n ≡ 2 (mod 4). The first four such
numbers are 2, 6, 10, and 14.

Chapter 6

1. Let the triple be (n − 1, n, n + 1), so that (n − 1)2 + n2 = (n + 1)2, or
n2 − 2n + 1 + n2 = n2 + 2n + 1 ⇒ n2 = 4n ⇒ n = 0 or n = 4. We reject
n = 0, so that the only solution is indeed (3,4,5).

2. Since (a, b, c) is Pythagorean triple, we have

abc = k(m2 − n2) · 2kmn · k(m2 + n2) = k3 · 2mn(m4 − n4)

for some integers k, m, and n. It suffices to show that

2mn(m4 − n4) ≡ 0 (mod 60),

or equivalently, that mn(m4 − n4) ≡ 0 (mod 30).

By Example 3.3, m5 ≡ m (mod 30) and n5 ≡ n (mod 30). Hence,

mn(m4 − n4) ≡ m5n−mn5 ≡ mn−mn ≡ 0 (mod 30).

3. Take b = (a2 − 1)/2 and c = (a2 + 1)/2.
Then a2 + b2 = a2 + (a4 − 2a2 + 1)/4 = (a4 + 2a2 + 1)/4 = c2.

4. We construct the sequence inductively. First, let a1 = 3 and a2 = 4, so
that a2

1 + a2
2 = 25, which is a perfect square. By problem 3, if we take

a3 = (25− 1)/2 = 12, then a2
1 + a2

2 + a2
3 = 169 = 132 is a perfect square. In

general, assume that we have constructed the values a1, a2, . . . , an−1, and
a2

1 + a2
2 + · · ·+ a2

n−1 is an odd perfect square, say x2. Taking our cue from
problem 3, let an = (x2 − 1)/2. Since x2 is an odd square, x2 ≡ 1 (mod 8),
so that an is even. Also,

a2
1 + a2

2 + · · ·+ a2
n−1 + a2

n = x2 +

(
x2 − 1

2

)2

= x2 +
x4 − 2x2 + 1

4

=
x4 + 2x2 + 1

4
=

(
x2 + 1

2

)2

= (an + 1)2,

which is also an odd perfect square. Thus, a2
1 + a2

2 + · · · + a2
n is a perfect

square for all n. Finally, we can set un = a2
n for all n.

5. Let S be the set of integers that can be expressed as the sum of two perfect
squares. Since c2 = a2 + b2, c is in S. Two general elements in S are x2 + y2

and z2 + w2. Their product is

(x2 + y2)(z2 + w2) = x2z2 + y2w2 + x2w2 + y2z2

= x2z2 + 2xzyw + y2w2 + x2w2 − 2xwyz + y2z2

= (xz − yw)2 + (xw − yz)2,
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so that the product of any two elements in S is also in S. Hence, c · c = c2

is in S, c · c2 is in S, and so on, producing all powers of c.

6. (a) For (t− x, t− y, t+ z) to be a Pythagorean triple, we must have

(t− x)2 + (t− y)2 = (t+ z)2

⇒ t2 − 2tx+ x2 + t2 − 2ty + y2 = t2 + 2tz + z2

⇒ t2 − 2xt− 2yt− 2zt = z2 − x2 − y2 = 0

⇒ t(t− 2x− 2y − 2z) = 0.

The only values are then t = 0, which we reject, and t = 2x+ 2y + 2z.

(b) Proceeding as in part (a), we get t = 2x+ 2z − 2y.

(c) Proceeding as in part (a), we get t = 2y + 2z − 2x.

We can use these formulas to derive new triples from previous ones. For
example, applying (a), (b), and (c) to the triple (3, 4, 5), we get (21, 20, 29),
(5, 12, 13), and (15, 8, 17).

7. Assume that c < a. Let p = (a+ c)/2 and q = (a− c)/2.
Then p2 + q2 = b2, so that (p, q, b) = (k(m2 − n2), k(2mn), k(m2 + n2)), or
(p, q, b) = (k(2mn), k(m2 − n2), k(m2 + n2)), for some integers k, m, and n,
such that one of m, n is odd and the other even, and m ≥ n.

