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Volume / Tome V

COMBINATORIAL EXPLORATIONS

Richard Hoshino

Dalhousie University

John Grant McLoughlin

University of New Brunswick



The ATOM series

The booklets in the series, A Taste of Mathematics, are published by
the Canadian Mathematical Society (CMS). They are designed as enrichment
materials for high school students with an interest in and aptitude for
mathematics. Some booklets in the series will also cover the materials useful
for mathematical competitions at national and international levels.

La collection ATOM
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1 Preface

Mathematical games, puzzles, and contest problems invite a playful spirit of
exploration. Quite often, these entertaining and challenging problems are drawn
from the fascinating mathematical realm of Combinatorics. This book is designed
to engage those who enjoy playing with mathematics.

Emphasis is placed upon the development of mathematical perspective. The
three chapters are each characterized by a single problem which is stated at the
outset of the chapter. An analysis of the problem including detailed comments
about the problem-solving process follows. You are encouraged to grasp the
mathematical concepts and processes underlying the problem prior to proceeding
further with the chapter at hand. The remainder of a chapter builds upon the
basic problem. Problem sets, extensions and novel twists offer means through
which you can delve deeper into the mathematics. These three chapters each
culminate with three important proposed investigations. The investigations are
more demanding in that they require concentrated attention on a problem that
may appear open-ended in its form. The value of the investigations will be
recognized by those who attempt at least one of the investigations in each chapter.
Doing mathematics entails making conjectures, encountering obstacles, revisiting
assumptions, and gaining a sense of accomplishment through insights (even when
the insight is that a particular direction is going nowhere!). The book is intended
to bringing this sense of doing mathematics to the forefront. The investigations
at the conclusions of these chapters are best suited to bring this sense into the
experience of aspiring mathematicians.

As mentioned, the three problems that form the bases for the chapters are
followed by detailed analyses of the solution processes. The problems also appear
at the end of this Preface, to allow you to attempt the problems before proceeding
to the detailed chapters. The order of the chapters is somewhat arbitrary for people
with a basic working knowledge of combinatorics. If this field of mathematics is
unfamiliar to you, then it is wise to proceed through the chapters in the order they
appear. An effort is made to introduce appropriate terminology and notation,
whenever appropriate. Therefore, a development of the topics is supported by a
chapter by chapter approach. The Introduction is specifically devoted to the
development of basic notation and terminology that is central to any discussion of
combinatorics. Language such as “factorial”, “n choose k”, combinations, and
permutations are fundamental to discussing this area of mathematics. Those
familiar with the terms are advised to skim the Introduction while warming
up with some simple problems. Others should review it more carefully, in addition
to subsequently using it as a reference.
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The authors welcome the opportunity to use combinatorics as the mathe-
matical topic through which a sense of “doing mathematics” can be achieved. We
feel this way for several reasons. The mathematics is accessible. A minimal amount
of complicated math is involved in this book. Rather the mathematics is rich in
that its simplicity lends itself to deep connections with basic ideas. Fundamental
mathematics comes to life in this arena.

Also, the practical dimension of communicating mathematics through speech
and writing pushes us to develop a language. No prior experience with this branch
of mathematics nor its language is assumed at the outset. Hence, notation and
terminology need to be learned through the experience. This is important since
advanced mathematical study demands such fluency. Here it is offered through an
avenue that promotes genuine understanding of the terminology.

The problems that ground the chapters are presented on the following page.
You may wish to begin here or with the Introduction. Enjoy the journey!

The Core Problems

1. There were 10 women at a party, and everyone shook hands with each other
person. How many handshakes took place?

2. Mrs. Rogers leaves her house to go to school. This is a map of Mrs. Rogers’
neighbourhood.

�

�

House

School

To get to school, Mrs. Rogers must walk up for three blocks, and walk right
for five blocks. She is not allowed to backtrack by moving down or left.

How many different routes are there from her house to her school?

3. Consider the following 8 by 8 checkerboard:

How many squares (of all sizes) appear on this checkerboard?
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2 Introduction

We begin by introducing six girls, Anna, Heather, Moira, Lydia, Shirley, and
Deirdre, and four boys, Andrew, Isaac, Sam, and Will. Collectively they shall
be referred to as the “Group of Ten”. A variety of contextual selections and
arrangements will be employed to illustrate some of the basic components of
combinatorics. Appropriate language and notation will be introduced along with
the examples. The intent is to provide a common basis from which more in-depth
development can take place in subsequent chapters.

Consider the following problem:
In how many distinct ways can the Group of Ten arrange them-

selves in a row of 10 seats at a theatre?
If you begin to list the arrangements you will find that the task is unreason-

able. You should be motivated to a look for pattern or reason in a methodical
manner, as shown:

Suppose that Anna is the first person to arrive. Anna could seat herself in
any of 10 seats. The next person would have 9 choices, since Anna’s seat is already
taken. Then the next person would have 8 choices since two seats have been filled,
and so on. Finally the tenth person would have only 1 choice, as all the other seats
have been taken. These choices need to be multiplied together to determine the
total number of seating arrangements, namely, 10×9×8×7×6×5×4×3×2×1.

Do you see why we have to multiply the numbers, and not add them? To
work with a simpler example, consider the situation where we wish to make a meal
with six choices of pasta and five choices of sauces. For each of the six choices of
pasta, we may select any of the five sauces. Therefore, there are 6 × 5 = 30 ways
of choosing a pasta dinner with a sauce, and not 6 + 5 = 11.

In this particular example with the Group of Ten, the ordering of the
people is important to consider. That is, Anna, Heather, Moira, Lydia, Andrew,
Will, Shirley, Isaac, Sam, Deirdre differs from Anna, Moira, Heather, Lydia,
Andrew, Will, Shirley, Isaac, Sam, Deirdre. Each of these arrangements is called
a permutation.

Suppose that there were 50 people to be arranged in a row of 50 seats. The
number of ways would be 50× 49× 48× · · · × 3× 2× 1. Such an expression seems
to be awkward and cumbersome. The use of an exclamation mark, !, allows us to
write such a product as 50!. The symbol “!” is known as factorial. In general,
n! equals (n)(n − 1)(n − 2) · · · (2)(1). Returning to the example, the number of
arrangements would be 10!, which is equal to 3628800.

Consider a problem that requires us to select a subset of the Group of Ten.
In how many ways can a committee of three people be selected

from the Group of Ten?
Again an exhaustive list could be developed but that would be an exhausting

task. At first glance, it may seem reasonable to think that 10×9×8 is the answer.
However, such an answer treats the following selections as being distinct:
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1) Heather, Moira, Andrew
2) Heather, Andrew, Moira
3) Moira, Andrew, Heather
4) Moira, Heather, Andrew
5) Andrew, Moira, Heather
6) Andrew, Heather, Moira

In fact, all of these selections would result in the same committee being
formed. Since Andrew, Moira and Heather can order themselves in 6 ways (observe
that 3! = 6), it is necessary to divide 10 × 9 × 8 by 6 to get the proper result.
When order does not matter, we are working with combinations.

Fortunately, there exists a convenient form for expressing such mathematical
results, as the one desired in this problem. Verbally one can state, “In how many
ways can 3 people be chosen from a group of 10 people?” The mathematical term
that describes this is “10 choose 3”. We write this as

(
10
3

)
. But what does this

mean mathematically?
We know that “10 choose 3” must equal 10×9×8 divided by 6, as discussed

above. The formula for calculating such a result is explained here:(
10
3

)
=

10!
3!(10 − 3)!

.

Mathematically, consider this as a quotient:

10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
(3 × 2 × 1) × (7 × 6 × 5 × 4 × 3 × 2 × 1)

It can be seen that cancellation of common terms gives us 10×9×8
3×2×1 , as expected.

Consider what would happen if we calculated
(
10
7

)
. Does it make sense that

(
10
7

)
must equal

(
10
3

)
? Yes. Selecting 3 of 10 people to sit on a committee is equivalent

to selecting 7 of 10 people to not sit on the committee.
In general, we express “n choose k” as(

n

k

)
=

n!
k!(n − k)!

.

As an interesting connection to Canada, we remark that the expression “n choose
k” was first coined by Richard Guy from the University of Calgary, sometime
during the 1950’s. Those unfamiliar with this notation should manually verify
some basic results such as

(
12
10

)
= 66,

(
80
79

)
= 80, and

(
12
5

)
= 792.

In summary, understanding the distinction between permutations and comb-
inations is critical to solving problems. Permutations are arrangements that
depend upon order, whereas combinations are arrangements that are independent
of order. (WARNING: Do not get confused by combination locks. They really
should be called permutation locks.)

The selection of a committee is typically an example of a combination.
However, if the roles of the members (such as president, treasurer, secretary, etc.)
are designated, the ordering element is introduced. Consider our Group of Ten
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again. Suppose that four of them are to form a committee. The committee could
be chosen in

(
10
4

)
ways.

Now suppose that the problem was modified slightly to read: In how many
ways can a president, a vice-president, a secretary and a treasurer be selected from
the Group of Ten?

Here,
(
10
4

)
would be insufficient. This would not allow for the assignment

of roles, as required. Rather it would account only for the selection of the four
committee members. That is, a combination would be in place but not an ordering
(or permutation). How many ways could the four committee members be assigned
to the roles? The answer is 4!. We can see this by noting that this problem is
equivalent to finding the number of assignments of 4 seats to 4 people in a theatre
row, where the first seat goes to the president, the second seat to the vice-president,
and so on.

This multi-step approach of selecting the members (a combination) and then
assigning them to roles (a permutation) is one way to handle the selection process.
The resulting number of possibilities is

(
10
4

)× 4!.
There is a more elegant way to solve the problem. Considering the four

roles in order, we would have 10 choices for president, 9 for vice-president, 8 for
secretary, and 7 for treasurer. Therefore, 10× 9× 8× 7 ways of assigning the roles
are possible. This latter approach treats the problem strictly as a permutation
though it allows for the larger number of potential candidates at each stage. How
do we reconcile that

(
10
4

) × 4! and 10 × 9 × 8 × 7 are equivalent? Simplifying, we
get:(

10
4

)
× 4! =

10!
4! · (10 − 4)!

× 4! =
10!

4! · 6!
× 4! =

10!
6!

= 10 × 9 × 8 × 7.

Frequently combinatorial problems lend themselves to seemingly incompat-
ible expressions that actually represent equivalent values despite being drawn from
different processes. The following problem involves the finishing order of a race.
Selecting the top members to form the list of winners is the same as the strict
selection of a combination. Once the positional placements are considered, the
analogy to the committee roles is evident.

Attempt to use two approaches to answer this problem: In how many ways
can the top three positions in a race be awarded among a group of 12 runners?
(Assume there are no ties.) The numerical answer of 1320 should be obtained
using either approach.

Returning to our Group of Ten, we shall draw attention to some subtleties
with respect to partitioning. The subsequent examples require us to break the
Group of Ten into subgroups.

In how many ways can a committee of three people be selected from the
Group of Ten if the committee must have two girls and one boy? Here it is
necessary to consider the six girls and four boys as separate groups. There are

(
6
2

)
ways of selecting two of the six girls. There are

(
4
1

)
ways of selecting one of the

four boys. Thus, there are
(
6
2

)× (41) possible committees that can be formed.
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In how many ways can a committee of three people be selected from the
Group of Ten if Lydia or Anna (but not both of them) is to be on the committee?
We would choose either Lydia or Anna, which can be done in

(
2
1

)
ways, by

definition. Among the other eight people, we must select two of them. This
can be done in

(
8
2

)
ways. Thus, there are

(
2
1

)× (82) possible committees that can
be formed.

We conclude the Introduction by giving you two more problems:

1. In how many ways can a committee of 4 people be chosen from the Group
of Ten such that there is at least one girl on the committee?

2. In how many ways could a committee of 5 people be chosen from the Group
of Ten such that the committee includes two boys and three girls, including
both Heather and Moira?

The answers to the two problems are 209 and 24, respectively.
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3 Handshakes

3.1 The Handshake Problem

There were ten women at a party, and everyone shook hands with
everyone else. How many handshakes took place?

Before we tackle the actual problem, consider a simpler question. What
happens when we change the number ten to something smaller? Look at a few
small cases, and attempt to find a pattern.

