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Volume / Tome IV

INEQUALITIES

Edward J. Barbeau

University of Toronto

and

Bruce L.R. Shawyer

Memorial University of Newfoundland



The ATOM series

The booklets in the series, A Taste Of Mathematics (ATOM), are pub-
lished by the Canadian Mathematical Society (CMS). They are designed as en-
richment materials for high school students with an interest in and aptitude for
mathematics. Some booklets in the series will also cover the materials useful for
mathematical competitions at national and international levels.

La collection ATOM
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Foreward

This volume contains most of the inequalities that are useful in solving problems. Many
inequality problems admit several approaches. Some solutions are given, but other prob-
lems are left to the reader.

While we have tried to make the text as correct as possible, some mathematical and
typographical errors might remain, for which we accept full responsibility. We would be
grateful to any reader drawing our attention to errors as well as to alternative solutions.

It is the hope of the Canadian Mathematical Society that this volume may find its way to
high school students who may have the talent, ambition and mathematical expertise to
represent Canada internationally. Here are a few general resources for problem solving:

1. The International Mathematical Talent Search (problems can be obtained from the
author, or from the magazine Mathematics & Informatics Quarterly, subscriptions
for which can be obtained (in the USA) by writing to Professor
Susan Schwartz Wildstrom, 10300 Parkwood Drive, Kensington, MD USA 20895
<ssw@ umd5.umd.edu>, or (in Canada) to Professor Ed Barbeau, Department of
Mathematics, University of Toronto, Toronto, ON Canada M5S 3G3
<barbeau@ math.utoronto.ca>);

2. The journal Crux Mathematicorum with Mathematical Mayhem (subscriptions can
be obtained from the Canadian Mathematical Society, 577 King Edward, PO Box
450, Station A, Ottawa, ON, Canada K1N 6N5);

3. The book The Canadian Mathematical Olympiad 1969–1993 L’Olympiade
mathématique du Canada, which contains the problems and solutions of the first
twenty-five Olympiads held in Canada (published by the Canadian Mathematical
Society, 577 King Edward, PO Box 450, Station A, Ottawa, ON, Canada K1N
6N5);

4. The book Five Hundred Mathematical Challenges, by E.J. Barbeau, M.S.
Klamkin & W.O.J. Moser (published by the Mathematical Association of America,
1529 Eighteenth Street NW, Washington, DC 20036, USA).

5. The book The Mathematical Olympiad Handbook — an Introduction to
Problem Solving, by A. Gardiner (published by the Oxford University Press, ISBN
0-19-850105-6), which provides guided approaches to problems of the British Math-
ematical Olympiad.

Edward J. Barbeau Bruce L.R. Shawyer

Department of Mathematics Department of Mathematics and Statistics
University of Toronto Memorial University of Newfoundland
Toronto, ON St. John’s, NF
Canada M5S 3G3 Canada A1C 5S7
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1 Introduction

Inequality is, perhaps, even more basic than equality. One of the basic principles
of the real number system is the Law of Trichotomy, which states that every
pair of real numbers x, y satisfies exactly one of the following three relations:

x < y ,
x = y ,
x > y .

This means that the real number system is linearly-ordered, and this leads
to its representation as the real line.

Note that these inequalities do not make sense in the complex number sys-
tem. That system does not lend itself to any natural linear ordering. (There are
possible ways of linearly ordering the complex numbers, such as ordering by the
real part first, and then by the imaginary part, but these are, in many respects,
artificial orderings, and we shall not consider them in this booklet.)

As well as dealing with the strict inequalities as listed above, we shall be
interested in the non-strict versions:

x ≤ y ,
x ≥ y .

There are no hard and fast rules for establishing inequalities. However, we
shall give a number of guidelines that should prove useful.

1. Sometimes an inequality can be proved by working backwards from the con-
clusion, and reaching the given conditions.

This process must be used with great caution, to ensure that the logic will
be correct when statements in the argument are read in the proper order:
from condition to conclusion.

Be careful with your reasoning to ensure that all implications are in the
right direction. This is particularly important when two statements are not
equivalent.

Unfortunately, this is a common source of error.

2. To prove an inequality of the form A < B, or A ≤ B, it is often productive
to examine the expression B − A, and to try to prove that it is positive or
non-negative, respectively.

Alternatively, when A and B are positive, it can be productive to examine
one of the ratios A

B
or B

A
, and examine the relationship with 1.
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3. To prove something positive, examine it for positive valued expressions such
as:

(a) squares,
(b) functions known to have positive values, such as:

(i) exponentials, which are always positive,
(ii) logarithms, when the variable is greater than 1,
(iii) trigonometric functions on certain ranges,

(c) sums or products of positive terms,
(d) products of an even number of negative terms.

4. To prove a polynomial expression positive, first try to determine the roots,
so that you can find the factors. It is easy to determine if a linear factor
is positive or negative on an interval (between the roots), and so, if the
polynomial is positive or negative on that interval.

However, one must be careful about multiple roots here! Polynomials often
do not change sign at such a root.

5. Many inequalities turn out to be standard inequalities in some sort of dis-
guise. The next few sections will develop a number of the most common
standard inequalities.

6. Finally, there are inequalities that demand the application of standard in-
equalities in some sort of cunning way. Experience in solving inequality
problems, and a good sound knowledge of the standard inequalities are the
best helpers. Surprisingly often, the Arithmetic Mean-Geometric Mean In-
equality yields the desired result.

When writing up solutions involving inequalities, make sure that you proceed
in logical steps from what is known or established to what has to be determined.
It is a good idea to use logical connectives; for example

1. Since . . .;

2. If . . ., then . . .;

3. Therefore . . .;

4. . . . implies . . .;

5. . . . if and only if . . .;

6. =⇒;

7. ⇐⇒.

You must be careful to distinguish between implications that go only one way
(=⇒) and those that are reversible (⇐⇒). For example, 0 < x < y implies that
x2 < y2, but the reverse implication does not hold: note that 32 < (−4)2, but
3 �< −4.
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Many students writing up an inequality proof of A ≤ P , use a format like:

A ≤ P
⇐⇒ B ≤ Q
⇐⇒ C ≤ R

...
⇐⇒ K ≤ Z

where a slight manipulation takes A to B to C to . . . to K, and P to Q to R to
. . . to Z, where K ≤ Z is a known inequality.

Unless you are making a change to the required inequality to obtain a sim-
pler or more convenient form (such as might be obtained by clearing fractions or
squaring both sides), it is generally advisable to avoid this format. The format

A = B = C = · · · = K ≤ Z = · · · = R = Q = P

usually gives a better flow to the argument and is easier to follow.

When x and y are real numbers, and c is positive, the inequality x ≤ y is
equivalent to the inequality cx ≤ cy.

Often, in an argument with inequalities, it may be necessary to multiply or
divide by some quantity. Always check the possibility that the quantity may take
a zero or negative value. A zero value may indicate a special situation that must
be handled separately. Remember particularly that division by zero is a forbidden
operation.

Finally, remember that multiplication by a negative quantity reverses the
inequality. For example, if x ≤ y, then −2y ≤ −2x.

2 Absolute Value

The absolute value of a real number x is defined by:

|x| =
{

x if x ≥ 0 ,
−x if x < 0 .

Note that when x is negative, |x| = −x is positive. So |x| ≥ 0 for all
values of x. Also, x ≤ |x| and −x ≤ |x|, giving −|x| ≤ x ≤ |x|.

We also see that |x| =
√

x2 .

Geometrically, |x| is the distance from the number x (on the real number
line) to the origin 0. Also, |a − b| is the distance between the real numbers a and
b on the real number line.

The corresponding quantity for a complex number z = x + iy is called the
modulus, and is defined by

|z| =
√

x2 + y2 .
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It is clear that |x| ≤ |z| and |y| ≤ |z| . (Remember that the complex
numbers are not ordered by <.) Denoting, as usual, x = Rez and y = Imz, we
have |Rez| ≤ |z| and |Imz| ≤ |z| .

Geometrically, |z| is the distance (in the complex plane) from the point z
to the origin 0. If the complex plane is thought of as the Euclidean plane, then,
|z| is the distance of the point (x, y) to the origin (0, 0).

Also |z − w| is the distance between the points z and w in the complex
plane.

We also have |z| =
√

zz, where z = x − iy is the complex conjugate
of z. We find the complex conjugate of any complex number by replacing every
occurrence of i with −i. The complex conjugate of the complex conjugate is the
number with which we started. That is, we have that z = z.

Finally, we note that

1

z
=

z

zz
=

z

|z|2 .

3 The Triangle Inequality

The Triangle Inequality states:

|x + y| ≤ |x| + |y| .

A neat way to prove this is to start with the basic principle that,
when c is positive, the inequality |x| ≤ c is equivalent to the inequalities −c ≤
x ≤ c.

From −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|, it follows that

− (|x| + |y|) ≤ x + y ≤ |x| + |y| ,

so that, by the principle mentioned above, it follows that

|x + y| ≤ |x| + |y| .

Alternatively, the inequality can be proved from(|x| + |y|)2 = |x|2 + |y|2 + 2|x| |y|
= x2 + y2 + 2|xy|
≥ x2 + y2 + 2xy

=
∣∣x + y

∣∣2 .
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The general form of the Triangle Inequality is∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ ≤
n∑

k=1

|xk| .

This can be proved in a similar manner.1

A version of the Triangle Inequality is true in other settings, such as for
complex numbers and for vectors. The proof given above is not valid in these
settings, for it depends on order properties of the real numbers.

For complex numbers with z = x + iy and w = u + iv, we have

|z + w| ≤ |z| + |w| .

This follows from

|z + w|2 = (z + w)(z + w)

= (z + w)(z + w)

= (zz) + (ww) + (zw + zw)

= |z|2 + |w|2 + (zw + zw)

= |z|2 + |w|2 + 2Re(zw)

≤ |z|2 + |w|2 + 2|zw|
= |z|2 + |w|2 + 2|zw|
= |z|2 + |w|2 + 2|z| |w|
=

(|z| + |w|)2 .

The geometry lurking behind this is that the length of a side of a triangle is
less than or equal to the sum of the lengths of the other two sides.

�
�
���

�����

�������

�
�
�
�
�
�
�
�������

�����������
z

w

z + w

For vectors �a = (a1, a2, . . . , an), the length (or norm) is defined by

|�a| =
√

a2
1 + a2

2 + · · · + a2
n .

1 Those unfamiliar with “sigma” notation should see page 62.
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So, for two vectors �a = (a1, a2, . . . , an) and �b = (b1, b2, . . . , bn), the Triangle
Inequality states

|�a +�b| ≤ |�a| + |�b| .

In two dimensions, geometrically, this states that the length of any side of a triangle
is less than or equal to the sum of the lengths of the other two sides.

The proof of this depends on the Cauchy-Schwarz Inequality which is proved
later in Section 8.

4 Means

First, some definitions of means.

4.1 Arithmetic Mean (AM)

The Arithmetic Mean (AM), m, of two numbers a, b, is the average of the two

numbers, m =
a + b

2
. This has the geometric interpretation of the mid-point of

the line segment joining two points on the number line.

� � �

a bm = a+b
2

Similarly, the AM of n numbers a1, a2, . . ., an, is the average of the numbers,

a1 + a2 + · · · + an

n
.

This can also be written as AM(a1, a2, . . . , an) =
1
n

n∑
k=1

ak .

Note that the sum of the differences between the numbers and the AM is
zero:

n∑
k=1

(ak − AM(a1, a2, . . . , an)) = 0 .

4.2 Geometric Mean (GM)

The Geometric Mean (GM), g, of two numbers a, b, is g =
√

ab. This has a
geometric interpretation from right triangles. The length of the altitude from the
vertex at the right angle is the geometric mean of the lengths of the segments into
which it divides the hypotenuse.
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g

a b

P

Q RZ

Here is a geometric representation. Draw the perpendicular, PZ, from P to the
hypotenuse QR of right triangle PQR. Let PZ = g, QZ = a and ZR = b.
From the similar triangles PQZ and RPZ, we see that g2 = ab.
Similarly, the GM of n numbers a1, a2, . . ., an, is

(
a1a2 . . . an

) 1
n . This is also

written as

(
n∏

k=1

ak

) 1
n

.

4.3 Root-Mean-Square (RMS)

The Root-Mean-Square (RMS), r, of two numbers a, b is

r =

√
a2 + b2

2
. This has a geometric interpretation from right triangles.

If a, b are the two sides of a right triangle adjacent to the right angle (the legs of
the right triangle) and r is the RMS of a and b, then the right triangle with legs
r and r has the same hypotenuse length as the original right triangle.

�
�

�
�

�
�

��

a

�������������
�
�
�
�
�

b

	
	

	
	

	
	

		

r r

............................................
....

.............
...............................

It is interesting to note that

2m2 = g2 + r2 ,

so that the arithmetic mean is the root-mean-square of the geometric mean and
the root-mean-square of the two numbers.

Similarly, the RMS of n numbers a1, a2, . . ., an, is the quantity
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(
a2

1 + a2
2 + · · · + a2

n

n

)1/2

. This is also written as

√√√√ 1

n

n∑
k=1

a2
k.

We show that

min(a1, a2, . . . , an) ≤ RMS ≤ max(a1, a2, . . . , an) . (1)

Suppose, without loss of generality, that

0 < a1 ≤ a2 ≤ . . . ≤ an .

