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Foreword

This volume contains the problems and solutions from the 1995-1996 Mathematical
Olympiads’ Correspondence Program. This program has several purposes. It provides
students with practice at solving and writing up solutions to Olympiad-level problems,
it helps to prepare student for the Canadian Mathematical Olympiad and it is a partial
criterion for the selection of the Canadian IMO team.

Many of the problems admit several approaches. Accordingly, I have often indicated a
number of alternative solutions to a problem in order to show how different ideas can be
consummated.

While I have tried to make the text as correct as possible, some mathematical and
typographical errors might remain, for which I accept full responsibility. I would be
grateful to any reader drawing my attention to errors as well as to alternative solutions.

Thanks are due to Bruce Shawyer of Memorial University of Newfoundland for suggesting
the publication of this book and for overseeing its publication, as well as to Cindy Hiscock,
1996 WISE student at Memorial University of Newfoundland, for producing the initial
ETEX document.

It is the hope of the Canadian Mathematical Society that this collection may find its way
to high school students who may have the talent, ambition and mathematical expertise
to represent Canada internationally. Those who find the problems too challenging at
present can work their way up through other collections. For example:

1. The International Mathematical Talent Search (problems can be obtained from the
author, or from the magazine Mathematics & Informatics Quarterly, subscriptions
for which can be obtained by writing to Professor George Berzsenyi, Department of
Mathematics, Rose-Hulman Institute of Technology, 5500
Wabash Avenue, Terre Haute, IN 47803-3999, USA);

2. The journal Crux Mathematicorum with Mathematical Mayhem (subscriptions can
be obtained from the Canadian Mathematical Society, 577 King Edward, PO Box
450, Station A, Ottawa, ON, Canada KI1N 6N5);

3. The book The Canadian Mathematical Olympiad 1969-1993  L’Olympiade
mathématique du Canada, which contains the problems and solutions of the first
twenty five Olympiads held in Canada (published by the Canadian Mathematical
Society, 577 King Edward, PO Box 450, Station A, Ottawa, ON, Canada KIN
6N5);

4. The book Five Hundred Mathematical Challenges, by E.J. Barbeau, M.S.
Klamkin & W.0.J. Moser (published by the Mathematical Association of America,
1529 Eighteenth Street NW, Washington, DC 20036, USA).

E.J. Barbeau

Department of Mathematics
University of Toronto
Toronto, ON

Canada M5S 3G3



PROBLEM SET 1 — Numbers

Definitions:

(1) |x| denotes the greatest integer not exceeding the real number z;

(2) 7(n) denotes the number of integers between 1 and n inclusive that divide
evenly into the positive integer n;

(3) o(n) denotes the sum of all the integers between 1 and n inclusive that divide
evenly into the positive integer n;

(4) ¢(n) denotes the number of integers between 1 and n inclusive which have
only the divisor 1 in common with n.

FExercises

These were not to be handed in and are for the student to test him/herself.

(1) Verify that, for f equal to each of the functions 7,0 and ¢, we have that
flmn) = f(m)f(n) whenever the greatest common divisor of m and n is
equal to 1.

(2) Suppose that n = [[p® is the representation of n as a product of powers of

distinet primes. Verify that for f asin (1), f(n) =[] f(p®),and so deduce a
formula for f(n) in each case.

Problems

1 Let n be a positive integer.

(a) By three separate arguments, determine a formula for the sum of the first n
odd squares.

(b) By three separate arguments, determine a formula for the sum of the first n
odd cubes.

2 Suppose that n is a positive integer. Prove that there is a positive integer k
for which

(x/ﬁ—l)nzx/E—\/le.



Show that every positive rational strictly between 0 and 1 can be written as
a finite series of the form

1 1 1 1

q1 q192 4149243 41424344

where the ¢; are positive integers.

Let p be an odd prime, and let
(1+2)P % =1+a1z+ ax® + azz® + -+ + ap_o2? 2.

Show that a1 +2,a2 —3,a3 +4, - ,ap—3 — (p — 2),ap—2 + (p — 1) are all
multiples of p.

Prove that

Let the sequence {uy} be defined recursively by
up =0, wu; =1, wu,=1995up_1—tup—o (n>2).
Find all the values of n exceeding 1 for which w,, is prime.

Let p be a prime number and let (a1, ag,---ap) and (b1, b2, -+ ,b,) each be
arbitrary arrangements of the finite p-tuple (0,1,2,---,p — 1). For each 1,
let ¢; be the non-negative remainder when the product a;b; is divided by p.
Show that (c1, ¢, -, ¢p) cannot be a rearrangement of (0,1,2,---,p —1).

Show that, for k£ > 2, the equation
Iy et = aly

does not have any solution, where x1, 2, -+, Ty are distinct nonzero
integers.

Prove that, for any non-negative integer n, the equation
Ln% F 4+ + (n+ 2)%J - [(9n + 8)%J

holds.



10 The integers a1, as, as, -+ are determined by the recursion

u | bapt1 —3an, if ap - apyr is even,
n+2 Api1 — G, if ay, - any1 is odd.

Prove that:

(a) The sequence {a,} contains infinitely many positive and infinitely many
negative terms;

(b) {a,} is never equal to zero;

(c) ifn=2F—1(k=2,3,4,---), then a, is divisible by 7.

11 Denote by s(n) the sum of the base-10 digits of the natural number n. The
function f(n) is defined on the natural numbers by

fO) =0 fn)=f(n=sm)+1 (n=12,-)

Prove, or disprove, that f(m) < f(n) whenever 1 <m < n.

12 Prove that the positive integer n is the product of exactly two primes that
differ by 2 if and only if

d(n)o(n) = (n—3)(n+1).






Solutions

1 (a) Solution 1

di-1)? = 42732'2 —4§n:z'+§n:1
j i=1 i=1 i=1

B QnEn +1)(2n+1)
= 3 —2n(n+1)+n

n(4n? — 1)

1 (a) Solution 2

n

> (20— 1)?

i=1

1 (a) Solution 3

n n

2n
Z(Qz’ —1)? = Zf =) (2i)?

=1 i=1
_ 2n(2n+1)(dn+1)  4dn(n+1)(2n+1)
B 6 6
on(2n + 1)

- 5 {(4n+1) —2(n+1)

2n(2n+1)(2n —1)
G :




1 (a) Solution 4  Since
(21'}: 1)% = 2 [(20 +1)26(20 — 1) — (20 — 1)(2i — 2)(2i — 3)],
we have

n—1
D @i+ 1)2i(2i — 1) = > (25 +1)25(25 — 1)
7=0

i=1

(=20

1
= E(2n +1)2n(2n —1).

n

n(4n? — 1)
1 (a) Solution 5 (by induction)  The result Z(Zz —1)2 = =——— holds for
i=1
n=1.
Assume that it holds for n = k. Then,
k+1 9
4k* —1
Y @i-1)? = % + (2k +1)?
i=1
o (k+ DAk +1)2—1]
= 3 .

1 (a) Solution 6 The sum is equal to the number of blocks in a pyramid n blocks
high with (2i — 1)2 blocks in the i*" layer from the top.

When i > 2, in the i*" layer, there are 4(2i —2) = 8(i — 1) blocks not covered
by higher blocks. The blocks are the top of a column of n—(i—1) =n—i+1
blocks.

3rd layer

from top

(i=3)




Hence,

2(21'—1)2 = n—f—zn:(n—(i—l)) 8(i—1)

1=2

= n+8nZ(i—1)—SZ(i—1)2

= n+4n*(n—1) - g(n —1)n(2n—1)

an® —n
3 .

1 (a) Solution 7 Observe that 6r% = (r +2)3 — r3 — 127 — 8.

Hence,

so that

1 (a) Solution 8 [A

n

6> (2i—1)

=1

. Martin]

n n

S @i+1)° =D (2 —1)° 12 En:(% —1)—

i=1 =1
(2n+1)% —1—12n? — 8n
8n® — 2n = 2n(4n? — 1)

. _ n(2n—-1)2n+1)
Dy @i-1)? = 5

3

=1

Let k be a positive integer and let n > 2. Then

di-1F = 1Pt 33 e 2n—1) - (20— 1R

= @n-1)[1F "+ 4+ (2n -1
—2[(n—=1)1%"+ -+ (2n — 3)" 1]

n

= (@2n-1)) (2i— 1)

i=1

n—1
=2 [ 2i - )
k=1



Taking k = 1 yields

n—1
2(21'—1) = (2n—1)n—22i:(2n2—n)—(n2—n)

= 7’L2.

> (2i-1)7? = (2n—1)n2—2nz_:i2

B (n—1)(n)2n—-1)
= o3 —n?— 3

4n® —n
3 .

Solution 9 [B.Chun] Note that

(2n)2 —(2n—1)> +(2n—2)> — (2n —3)? 4 - -~
= 2n+2n—-142n—-24.-- 4241,

since (a+1)2 —a?=(a+1) +a.

Hence

24324+ (2n—1)2
= 224424+ 4+ (22— (1+2+---+2n)

i 2n(2n+1)
= 4y BP-—"
A

_ 2n(n + 1?2(2n +1) @+ 1)
n(2n+1)(2n +2 — 3)
3
n(2n+1)(2n —1)

3 .

Solution 10 [D. Cheung] If a, = 12 + 3%+ .- + (2n — 1)?, then it can be
verified that a,4+4 — 4an+3 + 6an42 — 4ap11 + a, = 0, a recursion whose
characteristic polynomial is (¢ — 1)*.

The general solution is a,, = (an3 + Bn? + yn + §)1", and checking a1, as,
as, aq will yield the coefficients a = %, v = —%, =0=0.



1 (a) Solution 11 [D. Cheung]

124324+ (2n—1)>
= 1P-1)+@ -1+ +[2n-1)

—12}+n

= 0+42x44+4%x64+--4+(2n—-2)x2n+n

= 4(1x242x34+---+(n—-1)xn)+n

= 4ir(2) +n
r=1

3)
3
4(n?—1)
= [T
n(4n? — 1)
—

0

Here we have used the definition:

2™ = a(@ 1) (@ —k+1) = k(%)

1 (b) Solution 1

]
[\)
<.
I
—_
~

w
Il

ZJ —Z

= n?[(2n+1)> —2(n+1)?]
= n2(2n -1).

1 (b) Solution 2  Observe that

a®+ (b—a)®

= b [3&2 — 3ab + b2]

{% (2n41) r { n—l—l)]

bla® —a(b—a)+ (b—a)?]
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Therefore

n

[N}
7

[\

~.

|

-
S~—"

I
[

s
Il
-
-
Il
-

=1

I

s
Il
-

I
i M:

(4n? — 1)
- Gn[n L } 1202 - n2
= n2{24n—1 2]
= 2n%(2n% - 1),

from which the result follows.