If we have one person at the party, no handshakes take place. If two people
attend the party, then exactly one handshake occurs. Suppose three people attend
the party (say Audrey, Brittany, and Celine). Then exactly three handshakes take
place (Audrey with Brittany, Brittany with Celine, and Audrey with Celine). We
find that six handshakes take place with four people, and ten handshakes take
place with five people. Let us see what we have so far:

Number of People Number of Handshakes
1 0
2 1
3 3
4 6
5 10

Look at the numbers in the second column. Can we see any pattern in the
sequence 0, 1, 3, 6, 10? Yes, an elegant pattern appears when we look at the
differences between consecutive terms of the sequence.

0 ︸︷︷︸
1

1 ︸︷︷︸
2

3 ︸︷︷︸
3

6 ︸︷︷︸
4

10

Assuming that this pattern continues, the first ten terms of the sequence
should be:

0 ︸︷︷︸
1

1 ︸︷︷︸
2

3 ︸︷︷︸
3

6 ︸︷︷︸
4

10 ︸︷︷︸
5

15 ︸︷︷︸
6

21 ︸︷︷︸
7

28 ︸︷︷︸
8

36 ︸︷︷︸
9

45

Since there are 10 people in our problem, we are interested in the tenth
number of this sequence. Hence, the answer to our problem appears to
be 45.

Note that this is not a proof. Based on the pattern, we have a strong feeling
that the answer is 45, but we need to argue this more rigorously. To see that 45
indeed is the answer, we can employ the following Sledgehammer Approach:
list all 45 handshakes that take place!

We use the colloquial term Sledgehammer Approach to denote any type
of strategy where a brute-force tactic is used. Quite often, the Sledgehammer
Approach is a very poor problem-solving strategy, since it is so time-
consuming and devoid of elegance. Nevertheless, it certainly offers one way to
get the right answer.
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Solution A:
Suppose the names of our ten people are Audrey, Brittany, Celine, Donna,

Ellie, Flavie, Gabriella, Harriet, Iris, and Jo. Then here is the list of all 45
handshakes, using the initials as representations of the people. We can readily
verify that we have not missed any cases.

(A,B) (A,C) (A,D) (A,E) (A,F) (A,G) (A,H) (A,I) (A,J)
(B,C) (B,D) (B,E) (B,F) (B,G) (B,H) (B,I) (B,J) (C,D)
(C,E) (C,F) (C,G) (C,H) (C,I) (C,J) (D,E) (D,F) (D,G)
(D,H) (D,I) (D,J) (E,F) (E,G) (E,H) (E,I) (E,J) (F,G)
(F,H) (F,I) (F,J) (G,H) (G,I) (G,J) (H,I) (H,J) (I,J)

Therefore, we have a total of 45 handshakes.

However, this solution has a major deficiency. What happens if we replace
the number 10 with 1000? We certainly would not want to list out all the cases
to answer the problem. Surely, there must be a more elegant way to solve this
problem.

Indeed, here we provide several “better” solutions.
Solution B:
Assume that each woman will shake hands with each guest as soon as she

arrives at the party. Suppose Audrey arrives first. She has no one to shake
hands with. When Brittany arrives, she will shake hands with Audrey. Thus,
one handshake takes place. When Celine arrives, she will shake hands with both
Audrey and Brittany. This adds another two handshakes to our total. When
Donna arrives, she will shake hands with Audrey, Brittany, and Celine, which
adds three to our total. We continue this process, and eventually Jo will arrive
at the party. She will shake hands with the other nine people, who are already
present. Note that each pair of people will shake hands as soon as both are present.
Thus, this process guarantees that everyone will shake hands with everyone else.

By looking at the problem this way, we see that the total number of hand-
shakes is 0 + 1 + 2 + 3 + · · · + 8 + 9, which adds up to 45.

Therefore, there are 45 handshakes.
Solution C:
Each of the ten people shakes hands with everyone else. Thus, each person

performs exactly nine handshakes. Thus, we have ten people, each shaking nine
hands, and the total number of handshakes is 9 × 10 = 90. Right?

No! Each handshake is counted twice (that is, Audrey shaking hands with
Brittany is the same as Brittany shaking hands with Audrey), so that 90 is twice
the number of handshakes that took place. In other words, the correct answer to
the problem is 9×10

2 = 45 handshakes.
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Solution D:
In the Introduction, we introduced the notation

(
n
k

)
. Here is the simplest

solution.
The number of handshakes is equivalent to the number of two-person com-

mittees that can be formed from a group of 10 people (do you see why this is
true?). Hence, the answer to the problem is

(
10
2

)
= 10!

2!·8! = 10×9
2×1 = 45.

Compare Solutions B and C. In two completely separate ways, we arrived
at the same final answer. We notice that

1 + 2 + 3 + · · · + 9 =
9 × 10

2
.

Can we find a general formula? Replacing 9 by n, it appears that the
following result is true:

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Here is a quick proof that this identity is correct; consider a party with (n+1)
people. By the process described in Solution B, the total number of handshakes
must be 1 + 2 + 3 + · · · + n. By the process described in Solution C, the total
number of handshakes must be n(n+1)

2 . Since these two expressions are equal, we
have proved the desired identity.

Thus, we have used a “handshake” argument to derive a formula for the sum
of the first n positive integers.

This formula is commonly introduced as an application of Mathematical
Induction, which relies heavily on algebraic manipulation. The combinatorial
interpretation of the result is more aesthetically pleasing. Mathematical Induction
(see Glossary) is an excellent problem-solving tool, but the combinatorial “hand-
shake” proof is easier to visualize and appreciate.

Here is yet another way to see that 1 + 2 + 3 + · · · + 9 = 9×10
2 .

We will call this the “geometric” solution.
Solution E:
Consider the following diagram, composed of 9 rows of 10 unit squares. We

put a cross inside some of the squares, as shown:
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Let S = 1 + 2 + 3 + · · · + 9. Let us show that S = 9×10
2 .
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Count the number of uncrossed squares: we have one in the first row, two
in the second row, three in the third row, and so on. Therefore, the number of
uncrossed squares is 1 + 2 + 3 + · · · + 9 = S. Similarly, the number of crossed
squares is S, because we have nine crossed squares in the first row, eight in the
second row, all the way down to one in the last row.

Thus, we have an equal number of crossed squares and uncrossed squares.
In total, there are S + S = 2S unit squares in the diagram. Since this diagram
consists of 9 × 10 unit squares, we conclude that

1 + 2 + 3 + · · · + 9 = S =
9 × 10

2
.

This geometric argument may remind you of the approach made famous by
the German mathematician Karl Gauss (1777-1855). When Gauss was a young
child, his teacher asked the class to add up all the numbers from 1 to 100. While
Gauss’ classmates struggled for several minutes, it only took Gauss several seconds
to determine the correct answer. Here is the essence of his brilliant solution.

Let S = 1 + 2 + 3 + · · · + 98 + 99 + 100.

Then S = 100+99+98+ · · ·+3+2+1, by writing the terms in the reverse
order.

Adding the two rows term by term, we have

S + S = (1 + 100) + (2 + 99) + · · · + (99 + 2) + (100 + 1)
2S = 101 + 101 + 101 + · · · + 101 + 101 + 101︸ ︷︷ ︸

100 terms
2S = 100 × 101

S =
(100)(101)

2
.

Using this symmetric “pairing” argument and replacing 100 by n, we have another
proof that 1+2+3+ · · ·+n = n(n+1)

2 . Do you see how this is identical to Solution
E?

Let us revisit the original problem with the ten people.

Draw a (convex) polygon with 10 points, and construct line segments joining
each pair of points.
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We have just drawn a graph. The points are known as vertices, and the
line segments are known as edges.

We can model our Handshake problem by drawing a graph with 10 vertices,
and connecting each pair of vertices. The problem is now equivalent to counting
the number of edges in our graph. Each of the 10 vertices is incident with 9
edges. Also, every edge is counted twice. Thus, the total number of edges must
be 9×10

2 = 45. Recall that we used an identical argument earlier, in Solution C.
By converting a handshake problem into a graph (that is, a picture), we will

be able to solve some very difficult problems, in simple and elegant ways. For
example, consider the following problem.

3.2 Six People at the Party

Suppose there are six people at a party, some of whom shake hands
with each other. Show that among the six, we can find either three
people all of whom shook hands with each other, or three people, none
of whom shook hands with each other.

At first glance, this problem looks impossible. Surely the Sledgehammer
Approach fails us here, for there are too many cases to consider. However, there
is an effective way to proceed.

Consider a graph with 6 vertices, representing the six people at the party.
Draw edges joining each pair of vertices. Colour an edge red if those two people
shook hands, and colour an edge blue if those two people did not shake hands.
There will be 5×6

2 = 15 edges in total.
If there are three people, all of whom shook hands with each other, then

those three vertices in our graph will form a triangle with all red edges. If there
are three people, none of whom shook hands with each other, then those three
vertices in our graph will form a triangle with all blue edges.

This way, we have translated the problem into a form that we can visualize:
Construct a graph with 6 vertices, and draw an edge joining each

pair of vertices. Colour each of these 15 edges either red or blue.
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Prove that no matter how the edges are coloured, there must exist
a monochromatic triangle; that is, a triangle where all three sides have
the same colour.

Let us solve this equivalent problem. Select an arbitrary vertex of the graph,
and label it P . There is an edge from P to each of the other five vertices. Since
we are colouring each of our five edges in one of two colours, at least three of
our edges must be of the same colour. This is an application of the Pigeonhole
Principle (see Glossary).

Consider three of these edges that are of the same colour, call them PA, PB,
and PC. It does not really matter what this common colour is; therefore, suppose
that it is red. (The argument is identical if we suppose this common colour is blue,
except the colours become switched in our proof). We will prove that there is at
least one monochromatic triangle in our graph.
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..................................................................................................................................................................................................................................
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B

P

CA � �

�

�

If AB is coloured red, then �PAB is monochromatic (it is an all-red triangle).
Similarly, if AC is coloured red, then �PAC is monochromatic, and if BC is
coloured red, then �PBC is monochromatic. The only case left to consider is
when AB, AC, and BC are all coloured blue. But then, �ABC is monochromatic
(it is an all-blue triangle).

Therefore, we have proved that if there are six people at a party, then we
can find three people, all of whom shook hands with each another, or three people,
none of whom shook hands with each other.

If we suppose that a handshake always occurs between two acquaint-
ances (and does not occur between two strangers), then our result is equivalent to
the following:

In any group of six people, there must be three mutual acquaintances
or three mutual strangers.

This problem has spawned an entire field of mathematics, known as Ramsey
Theory. Ramsey Theory is a very beautiful branch of research in combinatorics
that has made many important connections to other areas of mathematics, such as
algebra, geometry, and probability theory. This book contains a brief introduction
to Ramsey Theory in our Investigation section at the end of this chapter.

We conclude the discussion of this chapter by presenting one of our favourite
problems, which also involves handshakes.
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3.3 Mr. and Mrs. Smith

Mr. and Mrs. Smith were at a party with three other married couples.
Since some of the guests were not acquainted with one another, various
handshakes took place. No one shook hands with his or her spouse, and
of course, no one shook their own hand! After all of the introductions
had been made, Mrs. Smith asked the other seven people how many
hands each shook. Surprisingly, they all gave different answers. How
many hands did Mr. Smith shake?

This problem is fascinating because it does not appear solvable. It is difficult
to imagine that there is enough information here. However, we have all the
information we need! Before reading any further, stop and attempt to solve this
problem on your own.

As we did in the previous problem, let us model this problem graphically.
Draw a graph with 8 vertices, and label the vertices A, B, C, D, E, F , G, and H .
Suppose that A is married to B, C is married to D, E is married to F , and G is
married to H .

Again, each vertex represents a person at the party. In the previous problem,
we connected each pair of vertices and coloured the edge either red or blue. In
this problem, we will do something different. Instead of colouring edges, we will
do the following: only join two vertices if those two people shook hands.

Since no one shakes their own hand, or the hand of their spouse, a person
can shake at most six hands. Thus, every person at the party shook at least 0
hands and at most 6 hands. Therefore, when Mrs. Smith asks the other seven
people how many hands they shook, there can be at most seven different answers.
Thus, if no two people shook the same number of hands, that must imply that
someone shook 0 hands, someone shook 1 hand, someone shook 2 hands, someone
shook 3 hands, someone shook 4 hands, someone shook 5 hands, and someone
shook 6 hands.