Then max(a1, a2, . . . , an) = an , and min(a1, a2, . . . , an) = a1 ;
and (1) becomes equivalent to

na2
1 ≤ a2

1 + a2
2 + · · · + a2

n ≤ n a2
n .

But this is easily seen from the monotonicity 2 of {ak}.

The RMS is a particular case of the Power Mean, which is discussed in
Section 4.5. It is the Power Mean of order 2.

4.4 Harmonic Mean (HM)

The Harmonic Mean (HM), h, of two positive numbers a, b, is h =
2ab

a + b
. This

may not seem a natural quantity, but it comes from

1

HM
=

1

2

(
1

a
+

1

b

)
= AM

(
1

a
,
1

b

)
.

Note that g2 = mh, so that the geometric mean of two positive numbers is also
the geometric mean of their arithmetic and harmonic means.

Similarly, the HM of n positive numbers a1, a2, . . ., an, is given by

1

HM
=

1

n

(
n∑

k=1

1

ak

)
.

This gives HM =
n(a1 + a2 + · · · + an)

Sn−1

, where

Sn−1 =
∑

a1a2 . . . âk . . . an ,

the sum of all products of n − 1 of the numbers a1, a2, . . ., an (the
“hat” ̂ denotes the deletion of the symbol underneath it).

We note that

min(a1, a2, . . . , an) ≤ HM ≤ max(a1, a2, . . . , an) .
2 A sequence {ak} is said to be monotone non-decreasing if ak ≤ ak+1 for all k, or monotone

non-increasing if ak ≥ ak+1 for all k.
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4.5 Power Mean of Order p (PM(p))

The Power Mean of order p,
(
PM(p)

)
, for a set of n positive numbers, is defined

by:

(
PM(p)

)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

=
(

1
n

∑n
k=1 ap

k

)1/p
p �= 0, |p| < ∞ ,

=
(∏n

k=1 ak

)1/n
p = 0 ,

= min {ak} p = −∞ ,

= max {ak} p = ∞ .

It turns out that PM(p) is a non-decreasing function of p. This will be
established in Section 14.

4.6 Weighted Means (WAM), (WGM)

Positive real numbers {w1, w2, . . ., wn} such that w1 + w2 + · · · + wn = 1,
are called weights. Clearly, any set of positive numbers can be converted into a set
of weights, simply by dividing by their sum. Students will be familiar with this
idea from the sort of formulae used for calculating marks.

The weighted arithmetic mean (WAM) of n numbers a1, a2, . . ., an, is
given by

WAM =
n∑

k=1

wkak = w1a1 + w2a2 + · · · + wnan .

Similarly, the weighted geometric mean (WGM) of n numbers a1, a2, . . .,
an, is given by

WGM =
n∏

k=1

(ak)wk

= (a1)w1 (a2)w2 . . . (an)wn .

4.7 AM–GM Inequality

The AM–GM Inequality, for two positive numbers is

a + b

2
≥

√
ab or AM ≥ GM ,

with equality if and only if a = b.

Write a = α2 and b = β2. Then

(α − β)2 = α2 + β2 − 2αβ ≥ 0 ,
so that

α2 + β2

2
≥ αβ ,
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with equality if and only if α = β .

Here is a geometric way of looking at the inequality. The hypotenuse of a
right triangle is divided into lengths a and b by the perpendicular from the right
angle. The geometric mean, g, is the length of the perpendicular. The arithmetic
mean, m, is the radius of the circumcircle.
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.................
.................

.................
.................

.................
.................

............................................................................................................................................................................................................................

g

a b

m

The AM–GM Inequality, for three positive numbers is

a + b + c

3
≥ 3

√
abc or AM ≥ GM ,

with equality if and only if a = b = c .

This is not so easy to see. But if we set a = u3, b = v3, c = w3, we are
then asked to show that

u3 + v3 + w3 − 3uvw ≥ 0 .

It turns out that we can factor the left side of this inequality!

u3 + v3 + w3 − 3uvw = (u + v + w)
(
u2 + v2 + w2 − uv − vw − wu

)
.

Since u, v, w are all positive, (u + v + w) is positive, so we need to show that
the second factor is also positive. But we can write the second factor as

1

2

(
(u − v)2 + (v − w)2 + (w − u)2

)
,

which is clearly positive.

The general form of the AM–GM Inequality is:

1

n

n∑
k=1

ak ≥
(

n∏
k=1

ak

)1/n

.

However, the proof of the general AM–GM Inequality is best obtained by a
cunning trick. First we see that it is straight-forward to obtain the AM–GM for
four numbers, by applying the AM–GM for two numbers twice. This is the basis
of a proof by induction 3 for the AM–GM Inequality for 2N numbers. The reader

3 See, for example, ATOM II.
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should complete this proof! So we now know that

1

2N

2N∑
k=1

ak ≥
⎛⎝ 2N∏

k=1

ak

⎞⎠1/2N

.

To complete the proof for any positive integer n, we first observe that if n is a
power of 2, then we have a proof. Otherwise, n must lie strictly between two pow-
ers of two; that is, there exists a positive integer N such that 2N−1 < n < 2N .

Let g =

(
n∏

k=1

ak

)1/n

, and define an+1 = an+2 = . . . = a2N = g .

So we now have a set of 2N numbers, to which we can apply the AM–GM In-
equality! This gives:

a1 + a2 + · · · + an + g + g + · · · + g

2N

≥ (
a1.a2 . . . an . g.g . . . g

)1/2N

,

so that

a1 + a2 + · · · + an + g(2N − n)

2N

≥
(

a1.a2 . . . an . (g)2
N −n

)1/2N

,

or

a1 + a2 + · · · + an

2N
+ g

(
1 − n

2N

)
≥ (

a1.a2 . . . an

)1/2N

× (g)
1−(n/2N)

= (g)
n/2N

× (g)
1−(n/2N)

= g .

Thus,

a1 + a2 + · · · + an

2N

≥ ng

2N

and the general form of the AM–GM Inequality follows.

There are similar inequalities for weighted means; we shall obtain these in a
very general setting in Section 14.
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4.8 HM–GM Inequality

It is easy to see that the harmonic mean is less than or equal to the geometric
mean. This follows from the AM–GM Inequality, since 2

√
ab ≤ a + b implies

that
2ab

a + b
≤

√
ab .

The proof that HM ≤ GM for n positive numbers can readily be obtained by
applying the AM–GM Inequality to the set of numbers 1/a1, 1/a2, . . ., 1/an .

4.9 AM–RMS Inequality

Since (a − b)2 ≥ 0 implies that 2ab ≤ a2 + b2, we see that

(a + b)2 = a2 + b2 + 2ab ≤ 2(a2 + b2) .

Similarly

(a1 + a2 + · · · + an)2 ≤ n(a2
1 + a2

2 + · · · + a2
n) ,

and the inequality: AM ≤ RMS follows at once.

4.10 Summary

min ≤ HM ≤ GM ≤ AM ≤ RMS ≤ max .

5 Tchebychev’s Inequality

For a sequence a = {ak}n
k=1, we have already defined the arithmetic mean by

AM(a) =
1

n

n∑
k=1

ak .

Here, we shall deal with two sequences, a = {an}n
k=1 and b = {bn}n

k=1,
and their term-wise product, which is the sequence {anbn}n

k=1 .

Tchebychev’s Inequality states that if the sequences a and b satisfy
a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, then(

1

n

n∑
k=1

ak

)(
1

n

n∑
k=1

bk

)
≤ 1

n

n∑
k=1

akbk ,

or
n∑

k=1

ak

n∑
k=1

bk ≤ n
n∑

k=1

akbk .

In words, this is: the product of the arithmetic means of two mono-
tonic non-decreasing sequences is less than or equal to the arithmetic
mean of their term-wise product.
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We give one of several ways to prove this. Note that
n∑

µ=1

n∑
κ=1

(
aµbµ − aµbκ

)
=

n∑
µ=1

(
n aµ bµ − aµ

n∑
κ=1

bκ

)

= n

n∑
κ=1

aκ bκ −
n∑

κ=1

aκ

n∑
κ=1

bκ .

Note also that
n∑

µ=1

n∑
κ=1

(
aκbκ − aκbµ

)
=

n∑
κ=1

n∑
µ=1

(
aκbκ − aκbµ

)

=
n∑

µ=1

n∑
κ=1

(
aµbµ − aµbκ

)
.

For the first equality, we have interchanged the order of summation; for the second
equality, we have relabelled the indices.
Hence

n

n∑
κ=1

aκ bκ −
n∑

κ=1

aκ

n∑
κ=1

bκ

=
1

2

n∑
µ=1

n∑
κ=1

(
aµbµ − aµbκ + aκbκ − aκbµ

)
=

1
2

n∑
µ=1

n∑
κ=1

(aµ − aκ)(bµ − bκ) ≥ 0 ,

since (aµ − aκ)(bµ − bκ) ≥ 0 for µ, κ = 1, 2, . . ., n .

The general form for a set of p sequences a(k) with a
(k)
1 ≤ a

(k)
2 ≤ . . . ≤ a(k)

n , is

AM(a(1)) AM(a(2)) . . . AM(a(p)) ≤ 1

n

n∑
k=1

a
(1)
k a

(2)
k . . . a

(p)
k ,

which can be written as
p∏

j=1

(
1

n

n∑
µ=1

a(j)
µ

)
≤ 1

n

n∑
µ=1

p∏
j=1

a(j)
µ ,

or
1

np

p∏
j=1

n∑
µ=1

a(j)
µ ≤ 1

n

n∑
µ=1

p∏
j=1

a(j)
µ .

In words, this is: the product of the arithmetic means of a finite
set of monotonic non-decreasing sequences is less than or equal to the
arithmetic mean of their termwise product. This can be established by
induction on the number of sequences.
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6 Bernoulli’s Inequality

Suppose that x > −1 and that n is a natural number. Then Bernoulli’s Inequality
states

(1 + x)n ≥ 1 + nx .

We shall prove this by induction on n.

TEST. The inequality is clearly true for n = 1.

STEP. Assume the inequality true for n = k. This gives

(1 + x)k ≥ 1 + kx .

Multiply this inequality by (1 + x) (being positive, the inequality is preserved:
here we need the condition x > −1). This gives

(1 + x)k+1 ≥ (1 + x)(1 + kx) = 1 + (k + 1)x + k x2 ≥ 1 + (k + 1)x .

Hence, by induction, the inequality is proved.

This can be extended to a set of distinct values as follows:

Suppose that n ≥ 2 and that x1, x2, . . ., xn are non-zero real numbers which
all have the same sign and which satisfy xk ≥ −2. Then

(1 + x1) (1 + x2) . . . (1 + xn) > 1 + x1 + x2 + · · · + xn .

We shall prove this by induction on n.

TEST. If n = 2, since x1 and x2 have the same sign, we have

(1 + x1) (1 + x2) = 1 + x1 + x2 + x1x2 > 1 + x1 + x2 .

STEP. Assume the inequality true for n = k. Then

(1 + x1) (1 + x2) . . . (1 + xk) (1 + xk+1)
− (1 + x1 + x2 + · · · + xk + xk+1)

=
(
(1 + x1) (1 + x2) . . . (1 + xk) − (1 + x1 + x2 + · · · + xk)

)
+ xk+1

(
(1 + x1) (1 + x2) . . . (1 + xk) − 1

)
.

The first term on the right is positive by hypothesis.

If each xk is positive, then the second term is positive.

If each xk satisfies −2 ≤ xk < 0, then the product

(1 + x1) (1 + x2) . . . (1 + xk) ≤ 1 ,

and the second term, being the product of two non-positive quantities, is non-
negative.

Hence, by induction, the inequality is proved.
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Here is an alternative argument, also by induction.

The case n = 2 is proved as above. Suppose that n ≥ 3.

Suppose that all xj are negative and at least two of them, say x1 and x2

lie in the interval [−2, −1]. Then

(1 + x1) (1 + x2) . . . (1 + xn) ≥ −1 = 1 − 1 − 1 > 1 + x1 + x2 + · · · + xn

since −2 ≤ xj < 0 and |1 + xj| ≤ 1 for 1 ≤ j ≤ n.

Henceforth, we assume that either

(i) all xj are positive (1 ≤ j ≤ n), or

(ii) all xj are negative with −2 ≤ x1 < 0 and −1 < xj < 0
(2 ≤ j ≤ n).

As an induction hypothesis, assume that the result holds for n = k ≥ 2.

Then 1 + xk+1 > 0, so that

(1 + x1) (1 + x2) . . . (1 + xk) (1 + xk+1)
> (1 + x1 + x2 + · · · + xk) (1 + xk+1) by the induction hypothesis,
> 1 + x1 + x2 + · · · + xk + xk+1 by the case n = 2.

The result follows by induction.

The general form of Bernoulli’s Inequality states that, for −1 < x �= 0,

(1 + x)α < 1 + α x for 0 < α < 1 ;
(1 + x)α > 1 + α x for α > 1 or α < 0 .

7 Abel’s Inequality

Suppose that a1, a2, . . ., an and b1 ≥ b2 ≥ . . . ≥ bn ≥ 0 are real numbers.
Let

m = min
1≤k≤n

{
k∑

µ=1

aµ

}
, M = max

1≤k≤n

{
k∑

µ=1

aµ

}
.

Then

m b1 ≤
n∑

µ=1

aµbµ ≤ M b1 .
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Proof. Let sk =
k∑

µ=1

aµ, so that m ≤ sk ≤ M . We use “partial summation”:

n∑
µ=1

aµbµ = s1b1 +
n∑

µ=2

bµ(sµ − sµ−1)

=
n−1∑
µ=1

sµ(bµ − bµ+1) + sn bn

≤
n−1∑
µ=1

M(bµ − bµ+1) + M bn = M b1 .