1 (b) Solution 3

(2i —1)°+) (2n—2i+1)
[(% — 13 +(2n—2i— 1)3}

2n [3(2i — 1)* — 6n(2i — 1) + 4n°]

+8nt

GED IR DICERIERCE

= ) (8i* — 12 +8i—2)

=1
n n—1
= 2) i*-2> i
i=1 i=1
= 2n4,

from which the result follows.

1 (b) Solution 4 (by induction)  The result 2(22 —1)3
i=1
n = 1. Assume it holds for n = k. Then

k+1

=n?(2n? — 1) holds for

dRi-1? = KK -1)+ (2k+1)°

i=1

= 2k +8k3 + 11k% + 6k + 1

= 2(k+1)* = (k+1)?

as required for n = k + 1.



1 (b) Solution 5 Take k = 3 in Solution 8 of 1 (a).

1 (b) Solution 6

zn: — (2k—1)?]

k=1

n

122n:k2—62k+n
k=1

k=1 =
n(n+1)2n+1)—3n(n+1)+n
= n?[4n +3].

Hence,

Zn:%—l = 8214:3 2[4n + 3]

k=1
= (2n —1).

2 Solution 1  Observe that

(1+\f) =2 (;)2i+\/§i_o (21,:11)21,
(1_\@)":% (;)Qi_ﬁ% <2z':bt1)2i’

i=1

so that, if (1 + \/i)n = a, + v/2b,, then (1 — ﬂ)n =a, — 2b,.
Also

(1+v3) (1-v2)]
(an + ﬁbn) (an - \/ibn) = ai - 2b,2r
Hence (v2Z—1)" = (=1)" (a, — V2b,) = (=1)" (\/@ - \/ﬂ)

When n is even, we have

(Va-1)" = Va2 - Vi = Vaiz +1- 202

(=n"

by (1),
and when n is odd, we have

(va-1)' = VaR - v = Ve T 1~ Va

by (1).
In either case, (\/5 — 1)n has the required form.
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2 Solution 2 For each n = 1,2,3,---, we see from the binomial expansion
that there are integers x,, and ¥, such that

(V2-1)" =20 4 5aV2 (-1)"0 > 0,(~1)"y, <0,

Since (\/5 — 1)n+1 = (\/5 — 1) (\/5 — 1)n, we have that
—Tn4+1 = Tn — 2Yn, Yn+1 = Tn — Yn-

The desired gesult holds for n = 1 and 2 since v2 — 1 = 2 — V1
and (\/5—1) =49 - 8.

Suppose it holds for n = 2m, and indeed,

where 23, — 2y3, = 1. Then

2m—+1
(\/5 - 1) = \/2972n+1 - \/x%m—i-l

and
21— T = 2(T2m — Y2m)” — (T2m — 22m)”
= 3~ 290 = L,
(\/5 - 1)2m+2 = \/x%m+2 - \/2y§m+2
and

2 2 o 2 2
Tymto = 2Yamia = (T2mt1 — 2Y2m+1)" — 2(T2m+1 — Y2m+1)

2 2 _
2Yomt1 — Topy1 = L

The result follows by induction.

2 Solution 8 Let u =

(V2+1)" + (\/5—1)"]2
5 .

Using the Binomial Expansion, we see that u is an integer. Now

(V2+ 1) 42+ (V2-1)"
0 :

so that

u—1=

(V2+1)" - (vV2- 1)”12
5 :

is also an integer.
Thus, (\/5 — 1)n = /u —v/u — 1 is the desired representation.
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2 Solution 4 By induction, using
(a\/§ - b) (3 - 2\/5) = (3a+ 2b)V2 — (4a + 3b),

it can be shown that

(ﬂ—l)":ax/ﬁ—b

where 2a? — b2 = 1, when, n is odd.

Similarly, when n is even,
(\/5 — l)n =c—dV2
where ¢? — 2d% = 1.
3 Solution 1  If the rational has numerator 1, then the result is obvious (the

right side has one term).

Suppose, as an induction hypothesis, we have established the result for
fractions of numerator n for n =1,2,--- |k — 1.

Let 0 < % < 1. Then m > k, so we can write m = kq + r, where ¢, r are
integers for whichg>1land 0 <r <k —1.

If r = 0, then % = % and the required representation is obtained.

Let » > 0. Then

so that

k 1( r )
S (1- .
m q kq+r

By the induction hypothesis, we can write

T 1 1

kg+r g g3

as a finite sum. Taking ¢ = ¢, we now obtain the required representation
for £
m

3 Solution 2 Let 0 < 7 < 1. By repeated use of the division algorithm, we
find that, for integers ¢;, r; with b >a >ry >ry > --- > 0.

b=aq+rm1 =rqg+r2=reqz+1r3 =" =75414.
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The process must terminate. Hence

a 1 1
b g bq

q1 4192 q14243

P
4 Solution 1  Observe that (1 + z)? = Z <p> ‘. When 1<i<p-—1,
i
=0

()=t

is a fraction (as well as being an integer), whose numerator is divisible by p,
but whose denominator is not.

Hence the coefficients of z? for 1 < i < p — 1 are all multiples of p.

Now
(1+2)" = (1+2)P%(1+2)?
= (1 +aiz+--+ ap_gxp_z) (1 + 2z + xz)
= 14 (a1 +2)x + (az + 2a1 + 1)2?
+--+ (ap—2 + 2ap—3 + ap,4)xp_2
+(2ap—2 + ap_3)xP" " + a,_oa?
so that
a1+ 2 =0 (mod p).
Thus
a1 = —2 (mod p).

Also

as 4+ 2a1 +1 =0 (mod p)

implies that
ag =—2a7 —1=4—1= 3 (mod p).

Suppose, as an induction hypothesis, we have established that

a1 = (—1)'(i+1) for somei < p— 3.
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Then
ait1+2a; +a;—1 =0 (mod p) (ap=1)

implies that

aip1 = —2a;—a;1 = (=1)T206 4+ 1)+ (=1)%
(=1)"T2i+2 —i) = (=1)"(i 4+ 2) (mod p).

Hence
ay+2,a3 —3,a3+4,--- ,ap_2—|—(p—1)

are all multiples of p.

4 Solution 2 For 1<k <p-—2,

p—2 (p=2)(p=3)---(p—k-1)
ak:( k )z k!

is an integer. Now
P—2)(p—3)--(p—k—1)=bep+ (-1)"(k + 1)!

where
be=p" =243+ +EF+ )P+
Since both (p —2)(p—3)---(p—k — 1) and (k + 1)! are divisible by k! and
since ged(p, k!) = 1, we must have by, = ¢ik! for some integer ¢x. Hence
ar = cxp+ (—1)F(k +1).
This implies that
ar, + (1) (k + 1) = e,

and the result holds.

4 Solution 3 For1<k<p-—2,
ar + (1) (k +1)
-2 .
= (pk )+(_1)k+1(k+1)

(pP=2)--(p—Fk+1) + (=D*'(k+ 1)
k!
PP rupt e puap+ (D (R4 D (DR (R 4 1)
Kl '

This is an integer whose numerator is divisible by p and whose denominator
is not. The result follows.



4 Solution 4/ When 1 <r <p-—1,

1) (p— 1
(p)zp(p ) '(p T+)EO(modp).
T r.
Now
—1 -1
() - ()02
r T r—1
p—2 p—2 p—2
= 2
(%) +=(20) - (25)
= ar+2a,-1+a—o for 2<r<p-2, a9 =1.
Hence

ar + 2a,-1 + ar—2 = 0 (mod p)

We conclude as in Solution 1.

5 Solution 1 A positive integer r gets counted in the function 7(k) if and
only if k£ is a multiple of r.

2n

Hence the number of times that r gets counted in the sum ZT(k) is the
k=1

number of multiples of 7 not exceeding 2n, namely |22 | times.

If n+1 <7 < 2n, then r gets counted once.

If » > 2n, then r does not get counted at all.

Hence
2n 2n
2
>ork) = 3|5
r
k=1 r=10L " -
| 2n 2n 2n
Ik
r=1*4% r - r=n+1 r
k=1L k]
as desired.

5 Solution 2 (by induction) When n = 1, we have

(1) +7(2) - EJ =1+2-2=1
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Suppose the result holds for n = r. Then

2%1)7(@ B Sr:l {2(1"2— I)J

k=1 k=1

T2r+1)+7(2r+2)+ ZT(]C) — Z

k=1 k=1
= 72r+1)+72r+2)+r

() - R

2r + 2 2r
=] +1
i w T

is equivalent to either 2r 4+ 1 or 27 4 2 being a multiple of k£ and k # 1.
Also,

2 s {2(70 + 1)J

Now,

2r + 2 2r
= |— 2
i w| T

is equivalent to k = 1.

2r +2 2r
Otherwi — | =]=.
erwise, { / J { kJ

2r + 1 is a multiple of k for 7(2r + 1) — 2 values of k not exceeding r and
exceeding 1.

2r 4+ 2 is a multiple of k for 7(2r + 2) — 3 values of k not exceeding r and
exceeding 1.

Hence,
o2 [3
g
= 24 [r(2r+1)=2]+[r(2r +2) -3
= @+ 1) +7(2r+2) - 3.
Since VSTLUJ — 9, it follows that

as desired.
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6 Solution 1  Let 1995 = k. By trial and error on early terms in the sequence,

we conjecture the following lemma.

LEMMA. For each positive integer m,

U2m = um(uerl - umfl)a

U2m+1 = u3n+1 - uzn = (Um+1 + Um) (Umt1 — Um)-

PROOF (by induction).
When m = 1,us = k = uy(uz — up) and ug = k% — 1 = u3 — u3.

Suppose that the result holds for m = p > 1. Then,

Uppr1) = Kuzpir —uzp
= k(ulyy —ul) = (Uuplpy1 — Uptip_1)
= uppr(kupir —up) — up(kup —up_1)
= Up+1Upt2 — UpUp+l
= Upi1(upr2 —up),
Ug(pt1)41 = Uzpy3 = Kugpyo — Ugpya
= kupyi(upr2 —up) — (u12)+1 - U;Qa)
(upt2 +up)(upra — up) — (u?)+1 - uf,)
= Upps — Upia,s
so that the result holds for m = p + 1.

Now upt1—tp = (k—1)up—tun—1 = (up—tp—1)+(k—2)uy, so, by induction,
it follows that w,y1 — wuy > 1 for n > 2, and
Upt1 — Up—1 > 1 forn > 1.

Hence us,, is composite for m > 2 and wug,11 is composite for m > 1. This
leaves only us to consider.

But ug =1995=5%x399 =5 x 3 x 7 x 19. So, for n > 2, u,, is not prime.

Solution 2 For 1 <r <n,
Up = UrUn4+1—r — Ur—1Un—r-

The proof is by induction. The equation is trivial for r = 1.

Assuming its truth for » < n — 1, we have

Up4+1Unp—r — UpUp—r—1
= unfr(kur - urfl) — UpUp—r—1
= ur(kunfr - unfrfl) — Up—1Up—r

= UpUn4+1—r — Ur—1Up—r
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as desired.