Then we have a = p+ q = k(m2 + 2mn− n2), and
c = q − p = ±k(m2 − 2mn− n2). Thus, the complete solution is

(a, b, c) = (k(m2 + 2mn− n2), k(m2 + n2),±k(m2 − 2mn− n2)).

Chapter 7

1. Let u = a+ b
√
d and v = a− b

√
d, so that,

from (∗), xn = (un + vn)/2 and yn = (un − vn)/(2
√
d).

Then u+ v = 2a and uv = a2− db2 = 1, so that u and v are the roots of the
quadratic

(t− u)(t− v) = t2 − (u+ v)t+ uv = t2 − 2at+ 1,

which means that u2 − 2au+ 1 = v2 − 2av + 1 = 0, so that
un − 2aun−1 + un−2 = vn − 2avn−1 + vn−2 = 0. Adding these, we get

un + vn − 2a(un−1 + vn−1) + (un−2 + vn−2) = 0

⇒ un + vn

2
− 2a · u

n−1 + vn−1

2
+
un−2 + vn−2

2
= 0

⇒ xn − 2axn−1 + xn−2 = 0,

which shows that xn = 2axn−1 − xn−2. The relation for yn is similarly
proven.
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2. Let xn and yn be integers defined by (
√

2− 1)n = xn
√

2− yn.
Then (

√
2 + 1)n = xn

√
2 + yn, so that

2x2
n − y2

n = (xn
√

2− yn)(xn
√

2 + yn)

= (
√

2− 1)n(
√

2 + 1)n

= [(
√

2− 1)(
√

2 + 1)]n

= 1n = 1.

Now (
√

2− 1)n = xn
√

2− yn =
√

2x2
n−

√
y2
n =

√
2x2

n−
√

2x2
n − 1, showing

that we can take k = 2x2
n.

3. The sum of the first n perfect squares is

n(n+ 1)(2n+ 1)

6
.

Hence, we seek pairs (n,m) such that

(n+ 1)(2n+ 1)

6
= m2

⇒ 2n2 + 3n+ 1 = 6m2

⇒ 16n2 + 24n+ 8 = 48m2

⇒ 16n2 + 24n+ 9 = (4n+ 3)2 = 48m2 + 1

⇒ (4n+ 3)2 − 48m2 = 1.

Let t = 4n+ 3, so that our equation becomes t2 − 48m2 = 1. The smallest
solution to this is (7, 1), so that all solutions are given by

(tk,mk) =

(
(7 +

√
48)k + (7−

√
48)k

2
,

(7 +
√

48)k − (7−
√

48)k

2
√

48

)
.

The first few solutions are (7, 1), (97, 14), and (1351, 195). For n to be an
integer, we require t ≡ 3 (mod 4), which we have for t3 = 1351. Hence, the
smallest n is (1351− 3)/4 = 337. (We ignore t1 = 7 since n must be greater
than 1.)

4. If a = n− 1, b = n, and c = n+ 1, then s = 3n/2, so that

K =

√
3n

2
· n+ 2

2
· n

2
· n− 2

2

=

√
3n2(n2 − 4)

16

=
n

4
·
√

3(n2 − 4).
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If n is odd, then 3n2(n2 − 4) is also odd, and K cannot be an integer, so
that n must be even. Let n = 2x, so that

K =
2x

4
·
√

3(4x2 − 4) = x
√

3(x2 − 1).

We require 3(x2−1) to be a perfect square, say y2. Then y must be divisible
by 3; let y = 3m. Then 3(x2 − 1) = y2 = 9m2, so that x2 − 1 = 3m2, or
x2−3m2 = 1. The smallest solution to this is (2, 1), so that all solutions are
given by

(xt,mt) =

(
(2 +

√
3)t + (2−

√
3)t

2
,

(2 +
√

3)t − (2−
√

3)t

2
√

3

)
.

Taking nt = 2xt gives an infinite number of values for n.