The other side is proved similarly.

8 Cauchy-Schwarz Inequality

For real sequences,∣∣∣∣∣
n∑

k=1

(akbk)

∣∣∣∣∣ ≤
(

n∑
k=1

a2
k

)1/2 (
n∑

k=1

b2
k

)1/2

.

To obtain this inequality, form the polynomial
n∑

k=1

(akx + bk)2, which,

when expanded, gives

x2

(
n∑

k=1

a2
k

)
+ 2 x

(
n∑

k=1

ak bk

)
+

(
n∑

k=1

b2
k

)
.

This is a quadratic polynomial in x which, being non-negative, either has no real
roots or coincident roots (in the case that bk/ak has the same value for each k).
Hence, its discriminant is non-positive, giving(

n∑
k=1

a2
k

)(
n∑

k=1

b2
k

)
−
(

n∑
k=1

akbk

)2

≥ 0 ,

which proves the result.

A more direct approach is to note that the left side of this inequality can be
expressed as a sum of squares:∑

1≤j,k≤n

(ajbk − akbj)
2 .
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9 Newton’s Inequalities

Let x1, x2, . . ., xn be positive real numbers. For each k = 1, 2, . . ., n, let

uk =
1(n
k

) ∑x1x2 . . . xk and vk = u
1/k
k ,

where
∑

x1x2 . . . xk denotes the sum of all k–fold products of distinct xj . This
sum has

(n
k

)
terms, so that uk is the average of the k–fold products. In particular,

u1 is the arithmetic mean of the xk, and vn is the geometric mean of the xk.
Then (Newton’s Inequalities)

vn ≤ vn−1 ≤ . . . ≤ v2 ≤ v1 .

Outline of the proof

Before embarking on the proof properly, we need a little calculus:

1. The derivative of the polynomial

p(t) = antn + an−1tn−1 + · · · + aktk + · · · + a1t + a0 ,

is equal to

p′(t) = nantn−1 + (n − 1)an−1tn−2 + · · · + kaktk−1 + · · · + a1 .

2. Rolle’s Theorem
If p(a) = p(b) = 0, then there exists a number, c, between a and b for
which p′(c) = 0 .

NOTE: Rolle’s Theorem is more generally true; it applies to any function, contin-
uous on the closed interval [a, b] and differentiable on the open interval (a, b).

In words, Rolle’s Theorem says that the graphs of such functions must have a
point with level tangent in the open interval (a, b).

A degenerate case of Rolle’s theorem occurs when a = b, so that p(t) has a double
root at a. Then p′(a) = 0.

Corollary to Rolle’s Theorem

If a polynomial of degree n has n real roots (counting multiplicity of roots), then
p′(t) has n − 1 real roots, and, for each k (1 ≤ k ≤ n − 1), the kth derivative
of p(t) has n − k real roots.

We now proceed with the proof:

(a) Let p(t) =
n∏

k=1

(t − xk). Then

p(t) = tn +
n∑

k=1

(−1)k

(
n

k

)
uktn−k .
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(b) Applying Rolle’s Theorem, we see that the (n − 2)nd derivative

p(n−2)(t) = 1
2
(n!)

(
t2 − 2u1t + u2

)
has real roots, and so, from the discriminant condition on this quadratic, we
see that

u2 ≤ u2
1 .

(c) Note that (
n

2

)
un−2

un

=
1

x1x2

+
1

x1x3

+ · · · +
1

xn−1xn

,(
n

1

)
un−1

un

=
1
x1

+ · · · +
1

xn

.

Applying (b) to
1
x1

, . . .,
1

xn

yields

un−2un ≤ u2
n−1 .

(d) The result of (b) and (c) can be generalized to obtain

uk−1uk+1 ≤ u2
k

for k = 2, 3, . . ., n − 1 .

This is done using induction on n, the number of the xk.

TEST The result holds for n = 2 and n = 3.

STEP Suppose that the result holds when the number of xk does not exceed n−1.

By differentiating the second expression for p(t) in (a), we find that

p′(t) = n

(
tn−1 +

n−1∑
k=1

(−1)k

(
n − 1

k

)
uktn−k−1

)
.

Suppose that the roots of p′(t) are y1, . . ., yn−1. For 1 ≤ k ≤ n − 1,
define zr by (

n − 1
k

)
zk =

∑
y1y2 . . . yk ,

so that the zk are to the yj what the uk are to the xj.

The argument to establish the second expression for p(t) in (a) can be used
on p′(t) to obtain

p′(t) = n

(
tn−1 +

n−1∑
k=1

(−1)k

(
n − 1

k

)
zktn−1−k

)
,

whereupon we have that uk = zk for 1 ≤ k ≤ n − 1. Now we use the
induction hypothesis on y1, y2, . . ., yn−1 to obtain that, for 2 ≤ k ≤ n−2,

uk−1uk+1 ≤ u2
k .
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(e) From (b), (c) and (d), we find that, for 1 ≤ k ≤ n − 1,

u2 (u1u3)
2 (u2u4)

3
. . . (uk−1uk+1)

k ≤ u2
1u4

2u6
3 . . . u2k

k ,

from which we obtain

uk
k+1 ≤ uk+1

k or, recalling that vk = u
1/k
k , vk+1 ≤ vk .

10 Young’s Inequality

Young’s Inequality requires some knowledge of calculus, but since it leads to some
nice results, we give it here.

We need a function, f(x), positive and strictly increasing on an interval
[0, c]. We may assume, without loss of generality, that f(0) = 0. Let Q have
coordinates (a, b) with 0 < a < c, 0 < b < f(c).

B (0, b)

O

Q

A (a, 0)

R

C (c, 0)

P

(c, f(c))

�

�

�

�

�

�

�

�

		
	

	

	
		

	
	

		

	
	

	
	

	
	

	
		

	
	

	
		

	
	

		

The area of the region OAP is given by
∫ a

0

f(x) dx, and the area of the region

OBR is given by
∫ b

0

f−1(x) dx. The sum of these areas exceeds the area of the

rectangle OAQB — the resulting excess is shaded. This gives Young’s Inequality∫ a

0

f(x) dx +
∫ b

0

f−1(x) dx ≥ ab .

Equality holds if and only if b = f(a) .

As an application of Young’s Inequality, take f(x) = xp−1 with p > 1.
This gives ∫ a

0

xp−1 dx +
∫ b

0

x1/(p−1) dx ≥ ab ,

so that
1

p
ap +

p − 1

p
bp/(p−1) ≥ ab ,
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which can be re-written as

1
p

ap +
1
q

bq ≥ ab , (2)

where a, b ≥ 0, p > 1,
1

p
+

1

q
= 1.

11 Hölder’s Inequality

Hölder’s Inequality is a generalisation of the Cauchy-Schwarz Inequality.

For positive sequences, and with
1

p
+

1

q
= 1, (p > 1), we have

n∑
k=1

(akbk) ≤
(

n∑
k=1

ap
k

)1/p (
n∑

k=1

bq
k

)1/q

.

This can be obtained from (2) in section 10, by replacing a and b with

aµ(
n∑

k=1

ap
k

)1/p
and

bµ(
n∑

k=1

bq
k

)1/q
,

respectively. This gives

ap
µ

p
n∑

k=1

ap
k

+
bq

µ

q
n∑

k=1

bq
k

≥ aµ bµ(
n∑

k=1

ap
k

)1/p ( n∑
k=1

bq
k

)1/q
.

We sum this over µ from 1 to n to get

1 =
1

p
+

1

q
≥

n∑
k=1

ak bk(
n∑

k=1

ap
k

)1/p ( n∑
k=1

bq
k

)1/q
,

from which Hölder’s Inequality follows.

12 Minkowski’s Inequality

Minkowski’s Inequality is a generalisation of the Triangle Inequality.
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For positive sequences, and with p > 1

(
n∑

k=1

(ak + bk)p

)1/p

≤
(

n∑
k=1

ap
k

)1/p

+

(
n∑

k=1

bp
k

)1/p

. (3)

We note that

(ak + bk)p = ak(ak + bk)p−1 + bk(ak + bk)p−1 , , (4)

so that
n∑

k=1

(ak + bk)p =
n∑

k=1

ak(ak + bk)p−1 +
n∑

k=1

bk(ak + bk)p−1 .

We apply Hölder’s Inequality to each sum on the right side of (4) and get

n∑
k=1

ak(ak + bk)p−1 ≤
(

n∑
k=1

ap
k

)1/p ( n∑
k=1

(ak + bk)q(p−1)

)1/q

,

n∑
k=1

bk(ak + bk)p−1 ≤
(

n∑
k=1

bp
k

)1/p ( n∑
k=1

(ak + bk)q(p−1)

)1/q

.

Putting these inequalities into (4), and noting that q(p − 1) = p, leads to the
required inequality.

Note that Minkowski’s Inequality (3) is an equality if we allow p = 1. For
0 < p < 1, the inequality is reversed.

13 A Comparison Technique

Suppose that we have to prove an inequality of the form

f(x1, x2, . . . , xn) ≤ g(x1, x2, . . . , xn) ,

where f and g are symmetric functions and the xi are non-negative real variables.
We can look at the problem in the following light: over all vectors (x1, x2, . . . , xn)
for which g(x1, x2, . . . , xn) is a specified constant k, maximize f(x1, x2, . . . , xn)
and show that this maximum does not exceed k. (A similar minimization problem
can be formulated if “≤” is replaced by “≥”.)

We begin by showing where the maximum of f , under the constraints, cannot
occur, by replacing a test vector (x1, x2, . . . , xn) by a vector
(y1, y2, . . . , yn), derived from (x1, x2, . . . , xn) in some way so that

g(x1, x2, . . . , xn) = g(y1, y2, . . . , yn) = k ,
while f(x1, x2, . . . , xn) < f(y1, y2, . . . , yn) .



22

For example, if it turns out that f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn)
when x1 = x2 = · · · = xn, then we may wish to show that the maximum of f
cannot occur if, say, x1 �= x2. Given such a test vector (x1, x2, . . . , xn), we may
try a new test vector (y1, y2, . . . , yn) where yi = xi (3 ≤ i ≤ n) and y1 and
y2 are each equal to some mean of x1 and x2 (for example, the AM of the GM).

Then the structure of the reasoning is as follows:

1. the maximum of f(x1, x2, . . . , xn), subject to g(x1, x2, . . . , xn) = k,
must occur somewhere. Often this requires a result in analysis to the effect
that the continuous function f(x1, x2, . . . , xn) assumes its maximum value
on a closed and bounded set of vectors for which
g(x1, x2, . . . , xn) = k;

2. the maximum cannot occur if the xi are not all equal;

3. hence the maximum must occur when the xi are all equal and
f(x1, x2, . . . , xn) = k.

4. Thus, f(x1, x2, . . . , xn) ≤ g(x1, x2, . . . , xn) for all (x1, x2, . . . , xn),
since we can apply the reasoning to each value of k assumed by
g(x1, x2, . . . , xn).

We illustrate this technique with two examples.

Example 1. Suppose that n ≥ 2 and let u1, u2, . . ., un be real numbers, all
not less than 1. Prove that

1

1 + u1

+
1

1 + u2

+ · · · +
1

1 + un

≥ n

1 + n
√

u1u2 . . . un

.

Solution. We see that equality occurs when u1 = u2 = · · · = un. Let k be an
arbitrary real number, not less than 1, and let

S = {(u1, u2, . . . , un) : u1u2 · · · un = k, u1 ≥ 1, u2 ≥ 1, . . . ,un ≥ 1 } .

Now, S is a closed and bounded subset of real n–space, and the continuous function

f(u1, u2, . . . , un) =
∑

1≤i≤n

1

1 + ui

assumes its minimum value somewhere

in S.

Suppose, with no loss of generality, that u1 �= u2. Suppose that
u1 = a2, and u2 = b2. Keeping the geometric mean on the right side in mind,
we define v1 and v2 so that v1 = v2 and v1v2 = u1u2. Thus v1 = v2 = ab.
Let vi = ui (3 ≤ i ≤ n). Now,

f(u1, u2, . . . , un) − f(v1, v2, . . . , vn) =
1

1 + a2
+

1

1 + b2
− 2

1 + ab

=
(ab − 1)(a − b)2

(1 + a2)(1 + b2)(1 + ab)
≥ 0 .
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The desired result follows.

In this problem, we can actually complete the argument without recourse to
the properties of continuous functions. We first establish the result when n is a

power of 2. For the case n = 2, we have already shown that
1

1 + a2
+

1

1 + b2
≥

2

1 + ab
. Suppose that the inequality is established for n = 2m−1. Let u1, u2,

. . ., u2m be given and define v1 =
√

u1u2, v2 =
√

u3u4, . . ., vk = √
u2k−1u2k,

. . ., v2m−1 = √
u2m−1u2m .

Then
2m∑
i=1

1
1 + ui

≥
2m−1∑
i=1

2
1 + vi

≥ 2

(
2m−1

1 + 2m−1√v1v2 · · · v2m−1

)
=

2m

1 + 2m√u1u2 · · · u2m

.

By induction, we have that the inequality holds for n = 2m, where m is a
positive integer.