If n = 2m, r = m, we have ugy = Um(Umt1 — Um—1); if n = 2m + 1,
r=m+ 1, we have ugm11 = u2, 1 — uZ,, and we can complete the solution
as above.

Solution 1 If a; = bj = 0, then ¢; = ¢; = 0. If (c1,¢c0,--+ ,¢p) is a
rearrangement of (0,1,--- ,p—1), then no entry can appear more than once.
Hence i = j.

WOLOG, we may suppose that a, = b, = 0 so that ¢, = 0.

For any counterexample, we must have

p—1! = ara2---ap_1 =biba---bp_1
= ¢ Cpot
= (al"'ap—l)(bl"'bp—l)
= ((p-1Y?
which implies that
(p— 1) =1 (mod p).

But Wilson’s Theorem states that (p — 1)! = —1 (mod p), so we have a
contradiction.

[To prove Wilson’s Theorem, note that if © # 1, —1,0 (mod p), there exists y
such that zy = 1(mod p). Now pair off elements in the product 1.2.--- ,p—1.

For example, when p = 11, we have

1-2-3-4-5-6-7-8-9-10
= 1-(2x6)-(3x4)-(5x9)-(7Tx8)-10
Ix1x1x1x1x(=1)=-1(mod 11)/]

Comment The result is false when p = 2. We need the hypothesis that p is
odd.

Solution 1
LEMMA. Let r, s be positive integers. Then
(a) 257" < (r+s)%(r+s)" = (r+s)"+=.
(b) 1+224+33 4+ +r" < (r+1)" -2
[PROOF by induction.  (b) holds for r = 1.
Assume it holds for r =m — 1 > 1. Then

1+22 4+ 4+ (m-1)m g mm
< (m™=2)+m™ =2m™ -2 < (m+1)"T -2

by (a).]
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(C) i > 1 + 1 + -+ #
rr T (r+ 1)t (4 2)r 2 (r+s)rts’
[PROOF. By (a),

1 1
(r—i—l)”l—i_“.—'_(r—i—s)“rs
1 1+1+ +1
rr\2 4 25
1
< —.
rr]

(d) If m, n are integers with m < n, then |[m™| < [n"| with equality only
if —-m=n=1.

Let {u1,ug, - ,up+1} be any collection of distinct nonzero integers with
U < U2 < -+ < Ukl = W.
Case (i):  w > 1. Choose v < 0,v < u1. By (b) and (c),

w’ —2>(w—1)"" 4+ (w—-2)""2 . 41,

and
951 1 1 1
> +§+¥++|U|‘”|
SO
w—1 k k
w’ > Z |21|ZZ|’U,?1|ZZQ’U,?1
i=0 i=1 i=1
i#0

This implies that

k
Uk+1 L Wi
Uy > E €U,
i=1

where ¢; = £1.

It follows from this that there are no integral solutions to any equation of
k+1

the type Z euyt =0.
i=1

Thus, if {z1, -+ ,zk4+1} is a rearrangement of {uy,---,urt1}, then

T T2 Ty _ o Th41
2yt +xy® + -+ ot =) can never hold.

Case (#): w < —1. Let v = u3 < 0. Then, by (c),

k
| = [ > D il
i=1

k+1

so no equation of the type Zelu? = 0 has integral solutions and we can
i=1

complete the argument as in Case (i).
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Comment If each x; > 0, it is clear for the equation that x is the largest
of the ;. If some or all x; are negative, this is no longer clear and the above
argument is designed to deal with this.

Comment Note

n"—m-0D""1" > nnh-1)"""t—m-1)""
> (n—1)" Y

so we can, by summing over n, obtain

m™>m—-1)""1 4 (m—-2)""2 ..+ 1

for each m € N.

Solution 1
LEMMA. For each nonnegative integer n,
2vn+1>vn++vn+2.
PROOF.
1
nFl-vi = ——
vn+14+/n
1
vn+2++v/n+1
= vVn+2—-vn+1,

from which the result follows.

We now prove the required result. It holds by inspection for n = 0 and
n = 1. Let n > 2. It will be shown that

(9n+8)z <nz+(n+1)2 4+ (n+2)2 < (In+9)2. (%)
For the right inequality, the lemma gives us

nz+m+1)7 +(n+2)7 <3(n+1)2 = (In+9)2.

For the left inequality, note first that

7N? 4 49 8
2) — ) =22 5
n(n+2) (n+9) " TR 29 8

which implies that

7
n(n+2) >n—|—§.
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Hence, using the lemma again,

[n% +(n+1)% —l—(n+2)%}2 > E (n% +(n+2)5)]2
- g:n+<n+z>+2m}
> %:2n+2+2<n+g)]
= %4n+%}
= 9n+8.

Hence, (*) is shown. The integers 9n + 8 and 9n + 9 are consecutive, so no
perfect square lies between them.

Hence there is no integer between (9n + 8)% and (9n + 9)7 and the result
follows from (%), since (9n +9)2 < (9n + 8)2 + 1.

Comments

(1) Arriving at the proof involved a lot of working backwards. In particular,
we had the question — what do we need to know about n to conclude

g [n% + (n+2)%} > (9n +8)27

(2) The lemma is actually a consequence of the concavity of \/x.

y Y=+
(n+1vn+1) (n+2,vn+2)
(n+1,32(vVn+vn+2))

9 Solution 2 [D. Khosla] Observe that

2(v/n(n+1) +v/nn+2) +y/(n+1)(n+2)) <6n+6
by the AM-GM Inequality. Since, for n > 2,

=
3
+
=
\Y
~~
3
_|_
o |
e
(V)

£)
+
>
3
vV
N
S
_|_
=~ w
~——
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it follows that

2(¢Mn+l%+¢Mn+2%%¢m+&Xn+%)

NPY T A S
gt TRy

= 6n+5.
Hence

In +8
= (Bn+3)+(6n+5)
< 3n+3+2(\/n(n+1)+\/n(n+2)+\/(n+1)(n+2))
< (Bn+3)+(6n+6) = 9n+9.

Since

(\/ﬁ+\/n+1+\/n+2)2
= 3n+3+2(\/n(n+1) +v/n(n +2) +\/(n+1)(n+2)),

the result follows.

Solution 1 The sequence is
{1,2,7,29,22,23,49,26,—17,-163, —146,--- , }
with a cyclic pattern of parity of period 3. Let
u; = azi—2, Vi =azi-1, w;=az (1I=1,2,--")
so that u; and w; are odd and v; is even. We have that
w; = dv; — 33Uy, Vi =U;— Wi U = OWi—1 — V1.

We derive recursions for these equations.

w; = 5v; — Ui = U1 — Vig1 = FUi1 T Ui

which implies that
1

Uikl = Vi1 = plUit + 5 Vi
and further, that
duipr = dvipr + 3v;,
and

1
Sv; — 3u; = guH_l + g’Ul'
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implies that
22v; = 15u; + Uiq1-
Hence
duipy = EuiJrl + iUiJr? + ﬁui + iuiJrl
22 22 22 22
which implies that

1Oui+1 = 5’LL¢+2 + 45ul
and further that

Ui+2 :2ui+1 —9ui (Z: 1,2,---).
Similarly, we have

Vi4+2 = 2’U¢+1 — 91]1' . .
Wite = 2wit1 — Jw; } (i=12,-)

where u; =1, ug =29, v1 =2, vo =22, w1 =7, wy = 23.

(a) Consider the sequence {uy}. If w;—1 and u; have the same sign, then
Uiro = 2Ujp1 —Yu; = 2(2’(1,1'—9’(1,1'_1)—911,1' = —(5ui+18u1_1) has the opposite
sign. It follows that for each w,, either u,+1 or u,,3 has the opposite sign
to uy,. Since {un} C {an}, {an} has infinitely many terms of each sign.

(b) If a,, = 0, then n = 3m — 1 for some m, and so v, = 0. For each i, we
have v; 11 = 2v; — 9v;—1 = 2v;(mod 9). Hence

0=vm =20m_1 =20y 0="--=2""1y = 2™ (mod 9),

a contradiction.

(¢) It can be shown by induction (exercise!) that
U45+4-3 = A12i47 = O(mod 7)

and
V4j41 = Q1243 = O(mod 7) 1= O, 1, 2, e

3(mod 12) for k even, k >2
k: —_ = ) )
Now 28 —1= { 7(mod 12) for k odd, k>3,
S0 aok_1 = 0(mod 7) for k =2,3,4,---.

Solution 2
(b) We show that

if n is odd, then a,, = 1(mod 3),

if n is even, then a, = —1(mod 3).
This is true for n = 1, 2. Assume it holds up to n = k. Then, if ag - ax_1 is
even, agy1 = bay = —ag(mod 3), while if ag-ag—1 is odd agt+1 = ar —ax—1
ax + ar = 2a, = —ax(mod 3).
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In either case, ar4+1 has the right remainder upon division by 3. The desired
result follows by induction.

It follows that a, # 0(mod 3) for each n so a, never vanishes.

(a) By a similar argument to Solution 1 of this problem, we find that, for
n>1
a3n+11 = —20a3n+3 — 3a3n+2,

from which the desired result can be found.
(c) [W.L. Yee] Observe that
a13 = 3 = 3ay1(mod 7)

and
a14 = 6 = 3az(mod 7).

It follows by induction that a9y, = 3a,(mod 7) for r =1,2,3,--- and so

a12m—+r = 3™a,(mod 7).

Since az = 0(mod 7), a12m+3 = 0(mod 7).
Since a7 = 49 = 0(mod 7), a12m+7 = 0(mod 7) for m =1,2,---.
Hence a,, = 0(mod 7) whenever n = 3,7(mod 12).

By induction, it can be shown that
2F = 4(mod 12) when k > 2 is even .

2F = 8(mod 12) when k > 3 is odd .
The result follows.

Comments: (b) can be shown from the fact that, modulo 6, the sequence is
1,2,1,5,4,5,1,2,1,5,4,5,-- -,
and, modulo 4, it is 1,2,3,1,2,3,---.
Solution 1 The conclusion is true. It suffices to show that
fln+1)> f(n) forn=1,2,---.

If n # 9(mod 10), then
s(n+1) =s(n)+1,
so that
(n+1)—s(n+1)=n—s(n)

and

fln+1) = f(n—s(n))+1=f(n)
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Suppose that n + 1 = 0(mod 10%), and that n 4+ 1 # 0(mod 10%+1).
Then s(n + 1) + 9k — 1 = s(n). This implies that

n+1)—s(n+1) = (n+1)—s(n)+9k—1
= (n—s(n))+ 9k
> n—s(n).

Suppose, as an induction hypothesis, we have established
f(m) < f(n) whenever 1 <m <n <r.

If r # 9(mod 10), then f(r + 1) = f(r).
If r = 9(mod 10), then (r +1) —s(r +1) >r — s(r).
Therefore
f(r+1) =s(r+1)) = f(r —s(r)),
so that
fr+1) = f(r).