Consider the person who shook 6 hands. Let us assume this person is A.
Thus, A shook hands with everyone at the party except for his (or her) spouse
B. Represent this by drawing an edge from A to each of the other vertices in
the graph, except for B. Thus, every person other than B has shaken at least
one hand. Since someone at the party shook 0 hands, this implies that B must
have been the person who shook 0 hands. This information is represented in the
diagram below. In this diagram, the rectangular box around A and B signifies
that this couple has finished performing all of their handshakes.
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Now consider the person who shook 5 hands. Assume this person is C. Then
C shook hands with everyone except D (her spouse) and B (since B shook hands
with no one). Thus, draw an edge from C to each of E, F , G, and H . This
shows that everyone (other than B and D) shook at least two hands. Therefore,
it follows that D must have been the person who shook exactly 1 hand. This is
illustrated below:
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Now consider the person who shook 4 hands. Assume this person is E. We
know that E shook hands with A and C, but not with B or D. Also, E does not
shake hands with F (his spouse). Thus, E must have shaken hands with both G
and H , because he shook four hands in total. Draw an edge from E to each of G
and H . Now we see that F must be the person who shook 2 hands, as both G and
H have shaken at least three hands. This is illustrated below:
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Since G and H are married, they do not shake hands. Thus, both G and H
shook three hands. We have now indicated all the handshakes that took place at
this party.
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Notice that each couple has shaken exactly six hands in total – that is not
a coincidence (can you explain why?)

Now we need to determine which person represents Mr. Smith. If Mrs. Smith
is one of the first six people (A to F ), when she asked her question, two of the
individuals would have replied that they shook exactly three hands. That is a
contradiction because all seven replies were different. Therefore, Mrs. Smith must
be either G or H .

Thus, Mrs. Smith shook three hands. Since Mr. Smith is her husband, we
conclude that Mr. Smith also shook three hands.

We now present some problems that build upon the ideas in this chapter.

3.4 Problem Set

1. Suppose that twenty people attended a party, and everyone shook hands
with exactly three guests. How many handshakes took place?

2. Suppose that five married couples attended a party, and everyone shook
hands with everyone else other than their own spouse. How many handshakes
took place?

3. Mr. and Mrs. Smith were at a party with ten other married couples. Various
handshakes took place. No one shook hands with their spouse, and of course,
no one shook their own hand! After all the introductions had been made,
Mrs. Smith asked the other people how many hands they shook. Surprisingly,
they all gave a different answer. How many hands did Mr. Smith shake?

4. At a party attended by n people, various handshakes took place. Just for
fun, each person shouted out the number of hands they shook. If all of
these numbers are added together, explain why this total cannot be an odd
number.

5. At a party attended by n people, various handshakes took place. Just for
fun, each person shouted out the number of hands they shook. Explain why
there must have been at least two people who shouted out the same number.
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6. Here is another solution to the Handshake problem posed at the beginning of
the chapter. Take a 10 by 10 grid, and cross out all of the diagonal squares,
as illustrated:
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The number of unit squares remaining is 102− 10 = 90. Using this diagram,
explain why the total number of handshakes is half of this number; that is,
show that the number of handshakes is 10×10−10

2 = 45.

7. Using a geometric approach, prove that 1 + 3 + 5 + 7 + · · · + (2n − 1) = n2,
for all positive integers n.

8. A small banquet took place in Moncton. At this banquet, all but one person
arrived on time for the reception. During the reception, each person shook
hands with everyone else. However, Karen strolled in twenty minutes late,
so that she was only able to shake hands with some of the other guests. If
there were exactly 73 handshakes in total, determine the number of hands
Karen shook.

9. A graph is said to be connected if we can find a path joining any pair of
vertices. For example, the graph on the left is connected; the graph on the
right is not.
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Let G be a graph with n vertices.

(a) Show that if G has less than n − 1 edges, then G is not connected.

(b) How many edges must G have in order to guarantee that it is connected?
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10. Seventeen people are at a party. It turns out that for any two people present,
exactly one of the following statements is true: “They have not met”, “They
like each other”, or “They dislike each other”. Prove that there must be three
people, all of whom are either mutual strangers, mutual friends, or mutual
enemies. Is this necessarily true if the party had only sixteen people?

3.5 Investigation 1: Bouts of Handshakes

There are n people in a room, and everyone shakes hands with everyone else. How
long does this process take?

Let us phrase our question a bit more specifically. Suppose that our hand-
shaking is organized into “bouts”, and each person can only shake hands once
every bout. Then the problem becomes: determine the least number of bouts
required for everybody to shake hands with everybody else. Furthermore, what
would an optimal schedule look like? For example, with 5 people (named A, B,
C, D, and E), here is a possible schedule with 5 bouts.

Bout 1: (A,B), (D,E)
Bout 2: (A,C), (B,D)
Bout 3: (A,D), (C,E)
Bout 4: (A,E), (B,C)
Bout 5: (B,E), (C,D)

(Can you show that five bouts are the best we can do?)
Let T (n) denote the minimum number of bouts required for n people.

1. Work out schedules for small numbers. Show that T (2) = 1, T (3) = 3,
T (4) = 3, and T (5) = 5.

2. Determine the values of T (n) for n = 6, 7, 8, 9, 10.

3. Find a general formula for T (n). Can you prove it? (Hint: consider the odd
and even cases separately).

For more information on this problem, we refer you to Problems for Senior High
School Math: In Process, by Peter Taylor.

3.6 Investigation 2: Tournaments

Consider a curling bonspiel with 6 teams: Nova Scotia (NS), Quebec (QU),
Manitoba (MB), Newfoundland & Labrador (NL), Saskatchewan (SK) and Ontario
(ON). Each team plays each other team exactly once in this round-robin event.
The winner of each game is awarded 1 point, whereas the loser is awarded 0 points.
Curling matches do not end in ties.

We will draw a graph indicating the results of each game in the tournament:



18

�

�

�

�

�� .............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
....................

.....................
....................

.....................
....................

.....................
.....................

.....................
.....................

.....................
....................

.....................
.....................

.....................
....................

.....................
.....................

.....................
.....................

.........................................................................................................................................................................................................................................................................................................................................................................................
.....................

.....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

.....................
.....................

....................
.....................


.....................

.....................
.....................

....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

....................
.........................................................................................................................................................................................................................................................................................................................................................................................................
....................

.....................
....................

.....................
....................

.....................
.....................

.....................
.....................

.....................
....................

.....................
.....................

.....................
.....................

.....................
....................

.....................
..

........................................................................................................................................................................................................................................................................................................................................................................................................... ..........
...........
..........
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
...

NLSK

MBON

NS QU

..............................................
..............................................

...................................
.........

............................................

.................................
..........
...

.............................................. .............................................. .................................
..........
...

............................................................................................

............................................

.............
...............................

..............................................

..............................................
............................................

For example, the arrow from Ontario (ON) to Manitoba (MB) means that
Ontario lost to Manitoba. From the graph, we can determine the result of each
game. Each team’s score can be found by counting the number of arrows that
point towards that team’s vertex. The number of points for each team is indicated
in the table:

Team Name Score
NS 5
QU 3
MB 3
NL 2
SK 2
ON 0

Thus, the score sequence for this tournament is (0, 2, 2, 3, 3, 5). In a score
sequence, we list the numbers in increasing order. Note that in any score sequence
with six teams, the total number of points must be 15, because exactly 15 games
must be played.

What score sequences are possible with 6 teams? For example, can you
prove that a (0, 1, 2, 3, 4, 5) score sequence is possible, but a (0, 1, 1, 4, 4, 5) score
sequence is impossible? In general, how can we show that a given score sequence
is impossible?

Investigate this idea further. Find all impossible score sequences with 4
teams, 5 teams, and 6 teams. Do you notice any interesting patterns? What if we
have 10 teams? Try to determine all possible score sequences.

Attempt to find and prove a general theorem for the possible score sequences
in a tournament with n teams. This is a very difficult problem.

3.7 Investigation 3: Ramsey Theory

This is a guided investigation that will introduce the fundamentals of Ramsey
Theory, a branch of combinatorial mathematics studied by researchers today.

Consider the following problem:
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Determine the smallest positive integer n for which the following
statement is true: if n people attend a party, then there must be three
mutual acquaintances, or three mutual strangers.

Earlier in this chapter, we showed that if 6 people attend a party, then there
must be three mutual acquaintances or three mutual strangers. Is 6 the smallest
integer for which this statement is true?

To show that n = 6 indeed is the smallest possible answer, let us prove that
the statement fails for n = 5. Consider the following graph on five vertices:
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A solid edge connects two people who are acquaintances, and a dotted edge
connects two people who are strangers.

We see that in this situation, there do not exist three mutual acquaintances
(that is, a solid triangle joining three of the original vertices). Similarly, there do
not exist three mutual strangers (that is, a dotted triangle joining three of the
original vertices).

Since the statement fails for n = 5, it must fail for any n < 5. We can
see this by removing any number of vertices from the above counterexample, to
produce a graph with less than 5 vertices, so that it has no solid or dotted triangle.
(In general, if the statement fails for n = k, then it must fail for all n < k).

This proves that n = 6 is the answer to our problem.
A more formal explanation is offered here. We define R(x, y) to be the

smallest integer n for which the following statement is true: if n people attend a
party, then there must either be a group of x mutual acquaintances, or a group of
y mutual strangers. Thus, in the above example, R(3, 3) = 6. By symmetry, we
have R(x, y) = R(y, x) for all x and y.

In 1930, Frank Ramsey showed that the number R(x, y) must exist for all x
and y. Even if x and y are one million, Ramsey’s Theorem tells us that you can
find n large enough so that in any group of n people, you can find a group of one
million mutual strangers, or a group of one million mutual acquaintances.

Stated in its most general form, Ramsey Theory states that within any
sufficiently large system, some regularity must always exist. In other words,
“complete disorder is impossible”. Ramsey Theory is the study of regularity in
complex random structures. This branch of mathematics has laid the groundwork
for many important areas of current combinatorial research, which have many
applications to different areas of pure and applied mathematics.

In this investigation, we shall explore Ramsey numbers.
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1. We will find the value of R(3, 4); that is, the smallest number of people that
we need to guarantee the existence of a group of three mutual acquaintances
or four mutual strangers. First we prove that R(3, 4) ≤ 10. Construct
a graph with 10 vertices, and connect each pair of vertices with an edge.
Colour each of these

(
10
2

)
= 45 edges red or blue, where a red edge joins two

acquaintances, and a blue edge joins two strangers. We must prove that no
matter how the edges are coloured, we must have three vertices that are all
connected by red edges (a red triangle), or four vertices that are all connected
by blue edges.

Pick a vertex P . We have 9 edges joined to P . Explain why we must have
one of the following two cases:

(a) P is joined to at least four red edges.

(b) P is joined to at least six blue edges.

In each of these two cases, prove that no matter how the rest of the edges are
coloured, we must have three vertices that are all connected by red edges, or
four vertices that are all connected by blue edges. (Hint: for case (b), you
will want to use the fact that R(3, 3) = 6). This proves that R(3, 4) ≤ 10.

2. Now we will go a step further and prove that R(3, 4) ≤ 9. Consider what
happens when we have a party with 9 people. We shall prove that if we have
9 people at a party, we must have three mutual acquaintances or four mutual
strangers. Suppose that this is not the case. We will derive a contradiction.

Consider some vertex P , which is joined to eight other edges. From the
previous question, we have shown that if P is joined to at least four red
edges or at least six blue edges, then we are done (that is, we have either
three mutual acquaintances or four mutual strangers). Therefore, that only
leaves the case in which P is joined to three red edges and five blue edges.

Explain why we may assume that all the vertices are joined to exactly three
red edges and five blue edges. Now derive a contradiction by showing that
we cannot draw a graph with 9 vertices, where exactly three edges from each
vertex are coloured red. (Hint: see Question 4 from the Problem Set in
this chapter). Use this to conclude that R(3, 4) ≤ 9.