11 Practice Problems

1. If 332, 520, and 755 are each divided by d (an integer greater than one), the
remainder r is the same. Determine the value of d+ r.

(1992 Euclid Waterloo Competition)

2. A table consists of eleven columns. Reading across the first row of the table
we find the numbers 1991, 1992, 1993, . . . , 2000, 2001. In the other rows,
each entry in the table is 13 greater than the entry above it, and the table
continues indefinitely. If a vertical column is chosen at random, then what
is the probability of that column containing a perfect square?

(1991 Fermat Waterloo Competition)

3. Let abc be a three-digit integer. Show that abc+ bca+ cab is divisible by 37.

4. Let n be an odd positive integer. Show that 5n+11n+17n is divisible by 33.

5. Prove that there are no integers solutions to the equation x2 − 17y2 = 11.

6. Let S1 be the sequence of positive integers 1, 2, 3, 4, . . . . For all n ≥ 1, we
obtain the sequence Sn+1 from Sn by adding 1 to every term that is divisible
by n (and leaving the other terms unchanged), so that S2 is the sequence
2, 3, 4, 5, . . . , and S3 is 3, 3, 5, 5, . . . . Find all n for which the first n − 1
terms of Sn are equal to n.

7. Show that for all positive integers n, 62n+1 + 5n+2 is divisible by 31.

8. Find the greatest common divisor of all numbers in the sequence {13n + 6 :
n = 2, 4, 6, . . . }.

9. Show that for any seven positive integers, there exists a pair whose sum or
difference is divisible by 10.
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10. A school orders 99 textbooks. When the bill comes, the first and last digits
are obscured, and reads $−, 112.7−. What are the missing digits?

11. A point is called a lattice point if both of its coordinates are integers. Find
the shortest distance between two lattice points on the line 2x+ 3y = 10.

12. Prove that n5 − 5n3 + 4n is divisible by 120 for all positive integers n.

13. Prove that pp−1 + 1989 is composite for every prime p.

(Mathematical Mayhem J26)

14. Show that n22 ≡ n2 (mod 100) for all integers n.

(Mathematical Mayhem H89)

15. Let S be the set of all positive integers that are of the form 2a3b; that is,
all positive integers that only have factors of two and three (and 1 is in S;
a = b = 0). Calculate the sum of the reciprocals of the elements of S:

1

1
+

1

2
+

1

3
+

1

6
+

1

9
+

1

12
+ · · · .

(Mathematical Mayhem H116)

16. Let x > y, where x and y are positive integers. Show that if x and y satisfy
the equation x2 − y2 = 1995, then neither x nor y can be a multiple of 3.

(Mathematical Mayhem H163)

17. The system of equations (a + 1)(b − 5) = N and (a − 1)(b + 5) = N has
integer solutions for N = 1995. Determine the next smallest positive integer
greater than 1995 that also yields integer solutions (a, b).

(Mathematical Mayhem H189)

18. Let n be a positive integer, and let a1, a2, . . . , an be an arithmetic sequence,
such that the common difference is relatively prime to n. Show that exactly
one of the terms of the sequence is divisible by n.

19. Find a set of four consecutive integers such that the smallest is a multiple
of 5, the next smallest is a multiple of 7, the third is a multiple of 9 and the
largest is a multiple of 11.

(1978 Euclid Waterloo Competition)

20. Let a1, a2, . . . , a15 be a permutation of the integers 1, 2, . . . , 15. Show that

(a1 − 1)(a2 − 2) · · · (a15 − 15)

must be even.
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21. Determine all positive integer solutions (x0, x1, . . . , xn) of the system

4x1 = 5x0 + 1,

4x2 = 5x1 + 1,

. . . ,

4xn = 5xn−1 + 1.

22. (a) Show that n4 is congruent to 0 or 1 modulo 16 for all integers n.

(b) Determine all non-negative integral solutions (n1, n2, . . . , n14), if any,
apart from permutations, of the Diophantine equation

n4
1 + n4

2 + · · ·+ n4
14 = 1599.