We now obtain the desired result.

Solution 1

PROPOSITION 1. Let ¢(n)o(n) = (n — 3)(n+ 1), and let the prime p
divide n, so that n = p®m for some m not divisible by p. Then either a = 1
or (p=3anda=2).

PROOF.
¢(n) = o(p*)e(m) = p"~'(p—1)e(m),
o) = olpotm) = (L) atm)
w

p(n)o(n) =p*~(p**t = 1)p(m)a(m).
Suppose a > 2. Then

0= ¢(n)o(n) = (n—3)(n+1) = —3(mod p* ).

Corollary m = p1ps - - - pi for some primes p; or n = 9¢1qs - - - g, for distinct
primes ¢; not divisible by 3.

PROPOSITION 2. If ¢ = 6,9 or prime, then ¢(q)o(q) > (¢ —3)(¢+1).
PROOF.

#(6)0(6) — (6—3)(6+1)=2x12-3xT=3>0
$(9)0(9) — (9—3)(9+1)=6x13—6x10=18 >0
p(p)o(p) —(p-3)p+1) =" -1)— (P> —2p-3)=2(p+1) >0
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for each prime p.

PROPOSITION 3.  Let n # 6,n = pq be the product of two primes. Then
(n—3)(n+1) > ¢(n)o(n) with equality if and only if [p — ¢| = 2.

PROOF.

and

Hence

p(n)=pP-1)(¢-1)=mn+1)-(p+q)

on)=p@E+1)(@+1)=n+1)+(+q).

(n=3)(n+1) = p(n)a(n)

= n*=2n-3)—(n+1)*+ (p+q)*

= n?—2pq—3-n*-2n—1+p*+2n+¢*

= “2pq-3-1+p"+¢" = (0® —2pg+¢°) -4
= (p—q’—4

> 0

and the result follows.
PROPOSITION 4.  Suppose p is a prime not dividing m and

Then

PROOF.

(pm —

>

>

Corollary

p(m)o(m) < (m—3)(m+1).

d(pm)o(pm) < (pm — 3)(pm + 1).

3)(pm + 1) = ¢(pm)o(pm)

(pm = 3)(pm + 1) — ¢(p)a(p)p(m)o(m)

(pPm® — 2pm —3) — (p— )(p+ V(om — 3)(m + 1)
(p?m? — 2pm — 3) — (p*m? — 2p®>m — 3p® — m? +2m + 3)
2m(p® —p—1)+3p> +m? —6

0.

If n = py---pg is the product of £ > 3 distinct primes, then

o(n)o(n) < (n - 3)(n + 1).

PROOF (by induction). If n = p1paps, we can write n = pm where m # 6
is a product of 2 primes, p is prime and use Propositions 3 and 4. For k > 3,
we can use Proposition 4 on the induction hypothesis.

PROPOSITION 5. Let m be any number not divisible by 3 and suppose
that ¢(m)o(m) < (m —3)(m+1).

Then ¢(9m)o(9Im) < (9m — 3)(9m + 1).



[Note this implies m > 3.]
PROOF.

(9m —3)(9m + 1) — ¢p(IM)o(9m)

(9m —3)(9m + 1) = #(9)c(9)p(m)o(m)

> (81m? — 18m —3) — (6 x 13)(m — 3)(m + 1)

= (81m? — 18m — 3) — (78m? — 156m — 234)
3m? + 138m + 231

> 0.

Corollary If n = 9q1qs - - - qx, then ¢(n)o(n) < (n —3)(n + 1).

PROOF. 1If k> 2 and ¢; is odd, this follows from Propositions 4 and 5. If
n = 9p, then

(n=3)(n+1) = g¢(n)o(n) = (9p—3)(9p+1)-T78(p° 1)
= 3p(p—6)+75
> 0

for p prime. If n = 18p, then

(n—=3)(n+1)—¢(n)o(n) = (18p—3)(18p+1) —234(p* — 1)
= 18p(bp —2)+ 231
> 0

for p prime.

From these facts, the desired results follows from Proposition 4.

Solution 2
PROPOSITION 1. Let ¢(n)o(n) = (n — 3)(n+ 1), and let p|n. Indeed,
let n = p*m where pfm.

Then a = 1, and n = p1p2 - - - px for distinct primes.
PROOF.  As before, We have ¢(n)a(n) = p* 1 (p®*t! — 1)p(m)o(m)

andn—le Orn—9HQ1

Ifn=29, then ?(9)o(9) =78, (9—3)(9+ 1) =60 and the result holds.
If n=9q1q2---qx (k>1), then

¢(n)o(n) =78(¢f —1)(g3 — 1) -~ (¢i — 1) = 0(mod 9)
since g2 = 1(mod 3) for every prime but 3, while

(n—3)(n+1) = —3(mod 9).



Hence n = p1ps - - - pi.-

29

PROPOSITION 2.
(ug — D(ug — 1) -+ (ux — 1)
k
= UUg--- U —Z(ul — 1) (wim1 — Dtjqq - uy for k> 1.

i=1

PROOF.

(ur — D(ug —1) = wque — (ug — 1) — ue,
(U1 — 1)(’(1,2 — 1)(’(1,3 — 1) = Uiuu3z — (u1 — I)U3

—Uu3z — (u1 - 1)(u2 - 1),

(ur —1)(uz — 1)(us — 1)(us — 1)
= wjuguzug — (u; — Duguy
—ugustg — (ug — 1)(ug — 1)uy
—(u1 — )(ug — 1)(usz — 1).

The result can be obtained by an induction argument.

PROPOSITION 8. Let n = p1pa---px where k > 3, p1 < pa < -~

Then ¢(n)o(n) < (n—3)(n+1).

PROOF. Note that 2py < paps - - pi.

p(n)o(n)
k
= J[w: -1
=1
= pips-- DR
k
= =107 — Dpi -0k
=1

< nP=Pi-1-h_y— 1) — (3 D7)

< n?—=3—2pipa---pr =n®—2n—3.
The cases n = p and n = p1p2 can be handled as in 12 solution 1.

Comment  Alternatively, for Proposition 3, we have

p(n)o(n) = (pI—1)---(pp—1) < (pI = 1)p3---ni

_ 2 (pz"'pk>
= n“"—-n|l———
Y41

< n2—p3n < n?-3n

< n?2-—2n-3.

< Pk
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PROBLEM SET 2 — Geomelry

Detfinition:

(1)

13

14

15

16

17

18

19

20

21

Given a plane figure ABC'... XY Z, the area of the figure is denoted by
[ABC ... XYZ].

Problems

Let A, B, C be three distinct points of the plane for which AB = AC.
Describe the locus of the points P for which ZAPB = ZAPC.

Let P be a point inside the triangle ABC such that Z/PAC = 10°, /ZPCA =
20°, ZPAB = 30° and LZABC = 40°. Determine ZBPC.

The altitude from A of the triangle ABC' intersects the side BC in D. A
circle touches BC in D, intersects AB in M and N and intersects AC in P
and . Prove that

AM + AN AP+ AQ

AC AB

Let M and O be the orthocentre and the circumcentre, respectively, of
triangle ABC. Let N be the mirror reflection of M through O. Prove
that the sum of the squares of the sides of the triangles NAB, NBC and
NCA are equal.

Let ABCD be a parallelogram with AC/BD = k. The bisectors of the angles
formed by AC and BD intersect the perimeter of ABCD in
K, L, M and N. Prove that the ratio of the area of KLMN to that of
ABCD is a function of k alone.

Let X be a point on the side of BC of triangle ABC and Y be the point
where line AX meets the circumcircle of triangle ABC. Prove or disprove:
if the length of XY is maximum, then AX lies between the median from A
and the bisector of ZBAC.

Given three disjoint circles in the plane, construct a point on the plane such
that all three circles subtend the same angle at the point.

Construct an isosceles triangle, given its circumcircle and orthocentre.

Construct a triangle ABC, given the magnitude of the angle A and the
lengths of the medians from the vertices B and C.
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22 Given n points in the plane, not all on a line, such that the areas of the
triangles defined by any three of them are less than 1, prove that the points
can be covered by a triangle of area 4.

23 The convex quadrilateral ABCD of area 2¢ has no parallel sides. Locate the
point P; on C'D such that P; is on the same side of AB as C and the area
of NAABP; ist. If P, P; and P, are similarly defined for the sides BC,CD,
and DA, respectively, prove that P, Py, P3 and P, are collinear.

24 Let ABCD be a tetrahedron for which the sides AB, BC and C'A have
length a, while the sides AD, BD and CD have length b. Suppose that M
and N are the midpoints of the sides AB and C'D respectively. A plane
passing through M and N intersects segments AD and BC' in points P and

Q.
(a) Prove that AP : AD = BQ : BC.
(b) Find the ratio of AP to AD in quadrilateral M@QN P is minimum.
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Solutions

13 Solution 1  Suppose P lies on the opposite side of AB to C and on the
same side of AC' as B. Then ZAPB = ZAPC if and only if P, B, C are
collinear, since in this case, one of the angles is contained in the other.

C
CL
L
XA
A
X
R

Similarly, if P is on the opposite side of AC to B and on the same side of
AB as C, then ZAPB = ZAPC if and only if B, C, P are collinear.

Suppose that P lies in the angle opposite to ZBAC.
P

B C

. AP . AP .
Then sin ZABP = 15 sin ZAPB and sin ZACP = a0 sin ZAPC.

So LZAPB = ZAPC if and only if sin ZABP = sin ZACP.
Now, ZAPB + ZACP < ZCBP + ZBCP < 180°,

so LZAPB = ZAPC is equivalent to ZABP = ZACP, which is equivalent
to P lying on the right bisector of BC.
Suppose P lies within the angle BAC. Then, as above,

LAPB = ZAPC is the same as sin ZABP = sin ZAC P, which is the same
as LZABP = ZACP or ZABP + ZACP = 180°.
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If ZABP = ZACP, ZAPB = ZAPC, then AAPB = ANAPC (ASA) and
/BAP = ZCAP, so P lies on the bisector of ZBAC.

If ZABP + ZACP = 180°, then ABPC' is concyclic and P lies on the
circumcircle of AABC.

Hence the required locus consists of the union of:

(i) the right bisector of BC,
(ii) the arc BC, not containing A, of the circumcircle of ABC,
(iii) the line BC produced with the interval BC' deleted.

A special case is when A is the midpoint of BC. A similar analysis establishes
that the locus consists of the following;:

(1) the right bisector of BC along with
(2) that part of line BC' lying outside the interior of the segment BC.

Note that the locus does not include the interior of the segment BC' (if P
is between B and A, for example, ZAPB = 180°, ZCPB = 0°). The arc of
the circle on the locus when A is off BC' tends to the line BC exterior to
segment BC as A approaches BC.