3. Arrange a party with 8 people so that we do not have three mutual acquaint-
ances, or four mutual strangers. This will prove that n = 9 is the smallest
integer such that in any group of n people, we must have either three mutual
acquaintances or four mutual strangers. Thus, we conclude that R(3, 4) = 9.

4. Prove that for any integers s, t ≥ 2,

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Very little is known about actual Ramsey numbers. So far, it is known that
R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18, R(3, 7) = 23, R(3, 8) = 28,
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R(3, 9) = 36, R(4, 4) = 18, and R(4, 5) = 25. No other Ramsey numbers are
known, and most of the known ones were found by computer within the past ten
years. The best result for R(5, 5) is that it is somewhere between 43 and 49, but
no one has been able to do any better than that!
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4 Routes

4.1 The Route Problem

Mrs. Rogers leaves her house to go to school. This is a map of Mrs.
Rogers’ neighbourhood.

�

�

House

School

To get to school, Mrs. Rogers must walk up for three blocks, and
walk right for five blocks. She is not allowed to backtrack by moving
down or left.

How many different routes are there from her house to her school?
We can use the Sledgehammer Approach to manually count all the routes,

but that will be a lengthy and time-consuming task. Certainly, there must be a
better way to tackle this problem! Indeed there is a better way.

Solution A:
Before we answer this question, let us look at the problem for a grid of

smaller size, and see if we can discover some patterns.
Suppose the diagram is as follows:

�

�

House

School

To make our notation easier, represent each point with coordinates. Therefore,
let the house be located at (0, 0) and the school at (2, 3).

We want to find out how many routes there are from (0, 0) to (2, 3), if
Mrs. Rogers must walk up or right on her way to school.

There is clearly only one way to get from (0, 0) to (1, 0): move right one block.
Similarly, there is only one way to get from (0, 0) to (0, 1). This information is
represented in our diagram by writing down the number of routes from Mrs. Rogers’
house to each of those points.



23

�

�

1

1

This notation indicates that there is one route to (1, 0), and one route to
(0, 1).

Investigate further. There are two ways to get to (1, 1), as Mrs. Rogers can
walk up then right, or walk right then up. We quickly count the number of routes
from the start to all of the other points, and we arrive at the following:

�

�

1 1

1

11

3

6

2

3

4

To answer the question, we must figure out how many routes there are from
(0, 0) to (2, 3). But instead of counting the routes manually, let us look for a
pattern.

First note that there is only one way to get to each point directly north or
directly east of her starting point.

Notice that all other marked numbers have the property that they represent
sums of two numbers: the number directly below it, and the number directly to its
left. For example, the number 4 appears as the entry at point (1, 3). Notice that
the entry at point (0, 3) is 1 and the entry at point (1, 2) is 3. Hence, 1 + 3 = 4.

Using this pattern, it appears that the entry at point (2, 3) should be 4+6 =
10. Indeed if you were to manually count the routes, you will see that there are
ten ways to walk from (0, 0) to (2, 3).

But why does this work? We can justify this as follows. For any route from
the house to the school, the penultimate point (that is, the second last point) in
the path must be either (2, 2) or (1, 3). In other words, if Mrs. Rogers is to get to
(2, 3), she must either walk up from (2, 2) or walk right from (1, 3). Since there
are 6 ways to get to (2, 2) and 4 ways to get to (1, 3), it follows that there are
6 + 4 = 10 different ways to get to (2, 3), as she can take any of the six routes to
(2, 2) and move up to get to school, or take any of the four routes to (1, 3) and
move right to get to school.
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Therefore, we conclude that there are ten routes from (0, 0) to (2, 3).
Revisiting the original question in which the school is located at the point

(5, 3), we can use the same technique as before, by counting the number of routes
to each of the points in the neighbourhood. Note that Mrs. Rogers can only get to
each of the points (0, 1), (0, 2), and (0, 3) in exactly one way; that is, by moving
straight up until she reaches that point. Similarly, Mrs. Rogers has only one route
to each of the points on the x–axis, namely (1, 0), (2, 0), (3, 0), (4, 0), and (5, 0).

We can determine the missing numbers by following the pattern that we
discovered earlier. That is, each entry is the sum of two entries: the entry directly
below, and the entry directly to its left. The completed table is below.

�

1 1 1 1 1

1

1

1

6

21

56

2

3

4

3

6

10

4

10

20

5

15

35

Therefore, we conclude that there are 56 routes from Mrs. Rogers’ house to
her school.

This solution was relatively straightforward, but we will have some major
difficulties if we employ such a technique for determining the number of routes
from (0, 0) to (50, 100). Here is a more elegant solution to the problem:

Solution B:
Since Mrs. Rogers ends at (5, 3), she must make a total of eight steps. In

any path, she makes exactly five Right steps and three Up steps, and she may
proceed in any order. Specifically, she may choose any three of her eight steps to
be Up steps, and then the rest of her steps must be Right steps. For example, if
she moves Up on her second, fifth, and seventh steps, then her route will be Right,
Up, Right, Right, Up, Right, Up, Right. This route is indicated in the diagram
below:

�

�

House

School
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We recognize this “ordering” problem as one that uses combinations. There
are

(
8
3

)
ways that Mrs. Rogers can select three of her eight steps to be Up steps.

Each such selection corresponds to a unique route that Mrs. Rogers can take from
her house to school. Also, every such route is counted exactly once by this process.
Thus, there are

(
8
3

)
= 56 different routes that Mrs. Rogers can take.
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In general, if Mrs. Rogers walks from (0, 0) to (p, q), then she must make a
total of p Right steps and q Up steps, for a total of (p + q) steps. She can choose
any p of the (p + q) steps to be Right steps, and then the rest must be Up steps.
Each such selection corresponds to a route. Thus, the total number of routes is(
p+q

p

)
. Can you argue why the answer is also equal to

(
p+q

q

)
?

4.2 Pascal’s Triangle and Pascal’s Identity

Carefully examine the numbers on our grid. If you are familiar with Pascal’s
Triangle, you may have noticed that the numbers appearing in our grid also
appear in Pascal’s Triangle.

Pascal’s Triangle is defined as follows:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
...

This triangle is named after the French mathematician Blaise Pascal
(1623-1662), who conceived of it at the age of thirteen. However, several Chinese
mathematicians discovered some properties of this triangle in the early 14th century,
long before Pascal was born!

To generate a row of Pascal’s Triangle, look at the row immediately above
it. Each element of the triangle is the sum of the two elements directly above it,
which is quite similar to how the entries were created in Mrs. Rogers’ grid.

By convention, the “first” row of the triangle is 1, 1, the second row is 1,
2, 1, the third row is 1, 3, 3, 1, and so on. The 1 at the very top of the triangle
is known as Row 0. This may appear awkward, but you will see its value in a
moment.

In the Introduction, we introduced the notation
(
n
k

)
. This is known as a

binomial coefficient, for reasons we explain at the end of the chapter.

Before proceeding any further, calculate each of the binomial coefficients of
the following table on the next page: (note: by convention,

(
0
0

)
= 1 and 0! = 1).
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(
0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(

5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
...

Did you notice that this table corresponds exactly with Pascal’s Triangle?
But does this pattern continue indefinitely? It turns out it does. In other words,
if we list the sequence (

n

0

)
,
(

n

1

)
,
(

n

2

)
, . . .,

(
n

n

)
,

we will get precisely the nth row of Pascal’s Triangle. (That was why we labeled
the rows beginning at Row 0).

Recall that each element of Pascal’s Triangle is constructed by adding the
two numbers directly above it. Thus, if our table of binomial coefficients is
equivalent to Pascal’s Triangle, then this table must have the property that each
element is the sum of the two numbers directly above it. For example, we must
have

(
5
3

)
=
(
4
2

)
+
(
4
3

)
. And if this property holds, then this will prove that the two

tables are equivalent, because the “end” terms match up (that is,
(
n
0

)
=
(

n
n

)
= 1,

for all n ≥ 1).
Pick n and k arbitrarily, where 0 < k < n. If we look at the entry

(
n
k

)
, the

two entries directly above it are
(
n−1

k

)
and

(
n−1
k−1

)
.

It suffices to prove that for all n, k with 0 < k < n, we have(
n

k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)
.

This is known as Pascal’s Identity. Here we provide three proofs of
Pascal’s Identity, in increasing level of elegance.

Solution A:
Our first solution is strictly algebraic.
By definition, we have (

n

k

)
=

n!
k!(n − k)!

.

Substituting, we have
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(
n − 1
k − 1

)
+
(

n − 1
k

)
=

(n − 1)!
(k − 1)!(n − k)!

+
(n − 1)!

k!(n − k − 1)!

=
(n − 1)!

(k − 1)!(n − k) · (n − k − 1)!

+
(n − 1)!

k · (k − 1)!(n − k − 1)!

=
(n − 1)!

(k − 1)!(n − k − 1)!

(
1

n − k
+

1
k

)

=
(n − 1)!

(k − 1)!(n − k − 1)!

(
k + (n − k)
k(n − k)

)

=
(n − 1)!

(k − 1)!(n − k − 1)!
· n

k(n − k)

=
n(n − 1)!

k(k − 1)! · (n − k)(n − k − 1)!

=
n!

k!(n − k)!

=
(

n

k

)
.

Solution B:

In the Introduction, we solved a variety of problems that used the idea of
forming committees. Using this idea, we provide a combinatorial proof of Pascal’s
Identity.

By definition,
(
n
k

)
represents the number of ways we can select a k–member

committee from a group of n people. Now consider one of those people. Suppose
her name is Tara. There are two possibilities: either Tara is on the committee, or
Tara is not on the committee. We will count the number of possible committees
in each of these cases, and add up these numbers to determine the total number
of possible committees. This total must be equal to

(
n
k

)
.

If Tara is on the committee, we must select k − 1 more people for the
committee, from the remaining group of n − 1 people. This can be done in

(
n−1
k−1

)
ways.

If Tara is not on the committee, we must select k people for the committee,
from the remaining group of n − 1 people. This can be done in

(
n−1

k

)
ways.

Hence, there are
(
n−1
k−1

)
+
(
n−1

k

)
possible k–member committees we can form

from a group of n people. By definition, this number is also equal to
(
n
k

)
.

Therefore, we conclude that
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1

k

)
.



28

Solution C:
This solution uses the Route context that we introduced at the beginning of

this chapter. Suppose Mrs. Rogers wants to get from (0, 0) to the point (k, n− k).
Since this path takes a total of k +(n− k) = n steps, she can select any k of

them to be Right steps. Thus, the total number of routes from (0, 0) to (k, n− k)
is
(
n
k

)
. Let us count this number in a different way.
To get to (k, n− k), Mrs. Rogers must walk Right from (k− 1, n− k), or Up

from (k, n − k − 1). Thus, let us count the number of possible routes from (0, 0)
to each of (k − 1, n− k) and (k, n− k − 1), and add up these two expressions. By
definition, this total must equal

(
n
k

)
.

There are n − 1 steps in any path from (0, 0) to (k − 1, n − k), and so that
the total number of routes is

(
n−1
k−1

)
, because Mrs. Rogers makes k− 1 Right steps.

There are n− 1 steps in any path from (0, 0) to (k, n− k − 1), and thus, the
total number of routes is

(
n−1

k

)
, because Mrs. Rogers makes k Right steps.

Hence, we conclude that
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1

k

)
.

To prove formulas such as Pascal’s Identity, a direct combinatorial
approach is often more instructive and elegant than awkward algebraic
manipulation.

4.3 More Committees and Routes

As another example of the power and beauty of combinatorial solutions, consider
the following problem, which does not have a clean algebraic proof:

Prove that for all positive integers n, the following identity holds:(
n

0

)(
n

n

)
+
(

n

1

)(
n

n − 1

)
+
(

n

2

)(
n

n − 2

)
+ · · · +

(
n

n

)(
n

0

)
=
(

2n

n

)
.

We present two proofs, one using committees, and the other using routes.
Can you detect the subtle fact that these two proofs are absolutely identical, as
one is a disguised form of the other?

Solution A:
Suppose we wish to choose a committee of n people from a group of n girls

and n boys. By definition, this can be done in
(
2n
n

)
ways.

We can also count the number of possible committees by considering all the
cases: the number of committees with no girls, the number of committees with
one girl, the number of committees with two girls and so on. We compute the
number of possible committees in each case, then determine its sum. Since we
have considered all the cases, this total must equal

(
2n
n

)
.