(1979 USAMO)

23. The tens digit of a perfect square is 7. What is the units digit?

24. Show that there do not exist integers x, y, and z, such that
x2 + y2 + z2 = 1991.

25. (a) A sequence has nth term an = 2nk + 1, where k is a fixed integer.
Show that there is no prime, p, such that every term of the sequence is
divisible by p.

(b) For the sequence defined in part (a), show that there are no two primes,
p and q, such that every term of the sequence is divisible by either p
or q.

(1991 Euclid Waterloo Competition)

26. A palindromic number is a number that reads the same forwards and back,
such as 14541 and 2882. Show that a palindromic number with an even
number of digits is divisible by 11.

27. Prove that no positive integer ending in the two digits 99 can be a perfect
square.

28. Find three positive integers m, n, and p such that 5m + 9n = 7p2, or show
that no such integers exist.

29. Determine the least value of c such that the equation 7x + 11y = c has
exactly 13 solutions (x, y) in positive integers.

30. (a) Show that among any 5 numbers, it is possible to choose 3 whose sum
is divisible by 3.

(b) Show that among any 17 numbers, it is possible to choose 5 whose sum
is divisible by 5.

31. Solve the congruence x3 ≡ 53 (mod 60).
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32. Let p be a prime. Prove that p is the smallest prime dividing (p− 1)! + 1.

33. Determine all integer solutions (x, y) to the Diophantine equation

x3 − y3 = 2xy + 8.

(International Mathematical Olympiad Proposal)

34. Let a1, a2, a3, . . . , an be the numbers 1, 2, 3, . . . , n written in any order.

Prove that

n∑

i=1

|ai − i| is always even.

(1988 Descartes Waterloo Competition)

35. Let n be a positive integer. Let b be the last digit of 2n, and a the remaining
digits, so that 2n = 10a+ b. Show that the product ab ≡ 0 (mod 3).

36. Prove that there are no prime numbers in the infinite sequence
10001, 100010001, 1000100010001, . . . .

37. Prove that if pn+ 1 is the square of an integer, where n is an integer and p
is a prime, then n+ 1 can be written as the sum of p squares.

(Mathematical Mayhem H135)

38. Let n be a positive integer, such that both 2n + 1 and 3n + 1 are squares.
Show that 40 divides n.

39. For which digits a, b is ababab1 a perfect cube?

(Mathematical Mayhem A28)

40. Define a sequence (an) by a1 = 7 and an = 7an−1 for n ≥ 2. Find the units
digit of an for all n.

41. Find the integer n such that 1335 + 1105 + 845 + 275 = n5.

(1991 Japanese Mathematics Olympiad)

42. Let f(x) be a polynomial in x with integer coefficients, such that
f(−3) = f(4) = 2. Show that there is no integer a such that f(a) = 5.

43. Let N be a positive integer whose units digit is k. If the k is moved to the
front of the number, the new number is k times the original number.

(a) Prove that N can be found for every k, 0 < k < 10.

(b) Show that if k = 4, then all solutions are given by

⌊
102564 · 106n

999999

⌋
,

where bxc is the greatest integer function, and n is a positive integer.

(Mathematical Mayhem S39)
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44. Let u1, u2, u3, . . . , be a sequence of integers satisfying the recurrence relation
un+2 = u2

n+1 − un. Suppose u1 = 39 and u2 = 45. Prove that 1986 divides
infinitely many terms of the sequence.

(1986 CMO)

45. The sequence (pn) is defined as follows: p1 = 2, and for n ≥ 2, pn is the
greatest prime factor of p1p2 · · · pn−1 + 1. Prove that 5 is not a term in this
sequence.

46. Let p be a prime and a and b be positive integers. Show that

(
pa

pb

)
≡
(
a

b

)
(mod p).

47. Let a be an integer, such that gcd(a, 3) = 1 and x2 ≡ a (mod 3) has a
solution in x. Prove that x2 ≡ a (mod 3k) has a solution for all positive
integers k.

48. In Camelot, there are 45 chameleons; 13 are grey, 15 are brown, and 17 are
crimson. When two of different colours meet, they both change to the third
colour. Can all the chameleons eventually turn the same colour?