13 Solution 2  The case when A is the midpoint of BC' is easy to analyze.
Suppose A, B, C are not collinear. We consider two cases for the location of
P.
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(a) B and C are on the same side of AP produced. In this case, one of the
angles APB and APC is contained in the other and they are equal if and
only if they coincide (that is, P is collinear with B and C).

()
(b) B and C are on opposite sides of AP produced. Consider triangles
AAPB and AAPC. If P is on the locus, we have that
PA is common, AB = AC, and ZAPB = ZAPC.

This implies either /PBA = /PCA, so ANAPB = AAPC and
BP =CP or /ZPBA+ ZPCA = 180°, and so ABPC is concyclic.

(b)

For the converse, if BP=CP or ABPC is concyclic, then
/APB = ZAPC. We can argue to the conclusion as in 13 Solution 1.

13 Solution 8 It is easy to dispose of the cases in which P is on any of the
lines AB, AC or BC.

Suppose otherwise. Applying the Law of Sines to APAB and APAC

respectively yields
sin/APB _ sin /PBA

AB AP

and
sin ZAPC __sin /ZPCA

AC AP
Hence, if ZAPB = ZAPC, then sin /PBA = sin /PCA, so that /PBA =
/PCA or ZPBA+ ZPCA = 180°.
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We can now finish as in 13 Solution 2.

14 Solution 1  Clearly AABC is isosceles with AC' = BC. Reflect P in the
right bisector (through C) of BA to obtain Q.

CP = CQ implies that ZOPQ = LCQP.

Also ZACP = ZBCQ = 20°.

Hence ZPCQ = 100° — 2 x 20° = 60°.
Therefore, APCQ is equilateral and PQ = QC.

/BQC = ZAPC = 150° and ZCQP = 60° together imply that /BQP =
150° = ZBQC.

Hence ABQC = ABQP (SAS : QC = QP, Z/BQC = ZBQP, BQ is
common).

Thus BP = BC and further, /BPC = ZBCP = 100° — 20° = 80°.

14 Solution 2 Let b = |AC|. By the Law of Sines,

b e er e 1o
|PC| = sni50s Sn 10° = 2bsin 10°.

By the Law of Cosines, using b = |BC/,
|PB|? = |PC|? + |CB|? — 2|PC||CB| cos 80°,

so that

|PB| = V/4b2sin®10° + b2 — 4b% sin 10° cos 80°
= V4b2sin? 10° + b2 — 4b2 sin® 10°
b = |CB|.

Hence /BPC = Z/BCP = /80°.

14 Solution 3 Let u = |PA|, v=|PB|, w= |PC|. By the Law of Sines, with
3= /PBC
sin80°  sinf

)

v w
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sin 10° sin 20°

)

w u
sin(40° — 3) _ sin30°
u v
Hence sin 80° sin 10° sin(40° — ) = sin Gsin 20° sin 30°.
Since
2sin80° sin 10° = 2 cos 10° sin 10° = sin 20°
and

. o 1
sin 30° = >
we have that
sin 8 = sin(40° — ).
Since 0 < (B < 40°, we see that § = 40° — 3. Thus § = 20°, so that
/BPC =180° - Z/BCP — ZPBC = 80°.

Solution 4 [A. Chan] Let § = ZBPC. We have ZAPC = 150° and
/ABP = 0 — 60°, so by the Law of Sines

sin 150° sin 20°

b u
sinf)  sin80°
b v
sin(0 — 60°) _ sin30°
u v
Hence
sin 150° sin 80° sin(f — 60°) = sin 20° sin 30° sin 6.
Thus
sin 80° sin(f — 60°) = sin 20° sin 6,
and so
c0s(140° — 0) — cos(20° + ) = cos(20° — #) — cos(20° + 0),
yielding
cos(140° — 0) = cos(20° — ) = cos(f — 20°).
Now
0 =180° — (4LBPC + ZPCB) > 180° — 40° — 100° = 40°
and

6 < 180° — ZBCP = 100°.

Hence 20° < 6 < 140°.
Thus cos(140° — @) = cos(6 —20°), and so 140° —6 = 6 —20° yielding § = 80°.
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14

14

Solution 5 [B. Marthi] By the Law of Sines,

sin10°  sin 150°

w b
and
sinf  sin(100° — 6)

b w '

Thus
sin #sin 10° = sin 150° sin(100° — 6),

giving

2sin 6 sin 10° = sin(100° — 0) = cos(6 — 10°),
which leads to
cos(f — 10°) + cos(f — 10°) = cos(f — 10°),

and then to
cos(f + 10°) = 0.

Since 0 < 6 < 180°, we get 6 + 10° = 90°, and finally, that § = 80°.

Solution 6 By the Law of Sines on APAC,

b w w

sin150° ~ sin10° ~ cos80°’

so that
w = 2bcos 80°.

By the Law of Cosines on APAC (with ZBCP = 80°), we get

2 = b+ w? — 2bwcos 80°
= b% + 4b% cos? 80° — 4b? cos? 80°
= b

so that v =1b.
Hence /BPC = Z/BCP = 80° (same as 14 solution 2).
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15 Solution 1

A
M P
E
O
N Q
B D C
AD? = AB?>-BD? = AB?- BN -BM

= AB? — (AB - AN) - (AB — AM)
= AB-(AM + AN)— AM - AN.
Similarly, AD? = AC - (AP + AQ) — AP - AQ.
Since AM - AN = AP - AQ), we have

AB-(AM + AN) = AC - (AP + AQ),

from which the result follows.
(The argument is valid even if AB and AC fall on the same side of AD).

15 Solution 2 Let V and W be the respective midpoints of M N and PQ, so
that OV L AB and OW L AC.

Now
AM + AN =2AM + MV + VN =2AM 4+ 2MV = 2AV.

Similarly, AP + AQ = 2AW.
AV _ AD
AO  AB’

AV - AB = AD - AO = (AM + AN) - AB = 2AD - AO.

ANAVO|||AABD implies that which in turn implies that

Similarly,
(AP + AQ)- AC =2AD - AO = (AM + AN) - AB,

and the result follows.



15 Solution 3 Let m = |AM|, n = |AN|, a = |AO| and
r =|OM]| = |ON]| (the radius of the circle).

By the Law of Cosines, m and n are roots of the quadratic equation
r? = 2% + a® — 2zacos(£/BAD),

whence, from the theory of the quadratic, m +n = 2a cos(£LBAD).
Let u = |AB| and d = |AD|. Then cos(/BAD) = £.

2ad
Hence m + n = L, so that u(m + n) = 2ad, giving

u
AB - (AM + AN) =2AE - AD.
Similarly, AC' - (AP + AQ) = 2AE - AD.

The result follows.

15 Solution 4

(AE + AD) - AD

= AE-AD + AD?

= AM - AN + AB? — BD?

= AM -AN + AB?> - BN - BM

= AM -AN + (AN + NB) - (AM + MB) — BN - BM
= AM-AN+ AN-AB+ NB-AM

= AM - (AN + NB)+ AN - AB

= (AM + AN) - AB.

Similarly, (AE + AD) - AD = (AP + AQ) - AC, and the result follows.

16
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Label the feet of the perpendiculars from the points M, O and N as in the
diagram.

Basically one has to show that
AN? + BN? + AB? = AN? + CN? + AC?,
or more simply, that
BN?+ AB® = CN® + AC?.
The remainder follows by a parallel argument to get
AN? + BN? + AB* = BN* + CN? + BC?.

One should play around with the many right triangles to bring the solution
home. A key observation is that DU = PD, VE = EQ, WF = FR (parallel
projections of MO = ON).

Solution 1  Consider the 180° rotation about O. It carries the line DO to
itself and M to N. Since the rotation preserves distances,

dist (M,line OD) = dist (NV,line OD) implies that UD = DP.

Since D is the midpoint of BC', we have BU = PC and BP = UC.

Therefore,

BN?+ AB* = (BP?+ PN?) + (AU? + BU?),
)by Pythagoras’ Theorem)
= UC?+ PN? 4+ AU? 4+ PC?
= (UC? + AU?) + (PN? + PC?)
= AC? + CN2.

Hence AN? + BN? + AB? = AN? + CN? 4+ AC?, as required.

A similar argument shows either side of this equation is equal to

BN? + CN? + BC?.

Solution 2 (sketch) Introduce coordinates, with the origin at U. Make
liberal use of the slope condition for perpendicular lines and the coordinates
of midpoints of segments to obtain from A(0, a), B(b,0), C(c, 0), the following

U(0,0), D (55£,0), B (5,5), F (3.5), M (0, =), 0 (35,5 + 35) and N (b+c.a + 2¢).

a

Now compute the requisite lengths.

Solution 8 [M. Ting] Let the positions of the vertices A, B, C' be given by
the vectors a, b, ¢ respectively with the origin at O.
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17

Letm=a+b+c
Then (c—b) - (m—a) = (c—b) - (c+b) = —b* =0, etc., so that the
orthocentre M is located by the vector m. Hence n = —(a + b + ¢). Thus,

BN? 4+ AB?> = (2b+a+¢)*+(b—a)?
= 50 +2a%+c*+2a-b+2a-c+4db-c
CN?+AC* = (2«+a+Db)?+(c—a)

5% +2a% + b2 +2a-b+2a-c+4b-

I

Since |a| = |b| = |¢| (the radius of the circumcircle) we have

AN? + BN? + AB? = AN? + CN? + AC?.

Solution 1
Let P be the centre of the parallelogram.

-
N

We have AP = PC and BP = PD, so that 45 = 45 = k.

. . AN AP
Since PN bisects ZAPD, we have ND-PD -

. . AK AP
Since PK bisects ZAPB, we have KB - PB -
Hence KN || BD and AAKN || AABD.
N A_N — A_K — KN — k that

“AD T AB T BD  kt+1 M

2
[AKN] = T 1)Q[ABD].

- k* 1

Similarly, [CM L] = FE [CBD], [DNM] = T 1)Q[DAC], [BLK] =
1

———[BCA].

(k+ 1)2[ ¢4l
Adding these four equations yields

k‘2
[ABCD] ~ [KLMN] = s ([ABD] + [CBD])
1
T ([DAC] + [BCA])
k*+1



whence ok
Thus the required ratio is 2k
d (k+1)2"

17 Solution 2 Let |PD| =1, so |[AP|=k. Let § = ZAPD.
Then [APD] = $ksin6 implies that [ABCD] = 2k sin 6.
However, [APD] = [APN] + [NDP] implies that

1 . 1 .6 1 .0
§ksm9—§k|PN|sm§—|—§|PN|sm§.

This, in turn, implies that

6 0 0
2ksin§cos§ =ksinf = (k + 1)|PN|sin§.