If there are no girls on the committee, then there must be n boys on the
committee. By definition, there are

(
n
0

)
ways of selecting the 0 girls and

(
n
n

)
ways

of selecting the n boys. Hence, the total number of committees in this case is(
n
0

)(
n
n

)
.
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If there is 1 girl on the committee, then there must be n − 1 boys on the
committee. There are

(
n
1

)
ways of selecting the 1 girl and

(
n

n−1

)
ways of selecting

the n − 1 boys. Hence, the total number of committees in this case is
(
n
1

)(
n

n−1

)
.

If there are 2 girls on the committee, then there must be n − 2 boys on the
committee. There are

(
n
2

)
ways of selecting the 2 girls and

(
n

n−2

)
ways of selecting

the n − 2 boys. Hence, the total number of committees in this case is
(
n
2

)(
n

n−2

)
.

In general, if there are k girls and n − k boys on the committee, then there
are

(
n
k

)(
n

n−k

)
ways of choosing the committee. And this is true for each k from 0

to n.
Thus, the total number of possible committees of n people that can be

formed from a group of n girls and n boys is:(
n

0

)(
n

n

)
+
(

n

1

)(
n

n − 1

)
+
(

n

2

)(
n

n − 2

)
+ · · · +

(
n

n

)(
n

0

)
.

By definition, this number equals
(
2n
n

)
, and so that we have proved that(

n

0

)(
n

n

)
+
(

n

1

)(
n

n − 1

)
+
(

n

2

)(
n

n − 2

)
+ · · · +

(
n

n

)(
n

0

)
=
(

2n

n

)
.

Solution B:
Consider the number of routes from (0, 0) to (n, n). We mark each of the

points (0, n), (1, n − 1), (2, n − 2), (3, n − 3), . . ., (n, 0), and we refer to them as
“checkpoints”. This is illustrated below for the case n = 6.

�

�

�

�

�

�

�

Note that in any route from (0, 0) to (n, n), we must hit exactly one of these
checkpoints. Convince yourself that there is no route that misses a checkpoint, or
passes through more than one checkpoint.

Thus, it remains to determine the number of routes passing through each of
the checkpoints. We add up all these cases, and that gives us the total number of
routes from (0, 0) to (n, n), which is equal to

(
2n
n

)
.

For example, if Mrs. Rogers passes through the checkpoint (4, n − 4), then
the first part of her route will take her from (0, 0) to (4, n − 4), and the second
part of her route will take her from (4, n − 4) to (n, n).

From our prior reasoning, because Mrs. Rogers must walk n steps to get to
(4, n − 4), and she has 4 Right steps, the total number of routes from (0, 0) to
(4, n − 4) is

(
n
4

)
.

Now, Mrs. Rogers must walk from (4, n − 4) to (n, n). There are n total
steps in this route, with n− 4 Right steps. Thus, the total number of routes from
(4, n − 4) to (n, n) is

(
n

n−4

)
.
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Therefore, for any route from (0, 0) to (n, n), passing through this checkpoint,
Mrs. Rogers can take any of the

(
n
4

)
paths from the origin to the checkpoint, and

any of the
(

n
n−4

)
paths from the checkpoint to the destination. Thus, the total

number of routes in this case is
(
n
4

)(
n

n−4

)
.

Using this argument, we find that the total number of routes passing through
the checkpoint (0, n) is

(
n
0

)(
n
n

)
, the total number of routes passing through the

checkpoint (1, n − 1) is
(
n
1

)(
n

n−1

)
, and so on. Thus, the total number of routes

passing through exactly one of the checkpoints is(
n

0

)(
n

n

)
+
(

n

1

)(
n

n − 1

)
+
(

n

2

)(
n

n − 2

)
+ · · · +

(
n

n

)(
n

0

)
.

Since every route passes through exactly one of the checkpoints, this total
is equal to the number of routes from (0, 0) to (n, n). Since there are

(
2n
n

)
such

routes, we conclude that(
n

0

)(
n

n

)
+
(

n

1

)(
n

n − 1

)
+
(

n

2

)(
n

n − 2

)
+ · · · +

(
n

n

)(
n

0

)
=
(

2n

n

)
.

4.4 The Hockey Stick Identity

Observe the numbers boxed in Pascal’s Triangle.
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
...

Notice the boxed number 10 is the sum of all the boxed numbers above it.
We have 1 + 3 + 6 = 10, or(

2
2

)
+
(

3
2

)
+
(

4
2

)
=
(

5
3

)
.

Can we generalize this pattern? For example, one can manually verify that
the following identities hold:(

2
2

)
+
(

3
2

)
+
(

4
2

)
+
(

5
2

)
=
(

6
3

)
.

(
3
3

)
+
(

4
3

)
+
(

5
3

)
+
(

6
3

)
+
(

7
3

)
+
(

8
3

)
=
(

9
4

)
.

This generalizes to the following formula, which holds for all n and k.(
n

n

)
+
(

n + 1
n

)
+
(

n + 2
n

)
+ · · · +

(
n + k

n

)
=
(

n + k + 1
n + 1

)
.
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This is known as the Hockey Stick Identity, as our numbers form a hockey
stick when marked on Pascal’s Triangle.

Here we present two proofs to the Hockey Stick Identity, the first using
Pascal’s Identity, and the second being a combinatorial proof counting the number
of routes. Recall that Pascal’s Identity states that(

n

k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)
.

Proof A:
Before proceeding further, it may help to look at an example. Consider the

following case, with k = 3 and n = 6. By repeated use of Pascal’s Identity, we
have (

6
3

)
=

(
5
2

)
+
(

5
3

)

=
(

5
2

)
+
[(

4
2

)
+
(

4
3

)]

=
(

5
2

)
+
(

4
2

)
+
(

4
3

)

=
(

5
2

)
+
(

4
2

)
+
[(

3
2

)
+
(

3
3

)]

=
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

3
3

)

=
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)
.

The last step follows since
(
3
3

)
=
(
2
2

)
= 1. We proceed with the actual proof:

(
n + k + 1

n + 1

)
=

(
n + k

n

)
+
(

n + k

n + 1

)

=
(

n + k

n

)
+
[(

n + k − 1
n

)
+
(

n + k − 1
n + 1

)]

=
(

n + k

n

)
+
(

n + k − 1
n

)
+
(

n + k − 1
n + 1

)

=
(

n + k

n

)
+
(

n + k − 1
n

)

+
[(

n + k − 2
n

)
+
(

n + k − 2
n + 1

)]

=
(

n + k

n

)
+
(

n + k − 1
n

)
+
(

n + k − 2
n

)
+
(

n + k − 2
n + 1

)
...
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=
(

n + k

n

)
+
(

n + k − 1
n

)
+
(

n + k − 2
n

)
+· · ·

+
(

n + 1
n

)
+
(

n + 1
n + 1

)

=
(

n + k

n

)
+
(

n + k − 1
n

)
+
(

n + k − 2
n

)
+· · ·

+
(

n + 1
n

)
+
(

n

n

)
.

Thus, we have proved the Hockey Stick Identity.
Proof B:
Consider the number of routes from n(0, 0) to (n + 1, k). We mark each of

the points (n, 0), (n, 1), (n, 2), . . ., (n, k). This is illustrated below for the case
n = 7 and k = 6.

�

�

�

�

�

�

�

Earlier we proved an identity using checkpoints. Here we will employ a
similar strategy, but with one twist. In each route from (0, 0) to (n+1, k), specify
the checkpoint to be the last point on the path with x–coordinate equal to n.

For example, in the route indicated below, the checkpoint occurs at (7, 4),
not at (7, 2) or (7, 3).
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Clearly each route has a unique checkpoint, by this definition of checkpoint.
Thus, to find the total number of routes, we need to determine the number of
routes passing through each of the k+1 checkpoints. We add up all of these cases,
and that gives us the total number of routes from (0, 0) to (n + 1, k). We know
that this total equals

(
n+k+1

n+1

)
.

For example, if Mrs. Rogers passes through the checkpoint (n, 3), then the
first part of her route will take her from (0, 0) to (n, 3), and the second part of her
route will take her from (n, 3) to (n + 1, k).
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There are
(
n+3

n

)
routes from (0, 0) to (n, 3). Now, let us calculate the number

of routes from (n, 3) to (n + 1, k). Here is the critical observation: since (n, 3) is
a checkpoint, that must mean that Mrs. Rogers takes a Right step at (n, 3),
otherwise (n, 3) would not be the checkpoint of the path.

Thus, if (n, 3) is a checkpoint, then the only route from (n, 3) to (n+1, k) is
a Right step, followed by Up steps all the way from (n + 1, 3) to (n + 1, k). Thus,
there is only one such route. Therefore, the total number of routes from (0, 0) to
(n + 1, k) with (n, 3) as a checkpoint is

(
n+3

n

)× 1 =
(
n+3

n

)
.

Similarly, we can justify that the number of routes with (n, 0) as a checkpoint
is
(
n
n

)×1, the number of routes with (n, 1) as a checkpoint is
(
n+1

n

)×1, and finally,
the number of routes with (n, k) as a checkpoint is

(
n+k

n

)× 1.
Adding up all these cases, we arrive at the total number of routes that have

one of those checkpoints. This sum is(
n

n

)
+
(

n + 1
n

)
+
(

n + 2
n

)
+ · · · +

(
n + k

n

)
.

Since every route has a unique checkpoint, this sum is equal to the number
of routes from (0, 0) to (n+1, k). Since there are

(
n+k+1

n+1

)
such routes, we conclude

that (
n

n

)
+
(

n + 1
n

)
+
(

n + 2
n

)
+ · · · +

(
n + k

n

)
=
(

n + k + 1
n + 1

)
.

Using the Hockey Stick Identity, we can make a beautiful connection to
the Handshakes chapter. Recall that in the Handshakes chapter, we found a
formula for the sum of the first n integers. We proved that

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Here we use the Hockey Stick Identity to come up with yet another proof of
this formula:

1 + 2 + 3 + · · · + n =
(

1
1

)
+
(

2
1

)
+
(

3
1

)
+ · · · +

(
n

1

)

=
(

n + 1
2

)

=
n(n + 1)

2
.

4.5 A Formula for the Sum of Squares

Let us derive a formula for the sum of the first n squares, namely

12 + 22 + · · · + n2.

Unfortunately, this will not be as straightforward as the previous identity,
as n2 does not have a “nice” binomial coefficient representation. However, we do
know that

(
n
2

)
= n(n−1)

2 = n2−n
2 . Does this help us?
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We can be creative, and write n2 as a combination of simple binomial
coefficients. Since n2 − n = 2 · (n2), we have n2 = 2 · (n2) + n = 2 · (n2) +

(
n
1

)
.

Note that this identity is valid for n = 1, as
(
1
2

)
= 0, by definition. Thus, we have:

12 = 2 ·
(

1
2

)
+
(

1
1

)
,

22 = 2 ·
(

2
2

)
+
(

2
1

)
,

32 = 2 ·
(

3
2

)
+
(

3
1

)
,

...
...

n2 = 2 ·
(

n

2

)
+
(

n

1

)
.

Adding up these n equations and using the Hockey Stick Identity, we have:

12 + 22 + · · · + n2 =
[
2 · 0 +

(
1
1

)]
+
[
2 ·
(

2
2

)
+
(

2
1

)]
+ · · ·

+
[
2 ·
(

n

2

)
+
(

n

1

)]

= 2
[(

2
2

)
+
(

3
2

)
+ · · · +

(
n

2

)]

+
[(

1
1

)
+
(

2
1

)
+ · · · +

(
n

1

)]

= 2
(

n + 1
3

)
+
(

n + 1
2

)

= 2 · (n + 1)(n)(n − 1)
3 · 2 · 1 +

(n + 1)n
2

= n(n + 1)
(

2(n − 1)
6

+
1
2

)

= n(n + 1)
(

2n− 2
6

+
3
6

)

=
n(n + 1)(2n + 1)

6
.

Thus, we have proved that

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

4.6 The Binomial Theorem

Throughout this chapter, we have referred to the terms
(

n
k

)
as binomial coefficients.