(Tournament of Towns)

49. An a× b rectangle can be tiled with n× 1 rectangular tiles. Show that a or
b is divisible by n.

50. Each of the numbers x1, x2, . . . , xn is equal to 1 or −1, such that

x1x2x3x4 + x2x3x4x5 + · · ·+ xnx1x2x3 = 0.

Show that n is divisible by 4.

51. Show that n4 + 3n2 + 1 is not a perfect square for any positive integer n.

(1982 International Mathematical Olympiad Proposal)

52. Let p be a prime such that p ≡ 3 (mod 4). Show that if x and y are positive
integers such that x2 + y2 ≡ 0 (mod p), then x ≡ y ≡ 0 (mod p).

53. Show that if p and q are positive integers such that

p

q
= 1 +

1

2
− 2

3
+

1

4
+

1

5
− 2

6
+

1

7
+

1

8
− 2

9
+ · · ·+ 1

478
+

1

479
− 2

480
,

then p is divisible by 641.

(1989 Descartes Waterloo Competition)

54. Let n be a positive integer. Show that 22n + 22n−1

+ 1 has at least n prime
factors.
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55. Show that if x and y are positive integers such that x2 + y2 − x is divisible
by 2xy, then x is a perfect square.

(1991 British Mathematical Olympiad)

56. Let Fn denote the nth Fibonacci number.
Show that Fn+p ≡ Fn + Fn−p (mod p) for all primes p.

57. Find all triples of positive integers (x, y, z) such that 8x + 15y = 17z.

(1991 International Mathematical Olympiad Correspondence Course)

58. Let m and n be positive integers, such that for every positive integer k,
gcd(11k− 1,m) = gcd(11k − 1, n). Prove that for some integer l, m = 11ln.

59. A sequence of primes (an) satisfies an = 2an−1 ± 1. Show that the sequence
must be finite.

60. Let a1, a2, . . . , an be a permutation of the numbers 1, 2, . . . , n. Can the n
numbers bi = a1 +a2 + · · ·+ai for i = 1, 2, . . . , n ever be a complete residue
system modulo n? (By this we mean can these numbers have all possible
remainders represented when divided by n).

(Mathematical Mayhem H192)

61. Show that there do not exist rationals x and y such that x2 + xy + y2 = 2.

62. Find all pairs of rational numbers (x, y) such that (x+ y
√

3)2 = 4 + 3
√

3.

63. Let n > 1 be an odd integer. Show that the equation

1

x
+

1

y
=

4

n

has solutions in positive integers x and y if and only if n has a prime factor
of the form 4k − 1.

12 Hints to Practice Problems

1. The given implies 332 ≡ 520 ≡ 755 (mod d). Use this to find d, and then r.

2. Work modulo 13.

3. Express the numbers algebraically. For example, abc = 100a+ 10b+ c.

4. Work modulo 3 and 11.

5. Work modulo 17.

6. Write down the sequences Sn for the first few n, say 10 of them, and list
which n satisfy the condition. Guess and prove your answer.

7. Work modulo 31.



54

8. Guess what the gcd is from the first few terms, and then prove your guess.

9. Work modulo 10. Play with congruence classes, and use the Pigeonhole
Principle.

10. Work modulo 9 and 11.

11. Find all solutions, or simply draw a graph.

12. Work modulo 8, 3, and 5.

13. Work modulo 2.

14. Work modulo 4 and 25.

15. Show that S is equal to the product of the geometric series

1

1
+

1

2
+

1

22
+ · · · , and

1

1
+

1

3
+

1

32
+ · · · .

16. Factor the equation, and see what solutions are possible.

17. Expand both equations, and get a relationship between a and b. The answer
is 2200.

18. Let a be the first term and d the common difference. Then the kth term is
a+ kd, 1 ≤ k ≤ n. We wish to solve a+ kd ≡ 0 (mod n) in k.