2k 0 2k 0
Whence |PN| = k—-|—]_ COS 5 Slmllaﬂy |PL| = k—-|—]_ COS 5

A similar argument establishes that

2k (1800 — 9) 2k

PK| = |[PM| = :
|PK| = [PM]| = == cos 2

Now KM 1 NL and

[KLMN)]

1
A[PKN] = 4.3 - |PK]|-|PN]|

= 2 —Qk ‘inQ 2k osg
- 1o )\ k112

e
= m sin @
2k

(e

ABCD).

17 Solution 3 (outline).  Establish that

KN | BD, NM | AC

k 1
|KN|—k—+1|BD|, |NM|—k—+1|AC|.
From this, it follows that ZKNM = ZAPD = 6.

Now

[ABCD] A[APD] = 2|AP|-|PD|sin6

= 3|AC|-|BD|sin®,

43
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17

17

and
[KLMN] = |KN|-|NM]|sin6

k .
= W|BD| . |AC|SIH9,

whence the result follows.

Solution 4  We transform the parallelogram ABCD as follows:
A D

B C

(1) First, perform a shear which fixes BD and transforms ADC to a line
perpendicular to BD: This reduces the ratio %, but preserves the ratio of
the two areas in question:

B

(2) Then, perform an augmentation in the direction perpendicular to BD
until A goes to A’, C to ¢’ with AC’ = kBD. This again preserves the ratio
of the two areas in question.

We have both A’C’ 1. BD and K'M’ 1 L'N’, so that

[K'L'M'N’)  [N'UPV]  [PA'D']—[AUN']—[N'VD]
[A/B'C'D'] [PA'D] [PA'D']
_ o1 2%

(k+1)?2 (k+1)22 (k+1)%

Solution 5 (Outline)
— — — — — —
— kPB +PA —— PA +kPD PA —kPB
PE=""27 *12 PN = _
k+1 k+1 k+1
— — — —
— kPD +PC —kPB —PA
kE+1 k+1

)
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k+1 2\k+1
KLMN|]=|KN x NM Y _|BD xac
KL = RN N3] = 5 [BD <20
A llel defined by BD AC)) —~
= ( rea (parallelogram defined by )) e
2k
= ——-[ABCD].
(k+ 1)2[ ¢l
17 Solution 6 (outline)
[AKN] _ AN _ [DMN] 1
[PKN] _ ND " [PNM] K
eML) _ [BLK] 1
PML] [PLE] &

[KLMN] = 4[PKN] = 4[PNM) = A[PML] = 4[PLK).

Hence

[ABCD]

[KLMN)]
_ [AKN]+ [DMN]+ [CML]+ [BLK] + [KLMN]
B [KLMN]
= ﬂk+%+k+ﬂ +1:§+2—1k+1: (k;kl)Q.

18 Solution 1 In the diagram, the triangle ABC has circumcircle
ABNEQC.
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N E Y, t

AM is a median and ADE bisects Z/BAC'. Since equal angles are subtended
by equal arcs, we have arc BE = arc EC. The tangent t¢ to the circle through
E is parallel to the chord BC' (since the radius joining E to the centre right

bisects BC and is perpendicular to t). AP is an altitude.

If AB = AC, it is obvious that XY is maximized when X = M = D.

Without loss of generality, take AB > AC as in the diagram. There are

three cases to consider:
Case (1) X = X4, on the segment BM. Let Y = Y.
By the Arithmetic-Geometric Mean Inequality,

1

1 1
BX,-X,C < Z(BX1 + X:C)? = ZBc2 = Z(2BM)2 = BM?.

Since AAXiM has its largest (obtuse) angle at M, we
AX, > AM.

Hence, AX; - X1Y; = BX; - X;Cy and AM - MN = BM - MC,
BX; - X C < BM? _ BM-MC
AX, AM AM
Thus XY does not assume its maximum if X is between B and M.

Case (2) X = X5 on the segment DP. Let Y = Y5.

so that XY = = MN.

have



47

A
D P
B e c
Y2l 10
E 7

Produce X5Y5 to meet the circumcircle in Zs.
Now, in triangles AX2D and AZsF, the obtuse angle is opposite ADE, so
AD > AX,, AE > AZ,. Since the triangles are similar, we have

AD AE  DE

AXy  AZy  XoZo'
It follows that XoYs < XoZ5 < DE.
Thus, XY does not assume its maximum if X is between D and P.
Case (3) X = X3 on the segment PC. Let Y = Y3.
BXs3-X3C BP-PC

=P
AX; AP @

since BX3 - X3C increases as X3 moves towards M and AX3 > AP.
Argument (ii): Reflect AX3Y3 to AXLYS in APQ.

Then X lies on BP, and Yy lies within the circle. Thus X4Y3 can be
produced to meet the circle in Y3'.

Then X3Y3 = XYy < XYy’ when X} lies between B and P.
It follows that XY is maximum when X lies between M and D.

Argument (i): X3Y3 =
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19 Solution 1

Analysis  Let us examine the locus of points at which two disjoint circles
subtend the same angle. The situation is as pictured, where P and @ are
the centres of the circles. Lines drawn from X are tangents to the circles.
The diagram involving the circle of centre P is the image of the diagram
involving the circle of centre ) with respect to a central similarity followed
by a rotation with respect to X; thus X P : X@ is equal to the ratio of the
diameter of the circles, and therefore constant. If the circles are congruent ,
the locus of X is the right bisector of P and @; if they are not, the locus is
the Apollonius circle with diameter Y, Z where Y and Z are chosen so that
PY : QY = PZ : QZ, the ratio of the diameters.

T

Introducing a third circle, we can find the required point as the intersection
of two loci of this type.

Construction  If the three circles are congruent, construct the right bisectors
of the segments joining the centres of any two pairs from them. The intersection
of these right bisectors is the required point. This fails if and only if the three
centres of the circles are collinear.
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Otherwise, we can find two pairs of noncongruent circles among the three.
Let the centres of the circles be P, @, R and their respective diameters p, q,r
where p # r,q # r. On the extended line PR obtain points U, W (distinct)
for which PU : RU and PW : RW are each equal to p : r. On the extended
line QR obtain points V, Z (distinct) for which QV : RV and QZ : RZ are
each equal to ¢ : . Construct circles with diameters UW and V' Z. If these
circles intersect, then the required point can be determined as one of the
intersection points.

[Alternatively, the end points of the diameter of the Apollonius circle corresponding
to a pair of the given circles can be found by taking the intersection points

of the two pairs of common tangents to the circle. Evidently, the circles
subtend equal angles at each of these points.]

Appendix

APOLLONIUS’ THEOREM: Let PQ be a line segment. The locus of a
point X for which the ratio of PX : X @ is constant is the right bisector of PQ
when PX = X @ and a circle of diameter UV when PX # X @, where U and
V are points on PQ produced for which PU : UQ = PV : VQ = PX : XQ

A synthetic argument

U Q

Let X be a point on the locus. Since PX : XQ = PU : UQ, we have that
XU bisects ZPXQ, that is ZPXU = ZUXQ.

Construct VY || QX as in the diagram. Then
PY YV =PX:XQ=PV:QV =PY : XY

so that YV = XY.
Hence ZYXV =/YVX =/ZQXV, so that XV bisects QXY
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Hence LZUXV = LZUXQ + LQXV = %(APXQ +ZQXY) =90°, so X lies
on the circle with diameter UV.

On the other hand, suppose X is on the circle with diameter UV, so that
ZUXV = 90°. Let Q" be on UV such that ZUXQ' = /ZPXU and PX :
XQ' =PU:UQ.

The point on V’ on PQ produced for which
PU:UQ =PV :QV

must have ZUXV’' = 90° (by the first part), so that V = V'
Thus

PU:PV =UQ :Q'V.

But PU:PV=UQ:QVsoUQ :Q'V=UQ:QV sothat Q = Q.

Hence PX : X@Q = PU : UQ, and so X lies on the desired locus.

20 Solution 1. Analysis. There are three possibilities:

Case (i) The orthocentre H coincides with O, the centre of the circle,
whereupon the required triangle will be any equilateral triangle inscribed
within the circle.
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Case (ii) The orthocentre H is distinct from the circumcentre O, but within
the circle. In this case, the two points lie on the right bisector of the base of
the triangle and the vertex must be one end of the diameter through OH.
There are two possibilities; let A be one of these, and suppose that B and
BC have been found (diagram).

Then BQ 1 AC, CD 1 AC (since AD is the diameter). Thus
BQ || CD.

Similarly CR L BD, so that HBDC is a parallelogram (indeed a rhombus)
whose diagonals HD and BC' right bisect each other.

H
R Q

Case (ili) The orthocentre H lies outside lies outside the circle. Then if
ABC is the required triangle, HOAD are collinear, BR | AC (produced)
and CQ 1 BA. Also DC 1 AC and DB | BA, so again BDCH is
a parallelogram and HD and BC right bisect each other. Since P must
lie in the circle, there are two constraints which must be satisified for the
construction to work:

(a) A must lie between O and H;
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(b) AH cannot exceed DA (thus, the limit of H as B,C' — A is a point for
which A bisects the segment HD - is this reasonable for you?)

Construction.  Determine the circumcentre O of the circle and denote the
orthocentre by H. Let AD be the diameter through O and H: if O = H,
pick any diameter; if H is within the circle, let A be either end point; if H is
on or outside the circle, pick the end point nearest to H for A. Bisect HD
at P and choose B, C' on the circle so that BPC'is the right bisector of HD.
This requires the condition that AH cannot exceed DA. Then ABC' is the
required triangle.

PROOF of Construction. Clearly the given circle is the circumcircle of
triangle ABC. Now CP = PB, PD = PH and ZCPD = /BPH. This
implies that ACPD = ABPH, and further that /PCD = /PBH and that
BQ || DC, so that BQ L AC (since DC L AC'). Thus, BQ is an altitude.
Likewise, C R is an altitude, as is AP. Hence, H is the orthocentre of AABC.
Since a reflection in AD carries B to C,we have AB = AC so that AABC
is isosceles.

Remarks.  You MUST provide a PROOF of the construction. The analysis
is not good enough since the reasoning goes the wrong way; in fact, technically,
the analysis is redundant, although it is a good idea to include one. Always
try to remark on the uniqueness and feasibility of the construction.

20  An alternative background proposition.

LEMMA. Let ABC be a triangle and let D be a point on the circumcircle
such that AD | BC'. The point H on AD is the orthocentre of ABC' if and
only if D and H are on opposite sides of BC, and BC' right bisects HD.

PROOF. Case 1 /A is acute.
A

H
B = C
\ K
D
Suppose HK = KD. Then ABKH = ABKD (SAS)
Therefore /LBC = Z/DBC.
But ZDAC = ZDBC implies that ZKAC = ZLBC. Then

\

/BLC = 180° — (/BCL+ ZLBC)
= 180° — (/KCA+ /KAC)
ZAKC = 90°.
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So, BL is an altitude . Hence H is the orthocentre.
On the other hand, suppose BL 1. AC, so that H is the orthocentre. Then

/DBC = Z/DAC =90° — LBCA = ZLBC.