Let us finally explain why we call these as such.
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Begin by expanding the binomial (x + y)n for each n ≤ 5. We have:

(x + y)1 = x + y,

(x + y)2 = x2 + 2xy + y2,

(x + y)3 = x3 + 3x2y + 3xy2 + y3,

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

Look carefully at the coefficients. Notice that the coefficients of (x + y)n

correspond exactly to the elements in the nth row of Pascal’s Triangle, namely(
n

0

)
,
(

n

1

)
,
(

n

2

)
, . . .,

(
n

k

)
.

This is true for all n. This gives rise to the Binomial Theorem, which
states that for all positive integers n, we have

(x + y)n =
(

n

0

)
xny0 +

(
n

1

)
xn−1y1 + · · · +

(
n

k

)
xn−kyk + · · · +

(
n

n

)
x0yn.

A proof of the Binomial Theorem is a straightforward application of Pascal’s
Identity and Mathematical Induction. We invite you to fill in the details. We
also refer you to Question 6 of the Problem Set, which asks you to derive a
combinatorial proof of the Binomial Theorem.

There are several interesting applications of the Binomial Theorem. Here
we describe two such applications.

Before proceeding further, add up all the elements in the fourth row of
Pascal’s Triangle. What is the sum? Now do the same thing with the fifth row.
What is its sum? Conjecture a formula for the sum of the elements of the nth row
of Pascal’s Triangle. Let us prove your conjecture.

Let x = 1 and y = 1 and substitute these values into the Binomial Theorem.
We have

(1 + 1)n =
(

n

0

)
1n · 10 +

(
n

1

)
1n−1 · 11 +

(
n

2

)
1n−2 · 12 + · · · +

(
n

n

)
10 · 1n.

And this simplifies to



36

(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

n

)
= 2n.

This application of the Binomial Theorem has given us a simple proof that
the sum of the elements in the nth row of Pascal’s Triangle is 2n.

Now, let x = 1 and y = −1, and substitute these values into the Binomial
Theorem. We have

(1 − 1)n =
(

n

0

)
1n · (−1)0 +

(
n

1

)
1n−1 · (−1)1

+
(

n

2

)
1n−2 · (−1)2 + · · ·

+
(

n

n

)
10 · (−1)n.

This simplifies to

(
n

0

)
−
(

n

1

)
+
(

n

2

)
− · · · + (−1)n

(
n

n

)
= 0.

Thus, using the Binomial Theorem, we have given a simple proof to the
result that if we alternately add and subtract the elements in the nth row of
Pascal’s Triangle, we always get a total of 0. We note that this result is obvious
for odd values of n, as the positive and negative terms cancel in pairs, for example,
1 − 5 + 10 − 10 + 5 − 1 = 0.

4.7 The Fibonacci Sequence

We close this chapter by mentioning the Fibonacci sequence, and describing its
connection to Pascal’s Triangle.

The Fibonacci sequence starts with the terms 1, 1, and each additional
element in the sequence is the sum of the two preceding elements. Thus, the
Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . ..

The Fibonacci sequence has made numerous appearances in a wide variety of
interesting contexts, such as in pineapples and sunflowers, in architectural designs
like the Parthenon, and even in Beethoven’s Fifth Symphony!

Starting with Pascal’s Triangle, you can get the Fibonacci sequence!



37
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...................................................................................................................................................
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For example, we have the following sums:(
4
0

)
+
(

3
1

)
+
(

2
2

)
= 5,(

5
0

)
+
(

4
1

)
+
(

3
2

)
= 8,(

6
0

)
+
(

5
1

)
+
(

4
2

)
+
(

3
3

)
= 13.

Can you develop a general identity and prove it?

4.8 Problem Set

1. Mrs. Rogers wants to travel from her house at (0, 0) to watch a hockey game
at the arena, which is located at (4, 7). However, she first wants to drop by
the Toronto Maple Leafs Store to purchase an authentic Maple Leafs jersey.
The store is located at (2, 3). How many routes are there from her house to
the arena, which pass through the store?

2. There are 126 routes from (0, 0) to (n, 5). Determine the value of n.

3. Consider n lightbulbs in a room, numbered 1 to n. Determine the number
of ways the lightbulbs can be turned on or off. By solving this problem in
two different ways, prove that(

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

n

)
= 2n.
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4. Let n be a positive integer. For a group of n people, show that the number
of possible committees that can be formed with an odd number of people is
equal to the number of possible committees that can be formed with an even
number of people.

5. Starting from any letter on the outside and moving to an adjacent letter
(including diagonally), find the number of ways of spelling “MATH” in the
following array:

M M M M M M M
M A A A A A M
M A T T T A M
M A T H T A M
M A T T T A M
M A A A A A M
M M M M M M M

6. Find a combinatorial proof of the Binomial Theorem. Using either a committee
or route argument, explain why the xn−kyk coefficient of (x + y)n must be(
n
k

)
.

7. (a) Expand (x + y + z)2.
(b) Expand (x + y + z)3.

(c) Develop a Multinomial Theorem by creating a formula for

(x1 + x2 + · · · + xk)n.

8. In the third investigation of the Handshakes chapter, we introduced the
Ramsey number R(x, y). The final problem of the investigation was to prove
that for any integers s, t ≥ 2,

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Assuming this result, use the Hockey Stick Identity to prove that

R(s, t) ≤
(

s + t − 2
s − 1

)
.

(Hint: for all s, t ≥ 2, we have R(s, 2) = s and R(2, t) = t).

9. (a) For n ≥ 3, determine the unique integers A, B, and C for which

n3 = A

(
n

3

)
+ B

(
n

2

)
+ C

(
n

1

)
.

(b) Using part (a) and the Hockey Stick Identity, prove that

13 + 23 + · · · + n3 =
n2(n + 1)2

4
.
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10. A certain student, having just finished a particularly hairy problem, stared
blankly at an x1y2 which was written on her scrap paper. Following some
doodling, the student wrote:

(Line 0) x1y2,

(Line 1) x1y2y3x4,

(Line 2) x1y2y3x4y5x6x7y8,

(Line 3) x1y2y3x4y5x6x7y8, y9x10x11y12x13y14y15x16.

On each line, the student copied the line above exactly, and then copied it
again, changing x’s to y’s, y’s to x’s, and continuing the subscripts in order.

Notice that in Line 1, the sum of the x–subscripts equals the sum of the
y–subscripts, namely 1 + 4 = 2 + 3.

Notice that in Line 2, the sum of the squares of the x–subscripts equals the
sum of the squares of the y–subscripts, namely

12 + 42 + 62 + 72 = 22 + 32 + 52 + 82.

The student wondered if there was a pattern here. She noticed that:

10 = 20,

11 + 41 = 21 + 31,

12 + 42 + 62 + 72 = 22 + 32 + 52 + 82,

13 + 43 + 63 + 73 + 103 + 113 + 133 + 163

= 23 + 33 + 53 + 83 + 93 + 123 + 143 + 153.

This student was amazed! It appears that in Line n, the sum of the nth

powers of the x–subscripts always equals the sum of the nth powers of the
y–subscripts. Is this result correct? Prove or disprove this conjecture.

4.9 Investigation 1: Unfriendly Subsets

Consider all subsets of {1, 2, 3, . . ., n} with k elements. Such a subset is called
unfriendly if no two of its elements are consecutive. For example, if we have k = 3
and n = 7, the subsets {1, 3, 7} and {2, 4, 6} are unfriendly, whereas {3, 6, 7} is
not.

Determine the number of unfriendly subsets for each of the following cases:

(i) k = 3 and n = 5. (ii) k = 3 and n = 6.
(iii) k = 3 and n = 7. (iv) k = 3 and n = 8.
(v) k = 3 and n = 9. (vi) k = 4 and n = 7.
(vii) k = 4 and n = 8. (viii) k = 4 and n = 9.
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Consider other small cases, and try to develop a formula for the number of
unfriendly subsets, in terms of n and k. (Hint: the formula is a nice binomial
coefficient).

If you have a formula, attempt to develop a combinatorial proof that your
answer is correct.

4.10 Investigation 2: Combinatorial Identities

This investigation considers more combinatorial identities, as sources for developing
contexts involving routes and committees.

Here we describe three such examples and invite you to formulate more
scenarios, which will give rise to new combinatorial identities.

1. Earlier in this chapter, we used the concept of checkpoints to develop two
combinatorial identities.

Now, use a different set of checkpoints to develop a new identity. For
example, consider the set of routes from (0, 0) to (n, n), where n ≥ 2. Define
three checkpoints at (0, 2), (1, 1), and (2, 0). Begin by convincing yourself
that each route from (0, 0) to (n, n) must pass through exactly one of these
checkpoints. Use this observation to prove that(

2n

n

)
=
(

2
0

)(
2n − 2

n

)
+
(

2
1

)(
2n − 2
n − 1

)
+
(

2
2

)(
2n − 2
n − 2

)
.

Derive other identities using this idea of checkpoints.

2. Instead of making checkpoints, consider this notion of checklines.

In this figure, find the number of routes from (0, 0) to (8, 6), where the dark
lines indicate checklines. In other words, every path from (0, 0) to (8, 6) will
pass through a unique checkline.
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Using the diagram, prove that(
14
8

)
=
(

2
0

)(
11
8

)
+
(

3
1

)(
10
7

)
+
(

4
2

)(
9
6

)
+ · · · +

(
10
8

)(
3
0

)
.
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Using checklines, what other identities can you derive? For example, try to
use checklines to prove that

1 · n + 2 · (n − 1) + 3 · (n − 2) + · · · + (n − 1) · 2 + n · 1 =
(

n + 2
3

)
.

3. Play with variations of committees. For example, how many ways can you
choose an r–person committee from a group of n people, if the committee
must have a group leader? The answer is r · (nr) since we can choose our
committee

(
n
r

)
ways, and any of those r people can be chosen as the leader

of the group.

Using this idea of a group leader, prove that

1 ·
(

n

1

)
+ 2 ·

(
n

2

)
+ · · · + n ·

(
n

n

)
= n · 2n−1.

What other identities can you derive using this idea of group leaders?

4.11 Investigation 3: Pascal’s Odd Triangle

Count the number of odd elements that appear in each row of Pascal’s Triangle.
The results for small row numbers appear in the table below:

Row Number of Odd
Number Elements in Row

0 1
1 2
2 2
3 4
4 2
5 4
6 4
7 8
8 2
9 4

Notice that all numbers in the second column are powers of 2.
It appears that the following conjecture is true for any row of Pascal’s

Triangle: the number of odd elements is a power of 2.
Investigate this conjecture. To do this, try to prove an even stronger result,

which relates the actual power of 2 with the binary representation of n (see
Glossary).

Let f(n) denote the number of 1’s that appear in the binary representation of
n. For example, f(13) = 3 because 13 = 11012 and f(18) = 2 because 18 = 100102.
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Let g(n) denote the number of odd elements in the nth row of Pascal’s
Triangle.

Make a list of f(n) and g(n) for each n up to 15. Do you notice any
interesting patterns? What conjecture can you make? Can you prove it?
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5 Checkerboards

5.1 The Checkerboard Problem

Consider the following 8 by 8 checkerboard:

How many squares (of all sizes) appear on this checkerboard?
To get a feel for this problem, work with smaller sized checkerboards. Let

our checkerboard be n by n, and count the number of squares that appear for
small values of n.

For example, if n = 0, then there are no squares to be counted. And if
n = 1, there is only one square to be counted.

If n = 2, then there are four 1 by 1 squares and one 2 by 2 square, or five
squares in total.

If n = 3, then there are nine 1 by 1 squares, four 2 by 2 squares, and one 3
by 3 square. Thus, there are fourteen squares in total. These fourteen squares are
illustrated below.

Work through the n = 4 case yourself, and ensure that you count thirty
squares.

Summarizing this information in a table, we have the following:
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Side Length n Number of Squares
0 0
1 1
2 5
3 14
4 30

Consider the numbers in the second column. Is there a nice pattern in the sequence
0, 1, 5, 14, 30?

As we did in the Handshake problem, examine the differences between
consecutive terms of the sequence, and see if we notice a pattern.