Now, let n be arbitrary with 2m−1 < n < 2m. Given u1, u2, . . ., un,
define vi = ui for 1 ≤ i ≤ n, and vi = (u1u2 · · · un)1/n for n + 1 ≤ i ≤ 2m.
Then

n∑
i=1

1

1 + ui

+
2m − n

1 + n
√

u1u2 · · · un

=
2m∑
i=1

1

1 + vi

≥ 2m

1 + (v1v2 · · · v2m)1/2m
.

Since

v1v2 · · · v2m = (u1u2 · · · un)(u1u2 · · · un)(2
m−n)/n = (u1u2 · · · un)2

m/n ,

we obtain
n∑

i=1

1

1 + ui

+
2m − n

1 + n
√

u1u2 · · · un

≥ 2m

1 + n
√

u1u2 · · · un

,

and the result follows.

Example 2. (IMO, 1999) Determine the smallest real number C for which∑
1≤i≤j≤n

xixj

(
x2

i + x2
j

)
≤ C

(
x1 + x2 + · · · + xn

)4
for each positive integer n ≥ 2 and non-negative real x. Determine when equality
occurs.

Solution. The inequality is homogeneous of degree 4, so it is enough to deal with
the case x1 +x2 + · · ·+xn = 1. The minimum value of C is the maximum value
of h(x1, x2, . . . , xn) =

∑
1≤i≤j≤n

xixj

(
x2

i + x2
j

)
subject to the constraint x1+

x2 + · · · + xn = 1.
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Let Cn be this maximum over n–tuples (x1, x2, . . . , xn). Since these n–
tuples contain some with their last n − m entries equal to 0, it is true that
Cm ≤ Cn when m < n.

To show the reverse inequality, we need to show that each value of h does
not exceed its value when some of the xi are equal to 0.

Suppose that n ≥ 3 and that x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ xn ≥ 0.
When n = 3, x1 ≥ 1

3
, so that x2 + x3 ≤ 2

3
; when n ≥ 4, then xn ≤ 1

n
and

xn−1 ≤ 1
n−1

, so that xn + xn−1 ≤ 1
4

+ 1
3

< 3
4
.

Since h(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

x3
i xj + x3

jxi =
n∑

i=1

x3
i

⎛⎝∑
j �=i

xj

⎞⎠
=

n∑
i=1

x3
i (1 − xi) =

n∑
i=1

(
x3

i − x4
i

)
,

it follows that

h(x1, x2, . . . , xn−2, xn−1 + xn, 0) − h(x1, x2, . . . , xn−2, xn−1, xn)

=
(
xn−1 + xn

)3 − (
xn−1 + xn

)4 − x3
n−1 + x4

n−1 − x3
n + x4

n

= xn−1xn

(
3xn−1 + 3xn − 4x2

n−1 − 6xn−1xn − 4x2
n

)
= xn−1xn

((
xn−1 + xn

) (
3 − 4

(
xn−1 + xn

))
+ 2xn−1xn

)
≥ 0 .

Since h(x1, x2, . . . , xn−2, xn−1 + xn, 0) ≤ Cn−1 for each h, it follows that
Cn ≤ Cn−1 for each n ≥ 3.

We now have that Cn = C2. Suppose that x1 + x2 = 1. Then x2
1 + x2

2 =
(x1 + x2)2 − 2x1x2 = 1 − 2x1x2 and

x1x2

(
x2

1 + x2
2

)
= 1

2

(
2x1x2

(
1 − 2x1x2

)) ≤ 1
8

,

with equality if and only if 2x1x2 = 1
2
; that is, x1 = x2 = 1

2
. Summing up, we

can say that the value of C desired in the problem is 1
8

and equality occurs if and
only if x1 = x2 and x3 = x4 = · · · = xn = 0.

At the IMO, a much simpler solution to this problem came to light.

Let S = x2
1 + x2

2 + · · · + x2
n. Then∑

1≤i≤j≤n

xixj

(
x2

i + x2
j

) ≤
∑

1≤i≤j≤n

xixjS = 1
2

(
S × 2

∑
xixj

)

≤ 1

2

(
S + 2

∑
xixj

2

)2

=
1

2

(x1 + x2 + · · · + xn)4

4
where equality occurs in both places if and only if at most two of the xi are
non-zero, and these two xi are equal in value.
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14 Averages and Jensen’s Inequality

Many of the inequalities established so far can be put into a very general setting
with arguments that are brief and elegant. The setting for these results is the
space of real-valued functions on an arbitrary set S. On the class of functions u
from S to �, we define an average A(u) which satisfies these five axioms:

(1) A(u) is a real number;

(2) A(cu) = cA(u) where c is any real constant;

(3) A(u + v) = A(u) + A(v) for any two functions u and v;

(4) A(u) ≥ 0 whenever the function u assumes non-negative values;

(5) A(1) = 1, where 1 denotes the constant function that assumes the real
value 1 at each point of S.

The fourth axiom has an important consequence. Suppose that u and v are two
functions on S for which u(s) ≤ v(s) for all s belonging to S. Then v − u
assumes only non-negative values, so that A(v) − A(u) = A(v − u) ≥ 0 and
A(v) ≥ A(u). Thus, the operator A is monotone in the sense that, the larger
the function, the larger the value assigned to it by A.

Here are some examples of an average:

Example 1: Let S be the set {1, 2, 3, · · · , n} and let u be that function that
maps the integer k to uk. In this case, we can conveniently represent the function
u by a n−tuple that displays its values: (u1, u2, · · · , un). One example of an
average is the ordinary mean of these values defined by

A(u) =
1

n
(u1 + u2 + · · · + un) .

More generally, we can assign a system of weights w1, w2, · · · , wn (see page 9).
This allows us to define a weighted average

Aw(u) = w1u1 + w2u2 + · · · + wnun .

Example 2. Let S be the closed unit interval [0, 1] ≡ {t : 0 ≤ t ≤ 1}
and let u(t) be any continuous real-valued function defined on S.
Then A(u) =

∫ 1

0 u(t)dt defines an average.

We can formulate a very general version of the Arithmetic-Geometric Mean In-
equality. For each positive real-valued function u on S, we define its
logarithm 4 by

(log u)(s) = log(u(s)) .

4 Here, as in higher mathematics, we use “log” for the natural logarithm, whereas, in ele-
mentary mathematics, “ln” is more commonly used.
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Of course, the logarithm is taken to the natural base e = 2.1828 . . . . The
geometric mean G(u) of a positive function u is given by

G(u) = exp A(log u)

where exp t is equal to et.

Example 3. Let S = {1, 2} and let A(u) = 1
2
(u1 + u2).

Then A(log u) = 1
2
(log u1 + log2) = 1

2
log(u1u2) = log(u1u2)1/2 so that

G(u) = (u1u2)1/2.

Example 4. Let S = {1, 2, · · · , n}, {w1, w2, · · · , wn} be a set of non-negative
weights summing to 1 and Aw(u) = w1u1+w2u2+· · ·+wnun. Then the corre-
sponding geometric mean with the same weights is
Gw(u) = uw1

1 uw2
2 · · · uwn

n .

The Arithmetic-Geometric Mean Inequality. If u is a positive real-valued
function on S, then

G(u) ≤ A(u) .

Proof. In the most general situation, there are complications in the case when
the function u assumes the value 0 or when A(u) = 0. We will not handle them
here, but will restrict ourselves to the case that the geometric mean is well-defined
and A(u) is non-zero. This will cover the situations that students will encounter
in practice and will allow us to focus on the main ideas.

By sketching the graph of log t and its tangent when t = 1, we can see that
log t ≤ t − 1 whenever t > 0. Let s be any point of S and let u be any positive
function on S with a positive average A(u). Applying the Logarithm Inequality
for t = u(s)/A(u), we have that

log
(

u

A(u)

)
≤ u

A(u)
− 1

for both sides evaluated at any point s in S. This implies that

log u − log A(u) ≤ u

A(u)
− 1 .

We can regard this as an inequality between two functions, so that

log u − (log A(u)) 1 ≤ u

A(u)
− 1 .

When we take the average of the left side, we find that

A(log u − log A(u) 1) = A(log u) − (log A(u))A(1)
= A(log u) − (log A(u)) .

Taking the average of the right side yields

A

(
u

A(u)
−1

)
= A

(
u

A(u)

)
−A(1) =

(
1

A(u)

)
A(u)−1 = 1−1 = 0 .
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Since the operator A is monotone, the average of the left side is less than the
average of the right side, yielding

A(log u) − log A(u) ≤ 0 ,

or
A(log u) ≤ log A(u) .

Taking exponentials yields the desired result.

Corollary. Let p and q be two positive real numbers for which
1
p

+
1
q

= 1 ,

and suppose that x ≥ 0 and y ≥ 0. Then

xy ≤ 1

p
xp +

1

q
yq .

Proof. This is an application of the Arithmetic-Geometric Mean Inequality to
S = {1, 2} and the function (xp, yq), where A is the average with weights 1/p
and 1/q.

The next major result involving the concept of average is Jensen’s Inequality. To
formulate this, we first need to define the concept of concave up and concave down
functions. Suppose that a ≤ b and that f(x) is a real-valued function defined on
the real interval [a, b] ≡ {x : a ≤ x ≤ b}.

The function f is concave up on the interval [a, b] if and only if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

whenever 0 ≤ t ≤ 1 and a ≤ x, y ≤ b. The chord joining any two points on the
graph of a concave up function lies above the graph. The tangent to any point
of the graph of a concave up function lies beneath the graph. If f is a twice-
differentiable function, then f is concave up if and only if its second derivative f ′′

is everywhere non-negative.

The function f is concave down on the interval [a, b] if and only if

f(tx + (1 − t)y) ≥ tf(x) + (1 − t)f(y)

whenever 0 ≤ t ≤ 1 and a ≤ x, y ≤ b. The chord joining any two points
on the graph of a concave down function lies beneath the graph. The tangent to
any point of the graph of a concave down function lies above the graph. If f is
a twice-differentiable function, then f is concave down if and only if its second
derivative f ′′ is everywhere non-positive.

For example, f(x) = sin x is concave down on [0, π] since its second deriva-
tive is non-positive there. We can show “mid-point” concavity directly. For

f(α) + f(β)

2
=

sin α + sin β

2
= sin

(
α + β

2

)
cos

(
α − β

2

)
≤ sin

(
α + β

2

)
= f

(
α + β

2

)
,
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since 0 ≤ cos
(

α−β
2

)
≤ 1 for α, β ∈ [0, π].

Jensen’s Inequality: Let u denote a function defined on a set S taking real
values, and A be an average defined on the set of such functions.

(i) Suppose that f is a concave up real-valued function of a real variable. Then

f(A(u)) ≤ A(f ◦ u)

where f ◦ u(s) = f(u(s)) denotes the composition of the functions u and f .

(ii) Suppose that f is a concave down real-valued function of a real variable. Then

f(A(u)) ≥ A(f ◦ u) .

Example 5. Let S = {1, 2, · · · , n}, u(i) = ui for 1 ≤ i ≤ n and let f(t) be
concave up. Consider the average defined by

A(u) =
1

n
(u1 + u2 + · · · + un) .

Then Jensen’s Inequality leads to

f

(
1

n

n∑
k=1

uk

)
≤ 1

n

n∑
k=1

f(uk) .

In particular, when f(t) = t2, we are led to

(u1 + u2 + · · · + un)2 ≤ n
(
u2

1 + u2
2 + · · · + u2

n

)
.

When f(t) is concave down, we obtain

f

(
1
n

n∑
k=1

uk

)
≥ 1

n

n∑
k=1

f(uk) .

Example 6. Let S = {1, 2}, u(1) = a, u(2) = b, f(t) = log t for t > 0 and
A(u) = (1/2)(a + b). Since log t is concave down, when a and b are positive,
Jensen’s Inequality provides that

log(
1

2
(a + b)) ≥ 1

2
log a +

1

2
log b = log

√
ab ;

taking exponentials yields the basic Arithmetic-Geometric Mean Inequality. In
a similar way, we can establish the Arithmetic-Geometric Mean Inequality for a
weighted average of n positive real numbers.

Proof of (i). Let c = A(u) and let r < c < s. Then

f(c) ≤ c − r

s − r
f(s) +

s − c

s − r
f(r)
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=⇒ [(s − c) + (c − r)]f(c) = (s − r)f(c) ≤ (c − r)f(s) + (s − c)f(r)

=⇒ (s − c)(f(c) − f(r)) ≤ (c − r)(f(s) − f(c))

=⇒ f(c) − f(r)

c − r
≤ f(s) − f(c)

s − c
.

Since this is true for r and s independently with r < c < s, there exists a real
number k for which

f(c) − f(r)

c − r
≤ k ≤ f(s) − f(c)

s − c
.

Therefore f(c) − f(r) ≤ k(c − r) or f(c) − kc ≤ f(r) − kr for r < c. Also
f(s) − f(c) ≥ k(s − c) or f(c) − kc ≤ f(s) − ks for s > c.

Thus, for all real values t, we have that

f(c) − kc ≤ f(t) − kt .

Setting t = u(s) leads to

f(c) − kc ≤ f(u(s)) − ku(s) = (f ◦ u)(s) − ku(s) .

Because this holds for all s in S, we get the inequality

(f(c) − kc) 1 ≤ (f ◦ u) − ku .

Applying the average A and using its monotonicity, we obtain

f(A(u)) − kA(u) = f(c) − kc ≤ A(f ◦ u − ku) = A(f ◦ u) − kA(u) ,

from which f(A(u)) ≤ A(f ◦ u) as required.

The proof of (ii) is similar and left to the reader.