Hence ABKH = ABKD (ASA), so that KH = DK.
Case 2 /A is obtuse.

Suppose HK = K D.
Then ABKH = ABKD so that ZLBC = ZDBC.
But /LAH = /KAC = /DAC = /DBC = ZLBC. Then

ZALH = 180°— (/BHK + ZLAH)
= 180° — (/BHK + /HBK)
= /HKB = 90°.

So, BL is an altitude and H is the orthocentre.

On the other hand, let BL 1. AC. Then

/DBC =/DAC = /LAH =90° — /LHA = /ZHBK

so that ABKH = ABKD (ASA), which implies that KH = DK.
Case 3 /A is right. In this case A = H and BC is a diameter.

Solution 2 [S. Yazdani, O. Lhotak] (sketch)

RECALL: The nine point circle is the circumcircle of the pedal triangle.
It contains the feet of the altitudes of the triangle, the midpoints of the sides
and the midpoints of the segments joining the orthocentre to the vertices.
Its centre N is the midpoint of OH, where O is the circumcentre and H is
the orthocentre.



=
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It can be obtained from the circumcircle of the triangle by either of two

dilatations:
(a) centre G and factor —3,

(b) centre H and factor 3.

Thus its radius is %R, where R is the circumradius.

Analysis:  Let ABC' be the finished triangle with AB = AC.

Let K be the midpoint of AH, let N be the midpoint of OH, the centre
of the nine point circle, and let P,Q and R be feet of altitudes as in the
diagram. Then K, O, N, H are on the right bisector of BC'.

Since AARH is right, K is equidistant from A, R and H.

Since R is a foot of an altitude, it lies on the nine point circle which passes
also through K.

Hence R is the intersection of the circle centre K and radius AK with the
circle centre N and radius NK.

Construction  Determine A as the intersection of the given circumcircle and
line OH (two cases if H is within the circumcircle). Let N be the mid-point
of OH and let K be the mid-point of AH.

Construct the circle of centre K and radius AK = AH, and the circle of
centre N and radius NK.

These circles will intersect at R and (). Produce AR to meet the given circle
at B and AQ to meet the given circle at C. Then AABC is the required
triangle.

PROOF. Since A, B,C are on the given circle with centre O, this circle
is the circumcircle of AABC and O is the circumcentre. Since AP contains
the diameter of both intersecting circles, we have AR = AQ, from which it
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can be deduced that AB = AC. Since Q and R are on the diameter AH, we
have ZARH = ZAQH = 90°.

Ezercise:  Show that QH produced passes through B and RH produced
passes through C| establishing that H is the orthocentre.

21 Solution 1 Analysis Let us consider the finished diagram.
A
/Fﬁ
B H
NE
c

v is the length of median BFE.
w is the length of median C'F.

) A lies on a certain circle with chord BE.
) GE = EH implies that AAEH = ACEG (SAS), so that AH = CG.
) G being the centroid implies that AH = CG = Zw.

2

) A lies on circle with centre H and radius sw.

(1
(2
(3
(4 5

Construction Draw |BE| = v.

- - - = — —

B E
K

X

Upon chord BE, construct a circle for which BE subtends an angle equal to
ZA at the circumference. To do this, construct X so that
/EBX = ZA;let ZX BY = 90°; the centre of the circle is on the intersection
of BY and the right bisector of BE.
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Construct G and H on BE produced with BG = 2v, BH = 3v = 2BG with
the order B,G, F, H.

With centre H and radius %w, construct a circle to meet the first circle at A.

Produce AFE to C so that AE = EC. Then ABC is the required triangle.

PROOF. We have AE = EC, GE = FH and ZAEH = /GEC, so that
ANAEH = ACEQ (SAS).

Thus LZHAE = /ECG and AH = CG, so that AH || CG. Thus
AHCG is a parallelogram with |[CG| = [AH| = 2w.

Let CG meet AB in F.

Since GF | HA and BG = GH, we have BF = FA.

Hence ZA is as required (being on a constructed locus).

BE is a median (by construction of C), |BE| = v.

CF is a median.

BE and CF meet at G, so that CF = 3CG = 3 (3w) = w.

[Alternatively: Given that BFE is a median of AABC, we can apply Menelaus’
Theorem to ABAEFE to obtain

AF BG AC _
FB BE CE 7

whence AF = FB.]
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22 Solution 1

Let APQR be a triangle of maximum area among those formed by any of
the triples. Through each vertex, draw a line parallel to the opposite side to
form a triangle ABC' for which [ABC| = 4[PQR).

Suppose S lies outside of AABC.

Then S must lie on the opposite side of at least one of AB,BC,CA to
APQR. WOLOG, let S and APQR be on opposite sides of BC. Then
dist (S,QR) > dist (P,QR) so that [SQR] > [PQR].

Hence S cannot be one of the n points, so all n points lie inside AABC.
Since [PQR] < 1, then [ABC] < 4. Find A’ so AA" L BC and [A'BC] =4
(A between A’ and BC). Then AA'BC is the required covering triangle.

23 Solution 1

Let h denote the distance from D to diagonal AC and k the distance from
B to diagonal AC.

[ACD] h [ABC)] k
We have 7rpey = 50 that orpe Dl = ek
Determine (1 on BC produced so that
|BQ1|  h+k

|BO| 2k’



58

and draw P Q1 || AB with P; on CD produced. By hypothesis, P1@Q; does
not lie along a side of the quadrilateral ABCD. Now

h+k

2k
With @1 on the same side of AB as C, the point P; is as described in the
problem.

Let F be the intersection point of AB and C'D produced. Thus

[EP| _ [BQi| _ h+k
PC|  1@iC]  k—h

[Note that, if A > k, C will be between B and @ and between E and P;].
With any origin O, we have

—  (k+h\ = [(k—h\==

Now look at P, and side BC. In this case, the role of AB in the first part is
played by BC and the role of E is played by F', the intersection of AB and
BC produced. We have

——  (k+h\=— [(k—h\ =2
oP, = (7> OA + (7> OF.

Similarly, we find that

[ABP] = [ABQ1] = "5 aBC) = %[ABCD].

2h 2h
and h+k h—k
— + — — —
0P (W)O +(7>OF
Hence
s k+h k—h\ —
PPy = (W)CA (W) F
1 —
- —[(k+h)0A+(k—h)EF
2k
and
— E4h\ —=  (h—k\ —
PP, = <W)AC+<W)EF

—% [k +n)CA + (k- h)EF),

p— a— . .
so that Py P, and P3P, are multiples of the same vector (that is, are parallel
or coincident).
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By going through the same argument for Py, P3, Py, P; (still on consecutive
—_—
sides of the parallelogram) in place of Py, Py, P3, Py, we have that P, P3 and
—_
P, P, are parallel or coincident. Thus either Py P, P3Py lie along the same line
— —
or P; P, P3P, is a parallelogram. In the latter case, P P» = P4Ps, so that h =
— — —
k and oP, = OP, = ocC and
— —
OP; = OP3 = OA, from which the result follows.

24 Solution 1

— — —
Case (a) Let DA = pDP and CB = ¢qCQ.
—_— — = —
Observe that DB+ BC + CA+ AD = 0,
_— — = —
so that DB + CA = DA+ CB. Then

|
|

=
S
I

=
Q

— 1— 1/ — —
+COM = 5DC+§((M+OB)

H
|

]
S
+
Q
h

) - 30+

—

—_— — —_— — —_— —
P (ND + DP) +q (NC + CQ) ~pND — qNC}
[pJV_15 +aNQ + (p— Q)N_C)}

1) (3)70 (27 B

AN NP N~ N

[\

— — —
Now NM is a linear combination of NP and NQ (since M,N,P,Q are
coplanar).

— — —
If p # q, it would follow that DC'is a linear combination of NP and NQ, so
that N, P,Q,C, D are coplanar. But this is false.

Hence p = ¢q. Therefore
|IDA|  |CB|

[DP| |CQ|
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and
AP| _ |BQ| _p-1
|AD|  |BC] p
Remarks The special cases that the plane is NCD (thatis P =D, Q = C)

or ABN (that is P = A, Q = B) are easy to deal with. Note that, in this
part, the assumptions about equality of certain sides were not used.

Case (b) We use Cartesian coordinates.

Letazl,b:,/ + h2, ||AD‘| :%:u Take
A~ (0,0,00 M~ (10,0
B~ (1,000 N~ (5,434
C~ (L, 220) P~ (%, Ly, hu)
Then NP =1 (3(u—1),v3(u—2),3(2u— 1)h),
NQ=1%(3(1—u),(3u—2)v3,-3h)
MP =L (3(u—1),v3u,6hu),
MQ = L (301 —u),3v3u,0),
ﬁx NQ
- % (3\/_h(6u—6u ), —18h(1 — u)?, 12v/3(1 —u)2)
_ 136 (18v/3uh, ~18h(1 — ), 123(1 — ).
MP x MQ
- 316( 18v/3u2h, 18u(1 — w)h, 3v/3u(l — u)(— 3—1))

- - (18\/§uh, ~18(1 — w)h, 12v/3(1 — u)) .

—_— — U —_— —
Thus, ’NP X NQ‘ 17|, and ’MP x MQ‘
= (3v3uh, —3h(1 — u), 2/3(1 — u)).

3—%|7| where

Now
[MQNP] = [MPQ]+[NPQ]
= 5[ <) 5 77 7]
= 1—12|7| -5 (27th2 (9h2+12)(1—u)2)%
1

= — [4(3h2 + 1)u? — (6h2 + 8)u + (3h +4)] % .
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Thus, we have to minimize
q(u) := 4(3h* + 1)u* — (6h* + 8)u + (3h? +4) for 0<wu < 1.

Since

3244 1% 3K2+4 _ 3h*414
) 1 1 ’

alu) = 4(3h° +1) [“ TAGR 1 GRZ 1 1) (307 +1)

q(u) is minimized when

3h? + 4 1 3
u=—— =0
4(3R2+1 4 4(3R%2+1)
Since £ = ,/4(1 + 3h2), the minimizing u = % is & [1 + Z—j}

In the case of a regular tetrahedron (a = b), [M N PQ)] is minimized when P
and @ are the midpoints of AD and BC respectively.

Alternatively:

IMQNP] =

2
(O, @, %) X (1 —u,‘/Tg,u,—hu)’
2

(%ghu, h(lgu), ’T?’(l — u))‘

2

V(122 + 4)u2 + (—6h2 — 8)u + (3h2 + 4)
43 '

S
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24 Solution 2 [O. Lhotak] Take coordinates

(a)

A~ (0,-2,0)

B~ (42,00

C ~(0,2,0)

D~<ﬁ,o, bL%)

M~ (42, -2,0)

a a bzfﬁ

N ~ 1/37 4 2 . )

PN(O,—%,O)+t<ﬁ§,%, b2—a§>

Q ~ (%5070) + s (_%5%70)
Check that

N—>Q- (Wx]\ﬁ) = —”B(W%a?(s—t)

24
so that P, N, M, Q are coplanar if and only if s = t.