19. First, write out the congruences. Then follow Example 5.9.

20. Suppose that the product is odd. Then every factor of the product must be
odd. Take their sum modulo 2.

21. Add 4 to each side of each equation.

22. (a) Work modulo 16, or divide into the cases where n is even and n is odd.

(b) Use part (a).

23. Let n be such that the tens digit of n2 is 7. We can assume that n has
only two digits (since these are the only ones we are interested in). Let
n = 10a+ b. Then n2 = 100a2 + 20ab+ b2 ≡ 20ab+ b2 (mod 100). The tens
digit of n2 is then the last digit of 2ab, plus any carry-over of b2, which is
the tens digit of b2, so this carry-over must be odd. Find b.

24. Work modulo 8.

25. (a) If there exists such a prime p, then in particular it divides a1 and a2.
Show that this implies k ≡ 0 (mod p), which implies a1 ≡ 1 (mod p), a
contradiction.

(b) By your argument in part (a), no prime can divide both a1 and a2.
Reason similarly that no prime can divide both a1 and a2. Hence, if such
primes p and q exist, then letting p divide a1, q must divide a2, and p
must divide a3. Use the fact that p divides both a1 and a3 to arrive at a
contradiction.
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26. Express the number algebraically.
For example, 2882 = 2 · 103 + 8 · 102 + 8 · 10 + 2.

27. Suppose that n2 ≡ 99 (mod 100). Work with the units digit of n, and then
the tens digit.

28. Work modulo 4.

29. Estimate what the value of c must be, and then refine your estimate.
Draw a graph.

30. Use the Pigeonhole Principle.

31. Solve the congruence in modulo 4, 3, and 5 first, and then combine into
modulo 60.

32. By Wilson’s Theorem, p divides (p − 1)! + 1. Let q be a prime less than p.
Show that (p− 1)! ≡ 0 (mod q).

33. Let t = x− y, and substitute (for x or y).

34. You can remove the absolute value signs by showing that |x| ≡ x (mod 2)
for any integer x.

35. Check the values of a and b modulo 3 for small values of n, and find and
prove a pattern.

36. Find an explicit formula for the nth term.

37. Let pn+ 1 = x2. This implies that x2 ≡ 1 (mod p), which, further, implies
that x ≡ 1 or −1 (mod p). If x ≡ 1 (mod p), then let x = 1 + pk, so that
pn+ 1 = (1 + pk)2 = 1 + 2pk + p2k2 ⇒ n+ 1 = 1 + 2k + pk2. Massage this
expression to get a sum of p squares, and consider the case x ≡ −1 (mod p)
similarly.

38. Work modulo 8 and 5.

39. Let n3 = ababab1. Show that n ≡ 1 (mod 30). Find bounds on n.

40. As seen in Example 3.2, the units digit of 7a is governed by a modulo 4.

41. By Example 5.2, n5 ≡ n (mod 30) for all n.
Hence, n ≡ 133 + 110 + 84 + 27 ≡ 24 (mod 30). Find bounds on n.

42. Let g(x) = f(x) − 2. Then g(−3) = g(4) = 0, so g(x) = (x + 3)(x − 4)q(x)
for some polynomial q(x), also with integer coefficients. If f(a) = 5, then
g(5) = 3 = (a + 3)(a − 4)q(a). What can these factors on the right be,
numerically?

43. (b) Let M be the number N without the units digit 4. Then the relation
looks like M4 ·4 = 4M . This implies that the last digit of M is the last digit
of 4 · 4, which is 6. Then the last two digits of M are the last two digits of
64 · 4, which are 56. Continue this process to derive all digits of M . Use the
same process to find the answers to part (a).
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44. First, u3 = 1986 ≡ 0 (mod 1986). Next, consider the sequence of pairs
(un, un−1) (mod 1986). Show that by the Pigeonhole Principle, if some pair
of congruence classes appears, then it must eventually appear again.
Then consider the first repetition: the smallest p and q, such that p < q,
up ≡ uq (mod 1986), and up−1 ≡ uq−1 (mod 1986).