The final general result we shall obtain concerns power means. Let A be an average
and suppose that u is a positive function defined on S. For a real number r, we
define the function ur(s) ≡ [u(s)]r.

When r �= 0, let the power mean Mr ≡ Mr(A, u) of u be defined by

Mr = [A(ur)]1/r .

In addition, we define

M0 = exp A(log u) = G(u) ,
M+∞ = sup u ,
M−∞ = inf u ,

where sup u is the smallest number greater than or equal to every value assumed
by u and inf u is the largest number less than or equal to every value assumed by
u. If u actually assumes a maximum value, then this maximum value is equal to
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sup u; if u assumes a minimum value, then this minimum value is equal to inf u.
Thus

inf u ≤ u(s) ≤ sup u

for every element s in S, and these bounds are as tight as possible.

Example 7. Let S = {1, 2, · · · , n} and let A(u) = w1u1+w2u2+· · ·+wnun

be the weighted average considered earlier. Then, for r �= 0,

Mr =
( n∑

i=1

wiu
r
i

)1/r .

In particular,

M1 =
∑

wiui the usual weighted mean ,

M2 =
√∑

wiu
2
i the root-mean-square ,

M−1 =
1∑

wi/ui

the harmonic mean .

Also

M0 =
n∏

i=0

uwi

i the geometric mean ,

M+∞ = max ui and M−∞ = min ui .

The Power Mean Inequalities. Let r < s. Then

M−∞ ≤ Mr ≤ Ms ≤ M+∞ .

Proof. We break the proof into several parts.

(1) If r > 0, then M0 ≤ Mr .

M0(A, u)r = M0(A, ur) ≤ M1(A, ur) = Mr(A, u)r

by the definitions of M0, M1, Mr and the Arithmetic-Geometric Mean Inequality.

(2) If 0 < r < 1, then M0 ≤ Mr ≤ M1 .

Since tr is a concave down function of t, Jensen’s Inequality yields

A(u)r ≥ A(ur) ,

which gives the inequality on the right.

(3) If 0 < r < s, then Mr ≤ Ms .
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Putting r = ms with 0 < m < 1 and applying (2), we obtain

A(ur) = A(ums) ≤ A(us)m .

Now raise to the power 1/ms.

(4) If r < s < 0, then Mr ≤ Ms ≤ M0 .

To get this, use the fact that, for r �= 0,

Mr(A, u) = M−r(A, u−1)−1 .

(5) For each real r, M−∞ ≤ Mr ≤ M+∞ .

This is evident.
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15 Problems Involving Basic Ideas

15.1 The Problems

Problem 15/1

Suppose that a > b > c > d > 0 and that a + d = b + c. Show that ad < bc.

Problem 15/2

Suppose that a, b, p, q, r, s are positive integers for which
p

q
<

a

b
<

r

s
and

qr − ps = 1. Prove that b ≥ q + s.

Problem 15/3

Suppose that a and c are fixed real numbers with a ≤ 1 ≤ c. Determine the
largest value of b which is compatible with

a + bc ≤ b + ac ≤ c + ab .

Problem 15/4

Suppose that ak (k = 1, 2, . . .) are real numbers for which a1 = 0 and, for
k > 1, |ak| = |ak−1 + 1|. Prove that, for n = 1, 2, . . .,

a1 + a2 + · · · + an ≥ − n

2
.

Problem 15/5

Suppose that a ≥ 1 and that x is real. Prove that

x2 + a√
x2 + a − 1

≥ 2 .

Problem 15/6

Let f(a, b, c, d) = (a−b)2+(b−c)2+(c−d)2+(d−a)2. For a < c < b < d,
prove that

f(a, c, b, d) > f(a, b, c, d) > f(a, b, d, c) .

Problem 15/7

For real x, y, z, prove that

x2 + y2 + z2 ≥ |xy + yz + zx| .

Problem 15/8 (Lithuanian Team Contest 1987 )

For real x, y, z, prove that˛̨̨p
x2 + y2 −

p
x2 + z2

˛̨̨
≤ |y − z| .
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Problem 15/9

For a, b, α, β such that a2 + b2 = α2 + β2 = 1, prove (without applying the
Cauchy-Schwarz Inequality ) that

|aα + bβ| ≤ 1 .

Problem 15/10

(a) For a, b, α, β such that aβ − bα = 1, prove that

a2 + α2 + b2 + β2 + aα + bβ > 1 .

(b) Under the same hypotheses, strengthen the inequality to

a2 + α2 + b2 + β2 + aα + bβ ≥ √
3 .

Problem 15/11

Prove that, for all integers n ≥ 2,

nX
k=1

1

k2
>

3n

2n + 1
.

Problem 15/12

For real numbers 0 < a < b, prove thatp
b2 − a2 +

p
2ab − a2 > b .

Problem 15/13

For positive x, y, z, prove Schur’s Inequality:

x(x − y)(x − z) + y(y − z)(y − x) + z(z − x)(z − y) ≥ 0 .

Problem 15/14

(a) For natural numbers k < n, prove that

n! > k! (n − k)! .

(b) For natural numbers n > 4 and k < n, prove that

n! < (k! (n − k)!)2 .

Find all exceptional cases when n ≤ 4. [ k! is the running product of the integers from
1 to k.]

Problem 15/15

For natural numbers n and for x > y > 0, prove that

x1/n − y1/n < (x − y)1/n .
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Problem 15/16

For p ≥ 1, prove that

|x + y|p ≤ 2p(|x|p + |y|p) .

Problem 15/17

For 0 < x <
1

n
and integer n, prove that

(1 + x)n <
1

1 − nx
.

Problem 15/18

For n = 1, 2, . . ., let sn =
“
1 +

1

n

”n

and tn =
“
1 +

1

n

”n+1

.

Prove that, for all positive integers j and k,

sj < sj+1 < tk+1 < tk ,

and show that lim
n→∞

(tn − sn) = 0.

Problem 15/19

Prove that lim
n→∞

n1/n = 1.

Problem 15/20 (a) (CRUX [1975: 8] ) Prove that

1

2
· 3

4
· 5

6
· · · 999999

1000000
<

1

1000
.

(b) For natural numbers n, prove that
1

2
· 3

4
· 5

6
· · · 2n − 1

2n
≤ 1√

3n + 1
,

Problem 15/21

Which of the following inequalities are true, which are false? (a and b are real
numbers, while n is a positive integer). [Note: �x� means the greatest integer less than
or equal to x.]

(a) �a� + �b� ≤ �a + b� ,

(b) �a + b� ≤ �a� + �b� + 1 ,

(c) �a� �b� ≤ �ab� ,

(d) �ab� ≤ �a� �b� + �a� + �b� ,

(e) �
√

a2� = �
p

�a2�� ,

(f) �√
n�2 ≤ n ,

(g) n ≤ �√
n�2 + 2�√

n� ,

(h) � 3
√

n�3 ≤ n ,

(i) n ≤ � 3
√

n�3 + 3� 3
√

n�2 + 3� 3
√

n� .
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Problem 15/22 (Lithuanian Team Contest 1987 )
For positive reals x, y, z, prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ x + y + z

3
.

Problem 15/23

For positive a, b, α, β, prove that

ab

a + b
+

αβ

α + β
≤ (a + α)(b + β)

a + b + α + β
.

Problem 15/24

For natural numbers n ≥ 2, prove that

(a) nn/2 < n! ≤ 2n(n−1)/2,

(b) n! <

„
n + 1

n

«n

.

Problem 15/25

For n ≥ 2, prove that 2! 4! . . . (2n)! >
˘
(n + 1)!

¯n
.

Problem 15/26

For n ≥ 2, prove that (n + 1)n−1(n + 2)n > 3n(n!)2 .

Problem 15/27

For n ≥ 3, prove that n(n+1) > (n + 1)n .

Problem 15/28

Let n be a positive integer.

(a) By considering the coefficient of xn in the identity

(1 + x)2n = (1 + x)n(1 + x)n ,

or otherwise, verify that  
2n

n

!
=

nX
k=0

 
n

k

!2

.

(b) Prove that
4n

n + 1
<

(2n)!

(n!)2
.

Problem 15/29 (Australian Interstate Finals 1989 )
Let u, v, c be real numbers which satisfy

u2 < c2 and v2 < c2 .

Prove that »
u + v

1 + (uv)/c2

–2
< c2 .
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15.2 The Solutions

Solution 15/1 Here are three possible ways to get the solution. The strategy is
to examine the difference between the two sides of the inequality.

1. Since c = a + d − b, we have that

bc−ad = b(a+d−b)−ad = (a−b)b−(a−b)d = (a−b)(b−d) > 0 .

2. Let u = a + d = b + c. Then

bc−ad = b(u−b)−(u−d)d = u(b−d)−(b2−d2) = (b−d)(u−b−d) .

Now, u = b + c > b + d, so that b − d > 0 and u − b − d > 0. Thus
bc − ad > 0.

3. Let x = a − b > 0. Since a − b = c − d, we have that a = b + x and
d = c − x. Hence

bc − ad = bc − (b + x)(c − x)

= bc − bc + bx − cx + x2 = x2 + x(b − c) > 0 .

Solution 15/2 We have aq − bp > 0 and br − as > 0. Since all the variables
represent integers, aq − bp ≥ 1 and br − as ≥ 1. Thus

b = b(qr − ps) = q(br − as) + s(aq − bp) ≥ q + s .

Solution 15/3 Observe that

(b + ac) − (a + bc) = (c − 1)(a − b)

and

(c + ab) − (b + ac) = (1 − a)(c − b) .

Therefore, the inequalities are equivalent to

(c − 1)(a − b) ≥ 0

and

(1 − a)(c − b) ≥ 0 .

(i) If a = c = 1, then the inequalities hold for all values of b, and there is no
largest value of b.

(ii) If a = 1 < c, then the inequalities hold if and only if b ≤ a = 1, and so
the largest value of b is 1.

(iii) If a < 1 = c, then the inequalities hold if and only if b ≤ c = 1, and so
the largest value of b is 1.

(iv) If a < 1 < c, then the inequalities hold if and only if b ≤ a, and so the
largest value of b is a.
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Solution 15/4 1. In this solution, we square in order to avoid the awkward-
ness of dealing with absolute values. We have that

a2
k = (ak−1 + 1)2 = a2

k−1 + 2ak−1 + 1 (k = 2, . . ., n + 1)

Adding these equations yields
a2

2 + a2
3 + · · · + a2

n+1

=
(
a2

1 + a2
2 + · · · + a2

n

)
+ 2 (a1 + a2 + · · · + an) + n ,

so that
2 (a1 + a2 + · · · + an) = −n + a2

n+1 ≥ −n .

2. We establish the result by induction on the length of all possible sequences
with the stated property.

Let P (n) be the statement: suppose that {x1, x2, . . ., xn} is a finite
sequence of real numbers for which x1 = 0 and |xj| = |xj−1 + 1| for
j = 2, 3, . . ., n; then x1 + x2 + · · · + xn ≥ −n

2
.

We see that P (1) and P (2) are clearly true.

Suppose that P (k) holds for k = 1, 2, . . ., n − 1. Let {x1, x2, . . ., xn}
be a sequence as specified above.

If xj ≥ 0 (j = 1, 2, . . ., n), then P (n) is true. On the other hand, suppose
that at least one of the xj is negative. Let xr be the first negative entry, so
that x1 ≥ 0, x2 ≥ 0, . . ., xr−1 ≥ 0, xr < 0.

(i) r > 2. We must have
xr−1 = xr−2 + 1 ,

xr = − (xr−1 + 1)

= − (xr−2 + 2) ,
|xr+1| = |− (xr−2 + 2) + 1|

= |− (xr−2 + 1)|
= |xr−2 + 1| .

Define the finite sequence {y1, y2, . . ., yn−2} by
yj = xj (1 ≤ j ≤ r − 2) ,

yj = xj+2 (r − 1 ≤ j ≤ n − 2) .

Thus, the y–sequence is obtained from the x–sequence by removing
xr−1 and xr.
Since P (n−2) is true, and since |yj| = |yj−1 + 1|, (2 ≤ j ≤ n−2),
we have

x1 + x2 + · · · + xr−1 + xr + · · · + xn

= (xr−1 + xr) + (y1 + y2 + · · · + yn−2)

= −1 + (y1 + y2 + · · · + yn−2)

≥ −1 − n − 2

2
= −n

2
.
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(ii) r = 2. In this case we have x1 = 0, x2 = −1, x3 = 0, . . .. Define
yj = xj+2 (j = 1, 2, . . ., n − 2). Then

(x1 + x2) + (x3 + · · · + xn) ≥ −1 − n − 2

2
= −n

2
.

Now, consider the infinite sequence {an}. Then {a1, a2, . . ., an} satisfies

a1 = 0 , |aj| = |aj−1 + 1| (2 ≤ j ≤ n) ,

so, by P (n), the required result follows for all values of n .

Solution 15/5 The inequality is equivalent to
(
x2 + a

)2 ≥ 4
(
x2 + a − 1

)
.

Taking the right side from the left, we get

x4 + (2a − 4) x2 +
(
a2 − 4a + 4

)
=

(
x2 + a − 2

)2 ≥ 0 .

Equality holds if and only if 1 ≤ a ≤ 2 and x = ±√
2 − a .

Solution 15/6

f(a, c, b, d) − f(a, b, c, d) = (a − c)2 − (a − b)2 + (b − d)2 − (c − d)2

= (b − c)(2a − b − c) + (b − c)(b + c − 2d)
= 2(c − b)(d − a) > 0 ;

f(a, b, c, d) − f(a, b, d, c) = (b − c)2 − (b − d)2 + (d − a)2 − (c − a)2

= (d − c)(2b − c − d) + (d − c)(c + d − 2a)

= 2(d − c)(b − a) > 0 .