0 ︸︷︷︸
1

1 ︸︷︷︸
4

5 ︸︷︷︸
9

14 ︸︷︷︸
16

30

This appears to be the sequence of perfect squares!
Assuming that this pattern continues, we suspect the following sequence

would emerge:

0 ︸︷︷︸
1

1 ︸︷︷︸
4

5 ︸︷︷︸
9

14 ︸︷︷︸
16

30 ︸︷︷︸
25

55 ︸︷︷︸
36

91 ︸︷︷︸
49

140 ︸︷︷︸
64

204

Since we are interested in an 8 by 8 checkerboard, it appears that the answer
to our problem is 12 + 22 + 32 + · · · + 82, which equals 204.

How can we prove that the correct answer is 204? We need to rigorously
justify the number of squares of each size.

There are sixty-four squares that are 1 by 1, since there are 82 squares in
our original checkerboard.

How many 2 by 2 squares are there? Instead of counting them manually,
approach this more systematically. How many different 2 by 2 squares are there
in the first two rows of our checkerboard?

There are seven such squares, with the “leftmost” and the “rightmost”
squares illustrated in the diagram:

Similarly, there are seven 2 by 2 squares in the second and third rows, with
the leftmost and rightmost illustrated:
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Continuing, we have seven 2 by 2 squares in each pair of two rows, with the
leftmost and rightmost in the final pair illustrated:

All in all, the number of 2 by 2 squares is 7 × 7 = 72 = 49.
We justify this in another way. For each 2 by 2 square, mark an “X” in the

lower left corner. Note that each X corresponds to a unique 2 by 2 square. This
is illustrated as shown.

..................................................................................................................................

.............
.............
..............
.............

.............
....

X

Now it remains to determine the number of locations that we can place the
X. Since our X represents the lower left corner of our 2 by 2 square, the X cannot
go in the top or right row of our checkerboard. However, any other location is
permissible.

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X
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Since there are 7 × 7 = 49 possible locations that we can place our X, we
conclude that the number of 2 by 2 squares is 49.

Repeating this argument, we find that there are 6×6 = 36 possible locations
for the lower left corner if we are counting 3 by 3 squares. Thus, the number of 3
by 3 squares is 6 × 6 = 62 = 36.

We can repeat this argument for each square size. We put this information
into a table:

Side of Square Number of Squares
1 82

2 72

3 62

4 52

5 42

6 32

7 22

8 12

The total number of squares on our checkerboard is

82 + 72 + · · · + 22 + 12 = 204,

which confirms our earlier conjecture. The correct answer indeed is 204.
For brevity, we introduce Sigma notation (see Glossary). By definition,

8∑
i=1

i2 = 12 + 22 + · · · + 82.

In other words,
8∑

i=1

i2 represents the sum of all numbers of the form i2, as i

ranges from 1 to 8.
We have proved that the number of squares (of all sizes) on an 8 by 8

checkerboard is
8∑

i=1

i2. What do you guess will be an expression for the number of

squares (of all sizes) on an n by n checkerboard? We suspect the answer is
n∑

i=1

i2.

Consider the table more carefully. Notice that on our 8 by 8 checkerboard,
there are (9 − i)2 squares of side length i. And this formula holds for each i.

Can we make a more general conjecture? If we had an n by n checkerboard,
how many squares of side length i would there be? It appears that the formula
should be (n+1− i)2, since the n = 8 case gives us (9− i)2 squares of side length i.
This is indeed the case, and we invite you to justify this formally in the Problem
Set.

Thus, on an n by n checkerboard, there are n2 squares of side length 1,
(n − 1)2 squares of side length 2, (n − 2)2 squares of side length 3, all the way
down to 22 squares of side length (n − 1) and 12 square of side length n.
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Hence, the total number of squares (of all sizes) on an n by n checkerboard
is n2 + (n − 1)2 + (n − 2)2 + · · · + 22 + 12, which we can naturally rewrite as

12 + 22 + · · · + n2 =
n∑

i=1

i2.

We have proved that there are
n∑

i=1

i2 squares (of all sizes) on an n by n

checkerboard, and that this formula holds for all n.
In the Routes chapter, we proved that

n∑
i=1

i2 = 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

Later in this chapter, we shall derive this identity using a different approach.

5.2 Counting Rectangles on a Checkerboard

Revisit our original 8 by 8 checkerboard, and consider a similar question.

How many rectangles (of all sizes) appear on this checkerboard?
(Note: a square counts as a rectangle!)
Solution A:
To illustrate the concept, we consider the number of 2 by 3 rectangles on our

checkerboard (that is, 2 rows by 3 columns). In our notation, a 2 by 3 rectangle
will be different from a 3 by 2 rectangle.

There are six such rectangles in the first two rows of the checkerboard, with
the “leftmost” and the “rightmost” rectangles illustrated in the diagram:
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There are six such rectangles in the second and third rows, with the leftmost
and rightmost illustrated:

Continuing, we have six such rectangles in each pair of two rows, with the
leftmost and rightmost in the final pair illustrated:

Therefore, the total number of 2 by 3 rectangles on our checkerboard is 7×6.
We can also determine this number by marking each rectangle with an “X”

in the lower left corner. Thus, the problem reduces to finding the number of places
where we can place this X. We see that the X can be placed in each of the following
locations:

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

Since there are 7 × 6 = 42 possible locations that we can place our X, we
conclude that this is the number of 2 by 3 rectangles on our checkerboard.

Similarly, if we were to count the total number of 5 by 7 rectangles in our
checkerboard, we will find that there are 4×2 such rectangles on our checkerboard,
using the same counting argument. Convince yourself that for all a and b, the total
number of a by b rectangles on our 8 by 8 checkerboard is (9− a)× (9− b). Thus,
to find the total number of rectangles on our checkerboard, we compute the value
of (9 − a) × (9 − b) for each ordered pair (a, b) with 1 ≤ a, b ≤ 8, and add these
values.
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We will represent this information in a table by writing down the 64 different
ordered pairs (a, b), and for each, computing the value of (9−a)×(9−b). Although
it may appear strange, we will write the ordered pairs backwards; that is, starting
with (8, 8) and ending with (1, 1).

(a, b) Number of Rectangles
(8, 8) 1 × 1
(8, 7) 1 × 2
(8, 6) 1 × 3
(8, 5) 1 × 4
(8, 4) 1 × 5
(8, 3) 1 × 6
(8, 2) 1 × 7
(8, 1) 1 × 8
(7, 8) 2 × 1
(7, 7) 2 × 2
(7, 6) 2 × 3
(7, 5) 2 × 4
(7, 4) 2 × 5
(7, 3) 2 × 6
(7, 2) 2 × 7
(7, 1) 2 × 8

...
...

(1, 8) 8 × 1
(1, 7) 8 × 2
(1, 6) 8 × 3
(1, 5) 8 × 4
(1, 4) 8 × 5
(1, 3) 8 × 6
(1, 2) 8 × 7
(1, 1) 8 × 8

Although it may be tempting to multiply each of the numbers in the second
column before adding them up, let us search for patterns in the table. Notice that
the sum of the first eight terms is

1 × 1 + 1 × 2 + 1 × 3 + · · · + 1 × 8 = 1 · (1 + 2 + 3 + · · · + 8).

Similarly, the sum of the next eight terms is 2 · (1 + 2 + 3 + · · ·+ 8), the sum
of the next eight terms is 3 · (1 + 2 + 3 + · · · + 8), and finally, the sum of the last
eight terms is 8 · (1 + 2 + 3 + · · ·+ 8). Therefore, if we let S be the sum of the 64
products in the second column, then:

S = 1 · (1 + 2 + 3 + · · · + 8) + 2 · (1 + 2 + 3 + · · · + 8) + · · ·
+ 8 · (1 + 2 + 3 + · · · + 8)
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= (1 + 2 + 3 + · · · + 8) · (1 + 2 + 3 + · · · + 8)
= (1 + 2 + 3 + · · · + 8)2.

Since 1 + 2 + 3 + · · · + 8 = 36, we have proved that S = 362 = 1296. Thus,
there are 1296 rectangles (of all sizes) on an 8 by 8 checkerboard.

Using the same argument, we can show that the total number of rectangles
(of all sizes) on an n by n checkerboard is

(1 + 2 + 3 + · · · + n)2 =

(
n∑

i=1

i

)2

.

We invite you to provide the details.
Solution B:
Here is yet another method for finding the number of rectangles on an n by

n checkerboard. We find this solution to be extremely satisfying.
A visual proof is presented for the case n = 8. We will prove that there are

1296 rectangles on an 8 by 8 checkerboard.

There are nine vertical lines on our checkerboard, which are indicated, as
shown.

Now, choose any two of these vertical lines. There are
(
9
2

)
ways of selecting

two of these nine vertical lines.
Similarly, there are nine horizontal lines on our checkerboard. Choose any

two of these lines. There are
(
9
2

)
ways of selecting two of these nine horizontal

lines.
Here is the key observation: each choice of two vertical lines and two horizontal

lines determines a unique rectangle inside our checkerboard.
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Here are two more examples of rectangles formed by choosing two horizontal
and two vertical lines:

By this process, each rectangle is uniquely accounted for, so that this procedure
of picking two horizontal lines and two vertical lines gives us all the rectangles on
our checkerboard.

There are
(
9
2

)(
9
2

)
= 36 × 36 = 1296 ways of selecting two vertical lines and

two horizontal lines from our checkerboard, and thus, we conclude that there are
1296 total rectangles!

We can readily generalize this solution. If we have an n by n checkerboard,
there are (n + 1) horizontal lines, and (n + 1) vertical lines. Therefore, the total
number of rectangles (of all sizes) on an n by n checkerboard must be

(
n+1

2

)(
n+1

2

)
=(

n+1
2

)2
.
Earlier, we proved that the number of rectangles (of all sizes) on an n by n

checkerboard is (1 + 2 + 3 + · · · + n)2. Therefore, we have proved that

(1 + 2 + 3 + · · · + n)2 =
(

n + 1
2

)2

.

Taking the square root of both sides, we have shown once again that

1 + 2 + 3 + · · · + n =
(

n + 1
2

)
=

n(n + 1)
2

.

In the Handshakes chapter, we used a “handshake” argument to prove this
identity. Later we presented several other solutions as well. In the Routes chapter,
we used the Hockey-Stick Identity to derive another proof. This “rectangles on
a checkerboard” argument offers yet another proof that the sum of the first n

positive integers is n(n+1)
2 . One of the rewarding aspects of studying combinatorics

is discovering surprising ways in which different topics are interconnected.

5.3 Connection to the Sum of Cubes

Just for fun, compute the value of (1 + 2 + · · ·+ n)2 for small values of n, and see
if we notice any other interesting patterns. Since this expression is not defined for
n = 0, call the value 0 in this special case.
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n (1 + 2 + · · · + n)2

0 0
1 1
2 9
3 36
4 100
5 225
6 441

When we look at the differences between successive terms, we get the following:

0 ︸︷︷︸
1

1 ︸︷︷︸
8

9 ︸︷︷︸
27

36 ︸︷︷︸
64

100 ︸︷︷︸
125

225 ︸︷︷︸
216

441

These differences are consecutive perfect cubes!
Note that 1 = 13, 9 = 13 + 23, 36 = 13 + 23 + 33, 100 = 13 + 23 + 33 + 43,

and so on. Since every new term adds the next perfect cube, it appears that

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2.

In other words, we conjecture that the sum of the first n cubes is equal to
the square of the sum of the first n positive integers!

Here, we provide a geometric proof of the identity
n∑

i=1

i3 =
(

n∑
i=1

i

)2

for the

case n = 5. Consider this diagram.
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This diagram is a large checkerboard, consisting of (1 + 2 + 3 + 4 + 5) unit
squares on each side. Thus, the total number of unit squares in this figure is
(1 + 2 + 3 + 4 + 5)2.

Count the number of unit squares another way. Partition the checkerboard
into five reverse L–shaped pieces, as illustrated by the dark lines in the diagram.
Count the number of unit squares in each reverse L–shaped piece.
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The first piece consists of 1 square. Observe that 13 = 1.
The second piece consists of a 2 by 2 square, as well as two rectangles that

can be joined to form another 2 by 2 square. Thus, the total number of unit
squares in this piece is 2 × 2 + 2 × 2 = 2 · 22 = 23.

The third piece consists of three 3 by 3 squares. Therefore, the total number
of unit squares in this piece is 3 × 3 × 3 = 33.