45. Suppose that pn = 5 for some n. Then p1p2 · · · pn−1 + 1 = 2a3b5c for some
integers a, b, and c.

46. The symbol
(
pa
pb

)
stands the coefficient of xpb in (1 + x)pa.

Also, (1 + x)pa ≡ (1 + xp)a (mod p).

47. Use induction. More explicitly, use the solution for k to construct a solution
for k + 1.

48. Let g and b be the number of grey and brown chameleons, respectively.
Consider what happens to g − b (mod 3) during any meeting.

49. You may have seen the problem about tiling a modified chessboard with
dominoes. The trick is to realize that every domino covers one white square
and one black square.

Therefore, for this problem, colour every square one of n colours, so that
every n×1 tile covers a square of each colour, and show that if neither a nor
b is divisible by n, then not all colours have the same number of squares.

50. Work modulo 2 to show that n is even, so n = 2k for some n. Then consider
the product of the terms to show that k is even.

51. Observe that n4 + 3n2 + 1 = (n2 + 1)2 + n2.

52. Use Example 5.4.

53. Replace each fraction of the form − 2
3k by 1−3

3k = 1
3k − 1

k . Simplify, and then
combine appropriately. Remember that 641 is a prime number.

54. Let f(n) = 22n + 22n−1

+ 1. Show that f(n− 1) divides f(n), and then use
induction.

55. Show that if p2n+1 divides x, then p2n+2 divides x.

56. Using the Fibonacci relation, show that

Fn+p = Fn+p−1 + Fn+p−2

= Fn+p−2 + 2Fn+p−3 + Fn+p−4

. . .

= Fn +

(
p

1

)
Fn−1 +

(
p

2

)
Fn−2 + · · ·+ Fn−p.

57. Follow selected problem 6.
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58. It suffices to show that if pe|m, where p is a prime not equal to 11, then pe|n.
Find a k such that 11k − 1 ≡ 0 (mod pe).

59. Show that if the plus sign holds for one n, then it holds for all n. Similarly
for the minus sign. Then find a formula for an.

60. Try small values of n. Rule out the case n odd. Some experimentation is
required.

61. Work modulo 3.

62. Try surd conjugation.

63. Rearrange the equation to get (4x− n)(4y − n) = n2, and work modulo 4.

13 Problems for Investigation

Here is a selection of interesting problems that you may explore on your own.

• For Pell’s equation x2 − dy2 = 1, we described everything except how to
find the lowest solution (a, b). There is a systematic way using continued
fractions. Find out how.

Also, what are the solutions to other Pellian equations, such as x2−3y2 = 2?
What about 3x2 − 2y2 = 1?

• Pascal’s Triangle is the triangular array formed by writing a 1, and then
in each new row, writing the sum of the two numbers above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...

The kth entry in the nth row is
(
n
k

)
, as in Chapter 5. Let us reduce all entries

modulo 2:

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

...
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You may notice a pattern already. What do you get if you extend this table,
say another 10 rows? 20? What happens if you replace 2 by other numbers?
(While you’re at it, you may wish to look up a fractal called a “Sierpiński
gasket”.)

• The number 142857 exhibits the following remarkable property:

1 · 142857 = 142857,

2 · 142857 = 285714,

3 · 142857 = 428571,

4 · 142857 = 571428,

5 · 142857 = 714285,

6 · 142857 = 857142.

Each of these multiples is a cyclic permutation of the original number. What
other numbers exhibit this property? (Hint: What is 7 · 142857?) Also, note
that 142 + 857 = 999 and 14 + 28 + 57 = 99.

• Some primes can be written as the sum of two perfect squares, such as
13 = 22 + 32 and 29 = 22 + 52. Which primes can be written as the sum of
two squares? Which numbers can be written as the sum of two squares?
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www.cms.math.ca/Publications/books

or contact: ou contacter :

CMS/SMC Publications
1785 Alta Vista Drive, Suite 105, Ottawa (Ontario) CANADA K1G 3Y6

Email: publications@cms.math.ca
Courriel : publications@smc.math.ca



Canadian Mathematical Society / Société mathématique du Canada
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