Solution 15/7

1. Observe that

x2 + y2 + z2 − |x||y| − |y||z| − |z||x|
= 1

2
(|x| − |y|)2 + 1

2
(|y| − |z|)2 + 1

2
(|z| − |x|)2

≥ 0 .

Hence

|xy + yz + zx| ≤ |x||y| + |y||z| + |z||x| ≤ x2 + y2 + z2 .

2. Apply the Cauchy-Schwarz Inequality to (x, y, z) and (y, z, x).

Solution 15/8∣∣∣√x2 + y2 −
√

x2 + z2
∣∣∣ =

˛̨
y2 − z2

˛̨
p

x2 + y2 +
√

x2 + z2

= |y − z||y + z|p
x2 + y2 +

√
x2 + z2

.

The result follows since

|y + z| ≤ |y| + |z| =
√

y2 +
√

z2 ≤
√

x2 + y2 +
√

x2 + z2 .
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Solution 15/9 Squaring to dispose of the absolute value gives

(aα + bβ)2 = (a2 + b2)(α2 + β2) − (aβ − bα)2 ≤ 1 ,

with equality if and only if aβ = bα.

Solution 15/10

(a) Taking the difference of the two sides yields

a2 + α2 + b2 + β2 + aα + bβ − aβ + bα

= 1

2

(
(a + α)2 + (a − β)2 + (b + α)2 + (b + β)2

) ≥ 0 .

Equality cannot occur, since this would require a = −α = β = −b = 0.

(b) [For those who know some calculus.] We can select positive reals u and v,
and real θ and φ for which a = u cos θ, b = u sin θ, α = v cos φ, β = v sin φ.
The condition aβ − bα = 1 says that uv sin(φ − θ) = 1, so that uv ≥ 1,
and cos2(φ − θ) = (u2v2 − 1)(uv)−2. The left side of the proposed inequality
becomes

u2 + v2 ±
√

u2v2 − 1 ,

and this is not less than 2uv −
√

u2v2 − 1 .

Let f(t) = 2t − (
t2 − 1

)1/2 for t ≥ 1. Then f ′(t) = 2 − t
(
t2 − 1

)−1/2.
Now f ′(t) ≥ 0 if and only if 4(t2 − 1) ≥ t2. or equivalently, t ≥ 2√

3
. Thus,

f(t) attains its minimum value of
√

3 when t = 2√
3
. The result follows from

this.

Solution 15/11 The inequality holds for n = 2. It is natural to try a proof by
induction, which will succeed if we can establish that

3n

2n + 1
+ 1

(n + 1)2
>

3(n + 1)

2(n + 1) + 1
= 3(n + 1)

2n + 3

for n ≥ 2 . We find that
1

(n + 1)2
+ 3n

2n + 1
− 3(n + 1)

2n + 3
= n(n + 2)

(n + 1)2(2n + 1)(2n + 3)
> 0 ,

and so the induction proof can be constructed.

Solution 15/12 The inequality is equivalent to√
2ab − a2 > b −

√
b2 − a2 .

Squaring and dividing by 2b gives the equivalent inequality√
b2 − a2 > b − a .

Dividing by
√

b − a gives another equivalent inequality,√
b + a >

√
b − a ,

which clearly holds.
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Solution 15/13 Since the expression is completely symmetrical in x, y and z,
we may suppose that x ≥ y ≥ z > 0 . The third term is non-negative. The sum
of the first two terms is

(x − y)
(
x2 − xz − y2 + yz

)
= (x − y)(x + y − z) ,

which, again, is positive. The result follows.

Solution 15/14

(a) Note that n! = n(n − 1) · · · (n − k + 1) · (n − k)!

(b) n! < (k! (n − k)!)2 for n = 2, 3, and for (n, k) = (4, 2).

Suppose now that n ≥ 5. It is straightforward to verify that k!(n − k)! assumes
its maximum value when k =

⌊
n

2

⌋
. Thus it is sufficient to show that

(2m − 1)! <
(
(m − 1)!m!

)2 and (2m)! < (m!)4 for m ≥ 3.

This holds when m = 3. Use the fact that (2m+1) < (m+1)2 and (2m+2) <
(m + 1)2 to construct an induction argument for the general case.

Solution 15/15 Observe that(
(x − y)

1
n + y

1
n

)n

= (x − y) +

(
n−1∑
k=1

(
n

k

)
(x − y)

n−k
n y

k
n

)
+ y .

Solution 15/16 Let |x| ≥ |y|. Then

2 (|x|p + |y|p) 1
p ≥ 2|x| ≥ |x| + |y| ≥ |x + y| .

Solution 15/17 For each positive real x, we have

1 − (1 + x)n(1 − nx) =
n∑

k=0

n

(
n

k

)
xk+1 −

n∑
k=1

(
n

k

)
xk

= nxn+1 +
n∑

k=1

(
n

(
n

k − 1

)
−
(

n

k

))
xk

= nxn+1 +
n∑

k=1

n!

k!(n + 1 − k)!
(n + 1)(k − 1)xk

> 0 .

The result follows for 0 < x <
1

n
by dividing through by the positive quantity

1 − nx.

Solution 15/18
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1. Note that

sn+1

sn
=

(
1 + 1

n

)⎛⎝“1 + 1
n+1

”
`
1 + 1

n

´
⎞⎠n+1

=
(

n + 1

n

)(
n(n + 2)

(n + 1)2

)n+1

=
(

n + 1

n

)(
1 − 1

(n + 1)2

)n+1

>
(

n + 1

n

) (
1 − 1

n + 1

)
= 1 ,

since (1 − x)n+1 > 1 − (n + 1)x for 0 < x < 1.

Hence sn+1 > sn for every positive integer n.

tn

tn+1
=

(
1

1 + 1
n

)⎛⎜⎝ `
1 + 1

n

´„
1 +

1

n + 1

«
⎞⎟⎠

n+2

=
(

n

n + 1

)(
(n + 1)2

n(n + 2)

)n+2

=
(

n

n + 1

)(
1 + 1

n(n + 2)

)n+2

>
(

n

n + 1

) (
1 + 1

n

)
= 1 ,

since (1 + x)n+2 > 1 + (n + 2)x for 0 < x.

Hence tn > tn+1 for every positive integer n.

For any positive integers, k, j, let m = max(k, j). Then sm+1 < tm+1,
so that

sk < sk+1 ≤ sm+1 < tm+1 ≤ tj+1 < tj ,

as desired. Also,

0 < tn − sn =
(
1 + 1

n

)n ((
1 + 1

n

)
− 1

)
= sn

(
1

n

)
≤ t1

(
1

n

)
= 4

n
.

Hence tn − sn → 0 as n → ∞.

2. [Solution by Richard Hoshino]

We start with a lemma:

Lemma 1 Suppose that a, b > 0. Then, by the AM–GM Inequality, for
each k = 1, 2, . . .,

a + kb

k + 1
≥ (

abk
)1/k+1

.
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Hence, (
a + kb

k + 1

)k+1

≥ abk ,

with equality if and only if a = b.

Taking a = 1, b = 1 + 1

k
, we obtain(

k + 2

k + 1

)k+1

>
(
1 + 1

k

)k

,

so that sk+1 > sk.

Taking a = j + 2

j
, b = 1 + 1

j + 1
, k = j + 1, we obtain⎛⎜⎝

„
j + 2

j

«
+ (j + 2)

j + 2

⎞⎟⎠
j+2

>

(
j + 2

j

)(
1 + 1

j + 1

)j+1

,

so that
(

since 1

j
+ 1 = j + 1

j

)
,(

j + 1

j

)j+2

>

(
j + 2

j

)(
1 + 1

j + 1

)j+1

.

Since 1 + 1

j + 1
= j + 2

j + 1
, we obtain that(

j + 1

j

)(
1 + 1

j

)j+1

>

(
j + 1

j

)(
1 + 1

j + 1

)j+2

.

This means that tj > tj+1, and we can now complete this solution as in the
previous solution.

Solution 15/19

1. Suppose that n ∈ {2 4, 3, 4, . . .}. Let un = n1/n − 1. Then un > 0 and

n = (1 + un)n = 1 + nun +
(

n

2

)
u2

n +
(

n

3

)
u3

n + · · ·

>

(
n

2

)
u2

n = n(n − 1)

2
u2

n .

Thus, u2
n <

2

n − 1
, so that un <

√
2

n − 1
.

Since lim
n→∞

2

n − 1
= 0, we have that lim

n→∞
un = 0; therefore lim

n→∞
n1/n =

1.

Comment: we can sharpen the inequality to un <

√
2

n
.

Note that
(
1 +

√
2

n

)n

= 1+
√

2n+ n(n − 1)

2
· 2

n
+ · · · > 1+n−1 = n .
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2. For n ∈ �, by truncating the binomial expansion, we have that(
1 + 1√

n

)n

≥ 1 + n

(
1√
n

)
= 1 +

√
n >

√
n

Thus (
1 + 1√

n

)2

> n1/n .

Since n ≥ 1, we have

1 ≤ n1/n <

(
1 + 1√

n

)2

.

Let n → ∞ and the result follows.

3. By taking a single term of the binomial expansion, we find that, for n ≥ 2,(√
n + 1

)2n
>

(
2n

2

) (√
n
)(2n−2)

= 2n(2n − 1)

2
nn−1 = (2n − 1) nn > nn+1

so that (
1 + 1√

n

)2n

=
`√

n + 1
´2n

nn
> n .

Therefore, (
1 + 1√

n

)2

> n1/n .

The result follows as before.

4. [Solution by Reza Shahidi]

By the AM–GM Inequality,

1 ≤ n1/n =

⎛⎝1 · 1 · 1 · · · 1︸ ︷︷ ︸
n−2

√
n

√
n

⎞⎠1/n

≤ n − 2 + 2
√

n

n
= 1 − 2

n
+ 2√

n

= 1 + 2
(

1√
n

− 1

n

)
= 1 +

2
`√

n − 1
´

n
< 1 + 2√

n
.

Since lim
n→∞

(
1 + 2√

n

)
= 1, it follows that lim

n→∞
n1/n = 1.

Solution 15/20

(b) The result holds when n = 1. Assuming the result up to n − 1 (≥ 1), we
have

1

2
· 3

4
· 5

6
· · · 2n − 1

2n
≤ 1√

3n − 2
· 2n − 1

2n
.
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So we need to show that (
2n

2n − 1

)2

≥ 3n + 1

3n − 2
.

This is equivalent to n ≥ 1, and so the result follows by induction.

(a) From (b), we find that the left side does not exceed
1√

1500001
<

1√
1000000

= 1

1000
.

Solution 15/21

(a) True. Note that �a� + �b� ≤ a + b.

(b) True. Add the inequalities a < �a� + 1 and b < �b� + 1.

(c) False. Take a = b = −1

2
.

(d) False. Take a = b = −1

2
.

However, if a and b are non-negative, then

�ab� ≤ ab < (�a� + 1) (�b� + 1) = �a��b� + �a� + �b� + 1 ,

and the inequality holds.

(e) True. Since
⌊
a2
⌋ ≤ a2, it follows that

√�a2� ≤ √
a2, and that⌊√�a2�

⌋
≤

⌊√
a2
⌋
.

For the reverse inequality, we first note that, for any non-negative inte-
ger n, we have

√
n + 1 ≤ √

n + 1, so that
⌊√

n + 1
⌋ ≤ �n� + 1.

Since a2 <
⌊
a2
⌋

+ 1, it follows that
√

a2 <
√�a2� + 1, so that⌊√

a2
⌋

≤
⌊√�a2�

⌋
, as desired.

(f) True. Note that
⌊√

n
⌋ ≤ √

n.

(g) True. Square the identity
√

n <
(⌊√

n
⌋
+ 1

)
, and note that n is an integer.

(h) True. Note that
⌊

3
√

n
⌋ ≤ 3

√
n.

(i) True. Cube the inequality 3
√

n <
(⌊

3
√

n
⌋
+ 1

)
, and note that n is an

integer.

Solution 15/22 Since x3 − y3

x2 + xy + y2
= x − y, y3 − z3

y2 + yz + z2
= y − z, and

z3 − x3

z2 + zx + x2
= z − x, it follows that the left side is equal to

y3

x2 + xy + y2
+ z3

y2 + yz + z2
+ x3

z2 + zx + x2

= 1

2

(
x3 + y3

x2 + xy + y2
+ y3 + z3

y2 + yz + z2
+ z3 + x3

z2 + zx + x2

)
.
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Now, x3 + y3

x2 + xy + y2
− x + y

3
= 2(x − y)2(x + y)

3(x2 + xy + y2)
≥ 0, with similar inequali-

ties for the other terms. The result follows.

Solution 15/23 Multiply both sides by (a + b) + (α + β), and then subtract
ab + αβ from both sides. We find that the inequality is equivalent to

ab

a + b
(α + β) + αβ

α + β
(a + b) ≤ αb + βa ,

and hence to

ab(α + β)2 + αβ(a + b)2 ≤ (αb + βa)(a + b)(α + β) .

Taking the left side from the right side yields

(αb)2 − 2αbβa + (βa)2 = (αb − βa)2 ,

which is non-negative and vanishes if and only if α : β = a : b. The result
follows.