The fourth piece consists of three 4 by 4 squares, as well as two rectangles
that can be joined to form another 4 by 4 square. Thus, the total number of unit
squares in this piece is 4 × 4 × 4 = 43.

The fifth piece consists of five 5 by 5 squares. Therefore, the total number
of unit squares in this piece is 5 × 5 × 5 = 53.

Adding these numbers up, we find that the total number of unit squares in
this diagram is 13 + 23 + 33 + 43 + 53.

Therefore, we have given a geometric proof that
13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2.

By extending this diagram, we can use the same reasoning to prove that, for
any integer n, we have 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2. To do this, we only
need to prove that the nth reverse L–shaped piece has a total of n3 unit squares.

The key observation is the following: the nth reverse L–shaped piece is
formed by taking a square of side length (1 + 2 + · · · + n) and removing a square
of side length (1 + 2 + · · · + (n − 1)), from the top-left corner.

For example, the number of squares in the fifth reverse L–shaped piece is

(1 + 2 + 3 + 4 + 5)2 − (1 + 2 + 3 + 4)2

= 152 − 102 = (15 + 10)(15 − 10) = 25 · 5 = 125 = 53.

The number of squares in the nth reverse L–shaped piece is equal to a2− b2,
where a = 1 + 2 + · · · + n, and b = 1 + 2 + · · · + (n − 1).

Since a =
n(n + 1)

2
=

n2 + n

2
, and b =

(n − 1)n
2

=
n2 − n

2
, we have

a + b =
n2 + n

2
+

n2 − n

2
= n2, and a − b =

n2 + n

2
− n2 − n

2
= n.

Thus, the number of squares that appear in the nth reverse L–shaped piece
is a2 − b2 = (a + b)(a − b) = n2 · n = n3.

Therefore, we have algebraically verified that our geometric analysis is valid,
and thus, we conclude that 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2.

Earlier in this chapter, as well as in the other two chapters, we proved that

n∑
i=1

i =
n(n + 1)

2
.

We just proved that
n∑

i=1

i3 =

(
n∑

i=1

i

)2

.
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Thus, it follows that
n∑

i=1

i3 =
(

n(n + 1)
2

)2

=
n2(n + 1)2

4
.

We have derived an explicit formula for the sum of the first n cubes.

5.4 Telescoping Series

Recall that we derived a formula for
n∑

i=1

i2 in the Routes chapter. Here, we will

look at an approach that does not require the use of binomial coefficients. A
technique known as a Telescoping Series shall be employed.

Start with the identity −k3 +(k+1)3 = 3k2 +3k+1. Note that this identity
follows from (k+1)3 = k3+3k2+3k+1, which follows from the Binomial Theorem
that was derived in the Routes chapter.

This identity is true for all values of k. Specifically, this equation holds for
each of k = 1, 2, 3, . . ., n. Thus, we have:

−13 + 23 = 3 × 12 + 3 × 1 + 1,

−23 + 33 = 3 × 22 + 3 × 2 + 1,

−33 + 43 = 3 × 32 + 3 × 3 + 1,

...
−(n − 1)3 + n3 = 3 × (n − 1)2 + 3 × (n − 1) + 1,

−n3 + (n + 1)3 = 3 × n2 + 3 × n + 1.

Adding up the left side of these n equations, we get:

(−13 + 23) + (−23 + 33) + (−33 + 43) + · · ·+ (−(n− 1)3 + n3) + (−n3 + (n + 1)3)

Look carefully at this expression. Can we simplify it? Notice that we have
a +23 term and a −23 term. These two terms will cancel. Similarly, the +33 term
cancels with the −33 term. Each term, except the first and last will disappear,
and thus, this cumbersome expression simplifies nicely to −13 + (n + 1)3.

This is known as a Telescoping Series, because the sum collapses (just like
an old-fashioned telescope), into just its first and last term.

Now add up the right side of our n equations, and simplify, as shown.

3 · (12 + 22 + · · · + n2) + 3 · (1 + 2 + · · · + n) + (1 + 1 + · · · + 1)

= 3

(
n∑

i=1

i2

)
+ 3 · n(n + 1)

2
+ n.

Comparing the two equivalent expressions allows us to solve for
n∑

i=1

i2:

−1 + (n + 1)3 = 3

(
n∑

i=1

i2

)
+ 3 · n(n + 1)

2
+ n,
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−1 + (n3 + 3n2 + 3n + 1) = 3

(
n∑

i=1

i2

)
+ 3 · n2 + n

2
+ n,

n3 + 3n2 + 3n = 3

(
n∑

i=1

i2

)
+

3n2 + 3n

2
+ n,

3

(
n∑

i=1

i2

)
= n3 + 3n2 + 3n − 3n2 + 3n

2
− n,

3

(
n∑

i=1

i2

)
= n3 +

3n2

2
+

n

2
,

3

(
n∑

i=1

i2

)
=

2n3 + 3n2 + n

2
,

n∑
i=1

i2 =
2n3 + 3n2 + n

6
,

n∑
i=1

i2 =
n(2n2 + 3n + 1)

6
,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
.

Therefore, we have another proof that
n∑

i=1

i2 = n(n+1)(2n+1)
6 .

We have now derived formulas for 1k + 2k + · · · + nk, for k = 1, 2, 3. Can
we find a formula for larger values of k? For example, is there a nice formula for
the sum of the first n fourth-powers? Jakob Bernoulli (1654-1705) answered this
question by discovering a method to find an explicit formula for 1k +2k + · · ·+nk,
for any given k. These are known as Bernoulli Polynomials, and his work has led
to numerous breakthroughs in number theory and analysis. For more information,
we refer you to A Mathematical Mosaic: Patterns and Problem Solving, by Ravi
Vakil. Finding efficient methods and algorithms to compute the coefficients of
large Bernoulli polynomials is an active area of current mathematical research.
The Bernoulli polynomial plays a critical role in the formulation of the Riemann
Hypothesis, the most difficult unsolved problem in mathematics today.

5.5 Problem Set

1. How many squares (of all sizes) appear on an 10 by 10 checkerboard?

2. How many rectangles of area 3 appear on an 8 by 8 checkerboard?

3. Explain why there are (n + 1 − i)2 squares of side length i on an n by n
checkerboard.
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4. There are 36 rectangles of area 4 that appear on an n by n checkerboard.
Determine the value of n.

(Hint: do not forget that we must include 2 by 2 “rectangles” too!)

5. On a circle, n points are selected, and all the chords joining them in pairs
are drawn. Assuming that no three of the chords are concurrent (except at
the endpoints), how many points of intersection are there?

(Hint: the answer is a very simple binomial coefficient!)

6. In this chapter, we have developed a formula for the expression 12 + 22 +
· · · + n2, using a Telescoping Series. Use this technique to prove that 13 +
23 + · · · + n3 = n2(n+1)2

4 .

(Hint: start with the identity −k4 + (k + 1)4 = 4k3 + 6k2 + 4k + 1).

7. (a) Show that, for all positive integers n,

1
n(n + 1)

=
1
n
− 1

n + 1
.

(b) Determine a simple formula for the expression

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + · · · + 1

n(n + 1)

(c) Determine a simple formula for the expression

1
1 · 3 +

1
2 · 4 +

1
3 · 5 + · · · + 1

n(n + 2)

8. Evaluate the sum
2004∑
n=1

(−1)n · n2 + n + 1
n!

9. Prove that there are 2 · (n+2
3

)
squares on an n by (n + 1) checkerboard. Is

there a direct combinatorial proof of this formula?

10. Let m and k be positive integers. Let f(m, km) be the number of rectangles
on an m by km checkerboard. Determine all ordered pairs (m, k) for which
f(m, km) is a perfect square.

5.6 Investigation 1: Modified Checkerboards

In our original problem, we counted the number of squares and rectangles that
appear on an 8 by 8 checkerboard.

Extending this idea, consider what would happen if we modified the shape
of our checkerboard. For example, suppose that a corner square is removed from
the board:
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How many squares appear on this modified checkerboard? How many rectangles
appear?

Investigate this problem and see if you can come up with a general formula
that calculates the number of squares and rectangles that appear on an n by n
checkerboard if exactly one corner square is removed.

Explore this idea further. What happens if we remove a different unit square
from the board? For example, determine the number of squares and rectangles
that appear in the following diagram:

Investigate this idea, and see if you can extend this to other situations, such
as removing two or more unit squares from this checkerboard.

5.7 Investigation 2: Divisors and Cubes

Make a table with three columns. In the first column, list all the divisors of 24,
starting with 1 and ending with 24.

Beside each divisor, write down the number of divisors of that divisor. Write
down this information in the second column. (For example, 12 is a divisor of 24,
and the number 12 has six divisors.)

In the third column, write down the cubes of the numbers in the second
column. Finally, add up all the numbers in the second and third columns. We
arrive at the following table:
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Divisors of 24 Number of Divisors (Number of Divisors)3

1 1 1
2 2 8
3 2 8
4 3 27
6 4 64
8 4 64
12 6 216
24 8 512

SUM 30 900

Notice that 900 = 302. Is this a coincidence?
Replace 24 by each of the following numbers: 5, 8, 9, 16, 18, 30, 36, 72, and

create the three columns. What happens? There is a general theorem that arises,
that holds for every integer n. Make a conjecture, and try to prove it.

For more information on this problem, we refer you to Problems for Senior
High School Math: In Process, by Peter Taylor.

5.8 Investigation 3: Equilateral Triangles

Consider the following equilateral triangle of side length 3.
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................................................................................................................................................................................................................................................................................................................................................
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...........
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...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.................................................................................................................................................................................................................................................................................................................................

In this figure, there are exactly 13 triangles: nine triangles of side length 1,
three triangles of side length 2, and one triangle of side length 3. Note that all the
triangles are equilateral.

Let t(n) denote the number of triangles (of all sizes) that appear on an
equilateral triangle of side length n. Thus, t(3) = 13.

1. Determine the values of t(1) and t(2).

2. Show that t(4) = 27. (Note: we have one equilateral triangle of side length
2 that points downwards.)

3. Try to find a general formula for t(n). Can you prove it?
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6 Glossary

Here are some mathematical terms and techniques that have been used in this
book.

Binary Representation: The binary representation of n refers to the
number n written in base 2. For example, 57 = 25 + 24 + 23 + 20, so that the
binary representation of 57 is 111001, and we write this as 57 = 1110012.

Mathematical Induction: This is a method of proof that is commonly
used to prove that a statement is true for all positive integers n. For example,
Mathematical Induction can be used to prove the identity

1 + 3 + 5 + · · · + (2n − 1) = n2.

To prove such an identity using Mathematical Induction, you do the following:

1. Prove the statement is true for n = 1.

2. Prove that if the statement is true for n = k, then the statement must also
be true for n = k + 1.

Modular Arithmetic: Suppose a and b are integers. We say that a is congruent
to b modulo m if a and b both give the same remainder when divided by m. We
write this as a ≡ b (mod m).

For example, 5 ≡ 1 (mod 4), 17 ≡ 1 (mod 4), and 26 ≡ 0 (mod 13).
Note that a ≡ b (mod m) if and only if (a − b) is divisible by m.
Modular arithmetic may also be applied to polynomials with integer coeffic-

ients. For example, 2x3 + 4x2 + 30x − 7 ≡ 2x3 + x2 + 2 (mod 3).
Parity: This term describes a relation between a pair of integers. If the

integers are both odd or both even, they are said to have the same parity. If one
integer is odd and the other is even, they have different parity. For example, 6
and 20 have the same parity, whereas 6 and 21 do not.

Pigeonhole Principle: If n+1 pigeons fly into n pigeonholes, then at least
two pigeons must fly into the same pigeonhole. This can be generalized: if nk + 1
pigeons fly into n pigeonholes, then at least k + 1 pigeons must fly into the same
pigeonhole.

This idea has many useful applications. For example, if there are 37 people
in a room, you can immediately conclude that at least 4 people were born in the
same month. (This is the Pigeonhole Principle with n = 12 and k = 3).

Sigma Notation: For any function f defined on the positive integers, we
define

n∑
i=1

f(i) = f(1) + f(2) + f(3) + · · · + f(n).

For example, if f(i) = i3 for all positive integers i, we have

10∑
i=1

i3 = 13 + 23 + · · · + 103.
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