Solution 15/24

(a) For the left inequality, use the fact that

(n + 1 − k)k − n = (n − k)(k − 1) ≥ 0

with equality if and only if k = 1. For the right inequality, use the fact that
k ≤ 2k−1 with equality if and only if k = 1, 2.

(b) Note that, for 1 ≤ k ≤ n,(
n + 1

2

)2

− k(n + 1 − k) = 1

4

(
n2 + 2n + 1 − 4kn − 4k + 4k2

)
= 1

4
(n − 2k + 1)2 ≥ 0 .

Solution 15/25 For specificity, let n be odd. (A similar argument pertains when
n is even.) The inequality is equivalent to

2!

(n + 1)!

4!

(n + 1)!
· · · (n − 1)!

(n + 1)!
>

(n + 1)!

(n + 3)!

(n + 1)!

(n + 5)!
· · · (n + 1)!

(2n)!
.

This can be obtained from a pairwise comparison of terms using

k!

(n + 1)!
= 1

(k + 1) · · · (n + 1)

>
1

(n + 2) · · · (2n + 2 − k)
= (n + 1)!

(2n + 2 − k)!

for k = 2, 4, . . ., n − 1, where the denominators of the middle terms each have
n + 1 − k terms.
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Solution 15/26 The proof is by induction. When n = 1, we in fact get
equality. Suppose, for n ≥ 2, that nn−2(n + 1)n−1 ≥ 3n−1 ((n − 1)!)2.
Then

(n + 1)n−1(n + 2)n = nn−2(n + 1)n−1
(

n + 2

n

)n−2

(n + 2)2

≥ 3n−1 ((n − 1)!)2
(

n + 2

n

)n−2

(n + 2)2

= 3n−1 (n!)2
(

n + 2

n

)n

= 3n−1 (n!)2
(
1 + 2

n

)n

> 3n−1 (n!)2
(
1 + 2n

n

)
= 3n (n!)2 ,

as desired.

Solution 15/27 We first show that
(
1 + 1

n

)n

< 3 for each positive integer n

exceeding 2. This relies on knowing that 2k−1 ≤ k! for k = 1, 2, . . .. So, we
have (

1 + 1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

= 1 + 1 +
n∑

k=2

(
1 − 1

n

) (
1 − 2

n

)
· · ·

(
1 − k − 1

n

)
1

k!

< 1 + 1 +
n∑

k=2

1

k!
= 1 + 1 +

n∑
k=2

1

2k−2
< 3 .

Thus, for n ≥ 3, we obtain
(
1 + 1

n

)n

< 3 ≤ n, so that (n + 1)n < nn+1 as
desired.

Solution 15/28 (b) By Tchebychev’s Inequality, we have that

(2n)!

(n!)2
=

(
2n

n

)
=

n∑
k=0

(
n

k

)2

≥ 1

n + 1

(
n∑

k=0

(
n

k

))2

= (2n)2

n + 1
= 4n

n + 1
.

In fact, it is straightforward to check from the proof of the inequality that it is
strict here.

On the other hand,(
2n

n

)
<

2n∑
k=0

(
2n

k

)
= (1 + 1)2n = 4n .

Solution 15/29 We may take c > 0. Let x = u
c
, y = v

c
. Then we must

establish that
(

x + y

1 + xy

)2

< 1, subject to −1 < x < 1, −1 < y < 1.
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But,

1 −
(

x + y

1 + xy

)2

= (1 + xy)2 − (x + y)2

(1 + xy)2

= ((1 + xy) − (x + y)) ((1 + xy) + (x + y))

(1 + xy)2

= (1 − x)(1 − y)(1 + x)(1 + y)

(1 + xy)2
> 0 .

16 Problems Involving Standard Results

16.1 The Problems

Problem 16/1

(a) Suppose that x ≥ 0. Prove that

x + 1

x
≥ 2 .

(b) For positive reals x, y, z, prove that

xz + y

z
≥ 2

√
xy .

Problem 16/2

Suppose that a1, a2, . . ., an is a set of positive numbers.
Prove that (

n∑
k=1

ak

)(
n∑

k=1

1

ak

)
≥ n2 .

More generally, prove that for non-negative b1, b2, . . ., bn,(
n∑

k=1

ak

)(
n∑

k=1

bk

ak

)
≥

(
n∑

k=1

bk

)2

.

Problem 16/3 (CRUX [1976: 297] )
If 0 < b ≤ a, prove that

a + b − 2
√

ab ≥ 1

2

(a − b)2

a + b
.

Problem 16/4

For real numbers x, y ≥ 0, prove that√
x2 + y2 ≥ x + y − (2 − √

2)
√

xy .

Problem 16/5

For non-negative reals a, b, c, prove that

a2b2 + b2c2 + c2a2 ≥ abc(a + b + c) .
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Problem 16/6

For positive reals a, b, c with a + b + c = 1, prove that

ab + bc + ca ≤ 1

3
.

Problem 16/7

For positive real numbers, a, b, c, prove that

(a) 1

a
+ 1

b
+ 1

c
≤ a2 + b2 + c2

abc
.

(b) 1

a
+ 1

b
+ 1

c
≤

`
a3n−1 + b3n−1 + c3n−1

´
(abc)n

for integer n ≥ 1.

Problem 16/8

For 0 < x < 1 and integer n, prove that

(1 − x)n <
1

1 + nx
.

Problem 16/9

For positive reals a, b, c, prove that

a2

b2
+ b2

c2
+ c2

a2
≥ a

c
+ c

b
+ b

a
.

Problem 16/10

For positive a, b such that a + b = 1, prove that
2

a/x + b/y
≤ ax + by .

Problem 16/11 (Eötvös 1910 )
If a, b, c are real numbers such that a2 + b2 + c2 = 1, prove that

− 1

2
≤ ab + bc + ca ≤ 1 .

Can either equality occur?

Problem 16/12

For positive reals a, b, c, d, prove that
a

b + c
+ b

c + d
+ c

d + a
+ d

a + b
≥ 2 .

Problem 16/13

Suppose that x1, x2, . . ., xn > 0. Prove that

x2
1

x1 + x2
+ x2

2

x2 + x3
+ · · · + x2

n

xn + x1
≥ 1

2
(x1 + x2 + · · · + xn) .
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Problem 16/14

Suppose that a1 ≥ a2 ≥ . . . ≥ an > 0 and that

b1 ≥ a1, b1b2 > a1a2, b1b2b3 > a1a2a3 ,

. . . , b1b2 . . . bn > a1a2 . . . an .

Prove that
b1 + b2 + · · · + bn ≥ a1 + a2 + · · · + an .

Problem 16/15 (Sharp Calculator Competition 1995 [South Africa]).
For positive a, b, α, β, prove that

1

a
+ 1

b
+ 4

α
+ 16

β
≥ 64

a + b + α + β
.

Problem 16/16

For positive integers n, define n!! = n(n − 2)(n − 4) · · ·, terminating
with 1 if n is odd, or with 2 if n is even.

Prove that

(a) nn > (2n − 1)!! ,

(b) (n + 1)n > (2n)!! ,

(c) (2n − 1)!!

(2n)!!
<

1√
n

.

Problem 16/17

For two positive numbers, x and y, let a be their arithmetic mean, g, their
geometric mean, and h, their harmonic mean. Prove that a + h ≥ 2g.

Does this result extend to the general case of more than two positive numbers,
or to weighted means?

Problem 16/18

For each positive integer n, prove that

(n + 1)n(2n + 1)n ≥ 6n (n!)2 .

Hint: where have you seen (n + 1)(2n + 1) in a formula?
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16.2 The Solutions

Solution 16/1
(a) Use the AM–GM Inequality on x and 1

x
.

(b) Use the AM–GM Inequality on xz and y
z
.

Solution 16/2 Use the HM–AM Inequality on {a1, a2, . . ., an}.

Alternatively, apply the Cauchy-Schwarz Inequality to {√
a1,

√
a2, . . .,

√
an}, and to {

√
1

a1
,
√

1

a2
, . . .,

√
1

an
}.

Solution 16/3 By the AM–GM Inequality, we have

a + b − 1

2

(a − b)2

a + b
= a2 + 6ab + b2

2(a + b)
= 1

2

(
a + b + 4ab

a + b

)
≥ 2

√
ab .

Solution 16/4 Let r, a, g, be respectively the root-mean-square, the arithmetic
mean, and the geometric mean of x and y. The proposed inequality is equivalent
to r − g ≥ √

2(a − g). Since both sides are non-negative, squaring gives the
equivalent inequality

r2 − 2rg + g2 ≥ 2a2 − 4ag + 2g2 .

Since r2 + g2 = 2a2, this in turn is equivalent to a ≥ r + g

2
. But, by the

RMS-AM Inequality, we have

a =

√
r2 + g2

2
≥ r + g

2
,

and the result follows.

Solution 16/5 If abc = 0, the result is clear. If abc > 0, then we have

ab

c
+ bc

a
+ ca

b
= 1

2

(
a
(

b

c
+ c

b

)
+ b

(
c

a
+ a

c

)
+ c

(
a

b
+ b

a

))
≥ 1

2
(2a + 2b + 2c) ,

and the result follows.

Solution 16/6 Note that 1 =
(
a2 + b2 + c2

)
+ 2(ab + bc + ca), and use the

inequality between the root-mean-square and arithmetic means of a, b, c.

Solution 16/7

(a) Since (a − b)2 + (b − c)2 + (c − a)2 ≥ 0, we have

a2 + b2 + c2 ≥ bc + ca + ab = abc
(

1

a
+ 1

b
+ 1

c

)
.

(b) The result holds for n = 1. We prove the result by induction.
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Let integer r > 0, ur =
(

ar + br + cr

3

)1/r

and g = (abc)
1
3 .

Then ur+3 ≥ ur ≥ g, so that

ur+3
r+3 = ur

r+3 u3
r+3 ≥ ur

r g3 .

Suppose that the desired result holds for n = k. Then

a3k+2 + b3k+2 + c3k+2

(abc)k+1
=

3u3k+2
3k+2

(g3)k+1
≥ 3u3k−1

3k−1 g3

(g3)k+1

= a3k−1 + b3k−1 + c3k−1

(abc)k
≥ 1

a
+ 1

b
+ 1

c
,

so that the result holds for n = k + 1.

The induction step is now complete.

Solution 16/8 Let y = 1 − x. The inequality is equivalent to

(1 + n)yn < 1 + nyn+1 ,

which is a straight-forward consequence of the Weighted AM–GM Inequality.

Solution 16/9 By the Cauchy-Schwarz Inequality, we have

a

c
+ c

b
+ b

a
= a

b
· b

c
+ c

a
· a

b
+ b

c
· c

a
≤

(
a2

b2
+ c2

a2
+ b2

c2

) 1
2
(

b2

c2
+ a2

b2
+ c2

a2

) 1
2

,

which gives the desired result.

Solution 16/10

(ax + by)
(

a

x
+ b

y

)
= a2 + b2 + ab

(
x

y
+ y

x

)
≥ a2 + b2 + 2ab = 1 .

Solution 16/11 The upper inequality can be established by using the Cauchy-
Schwarz Inequality (compare 16/9); equality occurs when a = b = c = 1√

3
.

The lower inequality results from using (a + b + c)2 ≥ 0; equality occurs
when a = −b = 1√

2
and c = 0.

Solution 16/12 Let s = a + b + c + d. By the AM–GM Inequality with
u = a + b, we have 4u(s − u) ≤ s2. Thus is also true with u being any other
pair from a, b, c and d. We shall need it with u = d + a.

Note that

2 (a(d + a) + c(b + c) + b(a + b) + d(c + d)) − (a + b + c + d)2

= a2 + b2 + c2 + d2 − 2ac − 2bd

= (a − c)2 + (b − d)2 ≥ 0 .
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Hence
a

b + c
+ b

c + d
+ c

d + a
+ d

a + b

= a(d + a) + c(b + c)

(d + a) (s − (d + a))
+ b(a + b) + d(c + d)

(a + b) (s − (a + b))

≥ 4 (a(d + a) + c(b + c))

s2
+ 4 (b(a + b) + d(c + d))

s2

= 2 · 2 (a(d + a) + c(b + c) + b(a + b) + d(c + d))

(a + b + c + d)2
≥ 2 ,

as desired.

Solution 16/13
First Solution. By the Cauchy-Schwarz Inequality (see 16/2), we have

((x1 + x2) + (x2 + x3) + · · · + (xn + x1))

×
(

x2
1

x1 + x2
+ x2

2

x2 + x3
+ · · · + x2

n

xn + x1

)
≥ (x1 + x2 + · · · + xn)2 ,

whence the result.

Second Solution. Note that, with xn+1 = x1, we have, for 1 ≤ i ≤ n,

x2
i

xi + xi+1
= xi − xixi+1

xi + xi+1
≥ xi − xi + xi+1

4

by the AM–GM Inequality. The result follows.

Third Solution. Suppose that 1 ≤ i ≤ n and xn+1 = x1.

Since
x2

i − x2
i+1

xi + xi+1
= xi − xi+1, we have

n∑
i=1

x2
i

xi + xi+1
=

n∑
i=1

x2
i+1

xi + xi+1
= 1

2

n∑
i=1

x2
i + x2

i+1

xi + xi+1

≥ 1

4

n∑
i=1

(xi + xi+1)
2

xi + xi+1
= 1

2

n∑
i=1

xi

using the AM–GM–RMS Inequality.

Fourth Solution. Note that, with xn+1 = x1, we have for 1 ≤ i ≤ n, that

x2
i

xi + xi+1
= xi − 1

2

(
1

xi
+ 1

xi+1

2

)−1

≥ xi − 1

4
(xi + xi+1)

by the HM–AM Inequality. The result follows.

Fifth Solution. Note that the Weighted HM–AM Inequality states that(
n∑

i=1

αia
−1
i

)−1

≤
n∑

i=1

αiai for αi ≥ 0 ,
n∑

i=1

αi = 1 .

Apply this to αi = xi

x1 + x2 + · · · + xn
, ai = xi

xi + xi+1
.
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Solution 16/14 Observe that, since b1b2 . . . br > 0 (1 ≤ r ≤ n), we have that
each bi must be positive. Let c0 = 1, and

c1 = b1

a1
, c2 = b1b2

a1a2
, . . . ,cn = b1b2 . . . bn

a1a2 . . . an
.

For 1 ≤ i ≤ n, we have ci ≥ 1 and bi = ai

(
ci

ci−1

)
. Hence

(b1 + b2 + · · · + bn) − (a1 + a2 + . . . + an)

=
(

c1

c0
− 1

)
a1 +

(
c2

c1
− 1

)
a2 +

(
c3

c2
− 1

)
a3 + · · · +

(
cn

cn−1
− 1

)
an

= (c1 − 1)(a1 − a2) +
(
c1 + c2

c1
− 2

)
(a2 − a3)

+
(
c1 + c2

c1
+ c3

c2
− 3

)
(a3 − a4)

+ · · · +
(

c1 + c2

c1
+ c3

c2
+ ci

ci−1
− i

)
(ai − ai+1)

+
(

c1 + c2

c1
+ c3

c2
+ · · · + cn

cn−1
− n

)
an .

By the AM–GM Inequality for each i, we obtain

1

i

(
c1 + c2

c1
+ c3

c2
+ · · · + ci

ci−1

)
≥

(
c1

(
c2

c1

)
. . .

(
ci

ci−1

)) 1
i

= c
1
i

i ≥ 1 ,

and the result follows.

Solution 16/15 The Cauchy-Schwarz Inequality applied to the vectors(√
a,

√
b,

√
α,

√
β
)
,
(

1√
a

, 1√
b
, 2√

α
, 4√

β

)
yields the result.

Solution 16/16 For (a) and (b), we use the Arithmetic–Geometric Mean In-
equality to show that (a − b)b ≤ (

a
2

)2 when 0 ≤ b ≤ a, and apply this to pairs
of terms in the products (2n − 1)!! and (2n)!!.

As for (c), it is straight forward to verify that

n − 1

n
− (2n − 1)2

4n2
= 1

4n2
> 0 ,

and to formulate the induction argument.

Solution 16/17 Let a, h, g, be the respective AM, HM and GM of the positive

reals x and y. Then a + h

2
≥

√
ah = g, with equality if and only if a = g =

h = x = y.

The result fails to hold in general. Let t be a positive real and let a, h, g,
be the respective AM, HM and GM of 1, 1 and t3 (or, equivalently, the weighted
mean of 1 and t3 with weights 2

3
and 1

3
). Then

a = 2 + t3

3
, h = 3t3

1 + 2t3
, g = t ,
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so that

a + h − 2g = 2 + t3

3
+ 3t3

1 + 2t3
− 2t

=
2
`
t6 − 6t4 + 7t3 − 3t + 1

´
3 (1 + 2t3)

=
2(t − 1)3

`
t3 + 3t2 − 1

´
3 (1 + 2t3)

.

This is negative when t ∈ (2 cos(2π/9)−1, 1); approx. (.5321, 1). For example,
when t = 2

3
, we have t3 + 3t2 − 1 > 3t2 − 1 = 1

3
> 0, while (t − 1)3 < 0, so

that a − h < 2g.

Solution 16/18 By the AM–GM Inequality, we have

(n + 1)(2n + 1)

6
= 12 + 22 + · · · + n2

n
≥ (n!)2/n ,

from which the result follows.

17 Problems Without Solutions

Problem 17/1

For positive a, b. Prove that√
a + b ≤ √

a +
√

b .

Problem 17/2

For positive reals a, b, c, prove that

(a + b)(b + c)(c + a) ≥ 8abc .

Problem 17/3

Suppose that x �= 1 is a positive real number and that n is a positive integer.
Prove that

1 − x2n+1

1 − x
≥ (2n + 1) xn .

Problem 17/4

For positive reals a, b, c, prove that
ab

a + b
+ bc

b + c
+ ca

c + a
≤ a + b + c

2
.

Problem 17/5

For positive reals a, b, c, prove that

a2b2 + b2c2 + c2a2 ≥ abc(a + b + c) .
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Problem 17/6

For non-negative reals x, y, z, prove that

8
(
x3 + y3 + z3

)2 ≥ 9
(
x2 + yz

) (
y2 + xz

) (
z2 + xy

)
.

Problem 17/7

For positive reals a, b, c such that (1 + a)(1 + b)(1 + c) = 8, prove that

abc ≤ 1 .

Problem 17/8

For reals 0 ≤ a, b, c ≤ 1, prove that
a

b + c + 1
+ b

c + a + 1
+ c

a + b + 1
+ (1 − a)(1 − b)(1 − c) ≤ 1 .

Problem 17/9

For positive reals a, b, c, d such that a2 + b2 = (c2 + d2)3, prove that

c3

a
+ d3

b
≥ 1 .

Problem 17/10

For non-negative reals a, b, c, d, prove that
√

ab +
√

ac +
√

ad +
√

bc +
√

bd +
√

cd ≤ 3(a + b + c + d)

2
.

Problem 17/11
For non-negative reals a, b, c, prove that

(a2b + b2c + c2a)(ab2 + bc2 + ca2) ≥ 9a2b2c2 .

Problem 17/12

Prove that(
n∑

k=1

akbkck

)2

≤
(

n∑
k=1

a2
k

)(
n∑

k=1

b2
k

)(
n∑

k=1

c2
k

)
.

Problem 17/13

For non-negative reals a, b, prove that

(a) (a + b)(a2 + b2)(a3 + b3) ≤ 4(a6 + b6) ,

(b) (a + b)(a3 + b3)(a7 + b7) ≤ 4(a11 + b11) ,

(c) ab(a2 + b2) ≤ a4 + b4 ,

(d) a2b2(a5 + b5) ≤ a9 + b9 .
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For positive unequal reals a, b, prove that

(e) (a4 + b4)(a5 + b5) ≤ 2(a9 + b9) ,

(f) (a2 + b2)(a3 + b3) ≤ 2(a5 + b5) .

Problem 17/14

For positive reals a, b, prove that
a√
b

+ b√
a

≥ √
a +

√
b .

Problem 17/15

For integers n > 7, prove that
√

n
√

n+1
>

√
n + 1

√
n

.

Problem 17/16 (Australian MO 1987 )
For natural numbers n > 1, prove that

√
n + 1 +

√
n − √

2 >

n∑
k=1

1√
k

.

Problem 17/17 (Eötvös 1896 )
Prove that log(n) ≥ k log(2) where n is a natural number and k is the number
of distinct primes that divide n.

Problem 17/18 (Eötvös 1911 )
If real numbers a, b, c, α, β, γ satisfy

aγ − 2bβ + cα = 0 and ac − b2 > 0 ,

prove that
αγ − β2 ≤ 0 .

Problem 17/19 (Eötvös 1913 )
If real numbers a, b, c and −1 ≤ x ≤ 1 satisfy

−1 ≤ ax2 + bx + c ≤ 1 ,

prove that
−4 ≤ 2ax + b ≤ 4 .

Problem 17/20

Examine the particular method given for the AM–GM Inequality for three
positive numbers. Can you extend this method for four numbers, five numbers?
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Problem 17/21

Prove the WAM–WGM Inequality, using the method of
Mathematical Induction.

HINT: To set up the induction step, let

u = wn−1

(wn−1 + wm)
,

v = wn

(wn−1 + wm)
,

a = u an−1 + v an

and verify that
n∑

k=1

wkak =
n−2∑
k=1

wkak + (wn−1 + wn) a .

Problem 17/22

Suppose that each of a, b, c, α, β and γ are all positive real numbers and
that a �= b �= c �= a. Prove that

aα+β+γ + bα+β+γ + cα+β+γ ≥ aαbβcγ + aβbγcα + aγbαcβ .

Problem 17/23

Prove that, for all of a, b, c and d in [1, 2],

1

2
<

a(c − d) + 2d

b(d − c) + 2c
≤ 2 .

Problem 17/24

Suppose that x5 − x3 + x = p > 0. Prove that x6 ≥ 2p − 1.

Problem 17/25

Prove that
(
x3 + x2 + 3

)2
> 4x3(x − 1)2 for all real x.

Problem 17/26

Prove that

(x + y)(y + z)(z + x) ≥ 8(x + y − z)(y + z − x)(z + x − y)

for all real positive x, y and z.

Problem 17/27

Prove that 11 × 1993
√

10 > 10 + 1000
√

10.
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Problem 17/28

Suppose that a1, a2, . . ., an are all positive real numbers such that a1a2 . . . an =
1.
Prove that

n∏
k=1

(k + ak) ≥ nn/2 .

Problem 17/29

Suppose that {ak}n
k=1 is a sequence of distinct positive integers. Prove that(

n∑
k=1

a7
k

)
+

(
n∑

k=1

a5
k

)
≥ 2

(
n∑

k=1

a3
k

)2

.

Also, find all sequences for which equality holds.

Problem 17/30

Suppose that sn =
n∑

k=1

1√
k
. Prove that

2
√

n + 1 − 2 < sn < 2
√

n − 1 .

Problem 17/31

Suppose that {ak}, {bk}, 1 ≤ k ≤ n are 2n positive real numbers.

Prove that either
n∏

k=1

ak

bk
≥ n or

n∏
k=1

bk

ak
≥ n .

Problem 17/32

Suppose that the polynomial
n∑

k=0

an−kxk (an = 1) has n real zeros. Prove

that
(n − 1) a2

1 ≥ 2n a2 .

Problem 17/33

Suppose that ak ≥ 1 for all k ≥ 1. For all positive integers n, prove that

n +
n∏

k=1

ak ≥ 1 +
n∑

k=1

ak ,

with equality if and only if no more that one member of the set {ak} is different
from 1.



59

Problem 17/34 (Lithuanian Team Contest 1986 )
Solve the inequality:

√
2x − 1 +

√
3x − 2 <

√
4x − 3 +

√
5x − 4 .

Problem 17/35 (Lithuanian Team Contest 1990 )
Prove the inequality:

√
x + 1 +

√
2x − 3 +

√
50x − 3x < 12 .

Problem 17/36 (Lithuanian Team Contest 1987 )
Solve the system of inequalities:

x2 + y2 ≤ ax + by ;
|a − b + y − x| ≤ a + b − x − y ;

|x − y| ≤ −x − y .

Problem 17/37

Suppose that 1 ≥ x1 ≥ x2 ≥ . . . ≥ xn > 0 and that 0 ≤ t ≤ 1. Prove
that

(1 + x1 + x2 + · · · + xn)t ≤ 1 + xt
1 + 2t−1xt

2 + · · · + nt−1xt
n .

Problem 17/38

Let bn =

√
2

√
3
√

4 . . .
√

n. Prove that bn < 3.

Problem 17/39 (CRUX [1978: 12] )
Solve the following inequality:

sin x sin 3x >
1

4
.
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18 Appendix “Sigma” notation

This is a way of representing a sum of quantities without having to write it all out! The
symbol used is an upper case Greek letter — sigma — written as

P
. We also need

a symbol to represent the numbers that are being used to indicate what we must add
together, and a symbol to represent the formula for each number to be added.

Here are some examples to show you how it works:

1. For 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, we can write
10X

k=1

k.

Here, the symbol being used to indicate the numbers is k, and the formula for the
numbers to be added is (also) k.

The subscript, “k = 1” means that we start with the value of k equal to 1, and
proceed to add each value of the formula with each successive value of k until we
reach the number in the superscript, here 10.

2. For 12 + 22 + 32 + 42 + 52 + 62, we can write

6X
n=1

n2.

Here, the symbol being used to indicate the numbers is n, and the formula for the
numbers to be added is n2.

The subscript, “n = 1” means that we start with the value of n equal to 1, and
proceed to add each value of the formula with each successive value of n until we
reach the number in the superscript, here 6.

This notation is very useful for long sums!

For
1

1
+

1

3
+ · · · +

1

1001
, we can write

500X
m=0

1

2m + 1
.

Here, the symbol being used to indicate the numbers is m, and the formula for the

numbers to be added is
1

2m + 1
.

We start with m = 0, and substituting into the formula, we get
1

0 + 1
=

1

1
. We then substitute m = 1, and get

1

2 + 1
=

1

3
, and so on, un-

til we substitute m = 500, giving
1

1000 + 1
=

1

1001
.

The general form looks like
bX

k=a

xk . The symbol being used to indicate the numbers is

k, and the formula for the numbers to be added is given by some formula which we call
xk .

We start with the value k = a and so substitute a for k in the formula xk . We
now add one to a, and so substitute a +1 for k in the formula xk . We repeat this, until
we reach the value k = b, which is the last value to be substituted into the formula xk .

Now we add up all the numbers obtained, and the answer is what we mean by
bX

k=a

xk .

A similar notation is used for products —
bY

k=a

xk .



ATOM
A Taste Of Mathematics / Aime-T-On les Mathématiques
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