(b)

11— —_— P—— —
(MQNP] = HMQ x NQ| + ’MP x NP}
a?v? [, (a®>+0b%), a®>+0b?
T8 [t T e ]
a’b? a’ + b2 2
= = (t BTy > -+ constant

z12+b2

is minimized when ¢ = %%
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PROBLEM SET 3 — Combinatorics

Problems

25 Two evenly matched teams are engaged in a best four-of-seven series of games
with each other. Is it more likely for the series to end in six games than in
seven games?

26 One square is deleted from a square “checkerboard” with 22" squares. Show
that the remaining 22" — 1 squares can always be tiled with shapes of the
form

which cover three squares

27 None of the nine participants in a scientific symposium speaks more than
three languages. Two of any three participants speak a common language.
Show that there is a language spoken by at least three participants.

28 There are nine people in a room. Two of any three know each other. Show
that four people can be found in the room such that any two of them know
each other.

29 Place 32 white and 32 black checkers on a standard 8 x 8 checkerboard. Two
checkers of different colours will be said to form a “related pair” if they are
placed either in the same row or the same column.

Determine the maximum and the minimum number of related pairs (over all
possible arrangements of the checkers).

30 Let E be a system of n? + 1 intervals of the real line. Show that E has either
a subsystem consisting of n + 1 intervals for which, given any pair, one is
contained in the other, or else a subsystem consisting of n+ 1 intervals, none
of which contains any other member of the subsystem.
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31

32

33

34

35

36

Last Friday, many students visited the school library. Each arrived and left
only once. However, for any three of them, two of the three were present
at the same time (that is, their stays in the library overlapped). Prove that
there were two instants during the day such that each student was present
for at least one of them.

Between one and two dozen people were present at a party. Each pair of
strangers had two common acquaintances, and each pair of acquaintances
had no common acquaintances. How many people were present?

Find the number of ways of choosing k numbers from {1,2,---,n} so that
no three consecutive numbers appear in any choice.

A function f, defined on the subsets of a given set S to themselves, has
the property that, for any subsets A and B of S, f(A) is a subset of f(B)
whenever A is a subset of B. Prove that there is a subset C' of S for which

f(C) =c.

Let n be a positive integer exceeding 5. Given are n coplanar points for
which no two of the distances between pairs are equal. Suppose that each
point is connected to the point nearest to it with a line segment. Prove that
no point is connected to more than five others.

A subset of the plane is closed if it contains all of its boundary points. The
diameter of a closed set is equal to the maximum distance between any pair
of its points. Thus, the diameter of a square unit is v/2.

(a) Prove that a closed unit square can be covered by three sets of diameter
not exceeding v/65/8.

(b) Prove that a closed unit square cannot be covered by three sets, all of
which have diameter less than 1/65/8.
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Solutions

25 Solution 1  The series is equally likely to end in six games or in seven. If
the series goes beyond the fifth game, then at the end of the fifth game one
team must be leading the other 3 to 2. Each is equally likely to win the sixth
game, leading to a 4 to 2 series for a win in six games or a 3 to 3 tie and the
need for a seventh game.

25 Solution 2 Let A denote a win for one team, B a win for the other. A
six-game win needs four A’s and two B’s with an A last, or four B’s and two
A’s with a B last. The probability of this is

(6) G5 ()67

A seventh-game win needs four A’s and three B’s with an A last, or four B’s
and three A’s with a B last. The probability of this is

OO 05

26 Solution 1  The proof is by induction on n.
If n = 1, the region to be tiled has the same shape as the tile and the result
follows.

The result follows.

Suppose the result holds for n = k.

imm

Given a checkerboard with 22(Ft1) = 4 x 22% squares, partition it into 4
checkerboards with 22* squares as indicated in the diagram. One of the 4
checkerboards involves the deleted square. Place one tile at the centre of the
large checkerboard so that it covers one square of each of the remaining 3
smaller checkerboards (as indicated).

By the induction hypothesis, the remaining squares of the 4 smaller checkerboards
can be tiled as specified and the result follows.

Question:  Does the result hold for any even sided checkerboard?
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27

27

Solution 2  The proof is by induction on n. The case for n = 1 is clear.
Suppose the result holds for n = k

A checkerboard with 22(F*1) 1 x 1 squares can be regarded as a 22% board
with 2 X 2 squares.

Let S be the 2 x 2 square containing the deleted square. Then the rest
of the board (excluding S), by the induction hypothesis can be covered by
L-shaped conglomerations of tiles like this:

each made up of 4 of the basic tiles. S without the deleted square is another
such tile. The result follows.

Solution 1  There are two cases to consider.

Case (i):  Suppose every pair of participants has a language common to
both members.

There are (g) = 36 different pairs and at most 3 x 9 = 27 languages involved.

By the Pigeonhole Principle, there must be a language spoken by at least
two distinct pairs. But these pairs comprise at least three individuals and
the results follows.

Case (ii):  Suppose there are two participants A and B with no language
in common. Between them, they know k < 6 languages. Let the other
participants be Py, Py, -+, Py.

For each i, two of the trio {4, B, P;} have a language in common. They
cannot be A and B. Hence, P; speaks one of the k languages spoken by A
or B.

Hence, each of the 7 participants P; knows at least one of the k languages.
By the Pigeonhole Principle, there are two participants, P; and P, with one
of the k languages in common. But this language is also known by A or B
and the result follows.

Solution 2  Suppose that no three have a language in common. Then A
has a language in common with at most three people and no language in
common with at least five, say B,C, D, E, F. By considering {4, B,C}, we
see that B and C have a language in common.
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Similarly, B has a language in common with D, FE  F. But then B has a
language in common with four people, leading to a contradiction, since two
of the three must have the same language in common with B.

Solution 1 Suppose someone, say A, does not know four people, say B, C,
D, E. Among A, B, and C, two know each other, so B must know C| say.

Similarly, any pair from B,C, D, E must know each other and the result
must follow in this case.

Otherwise, no one fails to know more than three people and everyone must
know at least five people.

Let [XY - -- Z] denote that each pair in the indicated set knows each other.

With each pair that knows each other counted twice (once for each individual),
there must be at least 9 x 5 possibilities. But this number must be even.
Hence some individual A must know at least six others, say B,C, D, E, F,G.

If B fails to know three of the remaining five, say F, F, G, then [EF], [EG]
and [F'G] (from condition on triples involving B) which would give [AEFG]
and a solution to this problem.

Suppose then B knows at least three of the remaining five, say [BC], [BD]
and [BE].

If no two of C, D, E know each other, then we contradict the hypothesis for
the triple {C, D, E'}. Suppose, say [CD].

Then, [ABC D] and we have a solution to the problem.

Solution 2 As above, we can deduce that either someone does not know
four people or someone knows six people. Of these six people, it can be
shown (Ramsey’s Theorem) that either three do not know each other (which
cannot occur by hypothesis), or three know each other. These three along
with the person knowing the six, constitute the desired quartet.

Solution 1
Maximum number of related pairs.

Suppose that a row (or column) contains x white and 8 —x black pieces; then
there are x(8 — x) = 16 — (z — 4)? related pairs; this number never exceeds
16 and equals 16 if and only if = 4.

Since there are 8 rows and 8 columns, the total number of related pairs
cannot exceed 256, and equals 256 for any configuration in which each row
and column contains 4 white pieces.

The standard checkerboard configuration indicates such a configuration. The
maximum is 256.

Minimum number of related pairs.
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Observe that the number of related pairs is independent of the order in which
the rows or the columns appear. Thus, interchanging a pair of rows or a pair
of columns does not change the number of related pairs.

Suppose a configuration is given with Ny related pairs. Rearrange the
columns so that the number of white pieces in a column decreases from
left to right. This does not alter the number of related pairs. Suppose that
a white piece is to the right of a black piece in the same row.

Let the white piece be in a column with r white pieces, the black in a column
with s white pieces ; we have r < s. Interchange the white and black pieces.
The number of row-related pairs remains unchanged while the number of
column related pairs is reduced by

[r8=r)+s(8—35)—[(r—1DO—r)+ (s+ 1)(7T— )]
= 48— +8s+1r* —10r+9+s%—65—7
= 2(s+1—-r) > 0.
We get a new configuration with fewer related pairs.

By repeating this process whenever a black piece is to the left of a white
piece, we can achieve a situation in which the number of white pieces in a
column decreases from left to right and in each row, there is a block of white
pieces (possibly void) followed by a block of black pieces. Interchange the
rows until the number of white pieces decreases from top to bottom. There
are now Nj related pairs with Ny < Np.

Suppose that the i*” row contains x; white pieces and the j** column contains
y; white pieces. Then

(a)82$12$22"'>$820; 8>y1 >ys > -+
(b) x1+$2++x8=y1+y2++y8:32,

(¢) with the convention that xg = 0, z; — x;4+1 is the number of y; equal to
1.

The total number of related pairs is
8 8
Zwi(S —x;) + Zyi(S —Y;)
i=1 1=1

8 8 8 8
= 8) w48 wi— Yy wi -y u
=1 =1 =1 =1
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8
= 8><32—|—8x32—(x%+x%+--~+x§)—2(xi—xi+1)i2
i=1
= 512—[(z}+ 23+ - +a3)
—|—(Z‘1 — 3;‘2) + 4(33‘2 — 3;‘3) + 9(333 — .234) + -+ 641‘8]
= 512— [z + a3+ + 23 + 31 + 332 + 5zz + - - - + 1573]
= 512 — [(2] + 23 + 222 + 73 + 4a3 + - + 23 + 1dag)
+(21 4+ 22+ - + 23)]
= 512 —[2? + (z2 +1)% + -+ (vg + 7)% — 140 + 32]
= 620 —[22 + (z2 + 12+ + (25 + 7).
We have to maximize 2% + (z2 + 1)2 + - - + (ws + 7)? subject to conditions

(a) and (b). Since there are finitely many possibilities, the maximum can be
achieved.

Now, we have that
[(u—1)2 4+ (w+1)}] - u?+0*] =2(v+1—u) >0,

which is equivalent to
v+1>u.

If we have a maximizing set (z1, 2, - ,2s), then it must never happen that
z; <Tand z;+i+ 1> 2; +j (for then we could add 1 to x; and subtract 1
from x; and get a higher sum).

Hence, for all 4, j, if z; < 7, then z; — x; < j —¢ — 1. Hence, either
r1 =8 or x1 < T9, that is z1 = xo;

T9 = 8 or o = T3, that is 1 = z9 = 8 or x93 = x3;

r3 = 8 or 3 < x4, that is 1 = 29 = x3 = 8 or 3 = 24;

g =8 or xy < x5, that is 1 = 290 = 23 = x4 = 8 or x4 = x5.
Since x; # 8 for ¢ > 5, we must have x5 = rg = x7 = Ts.

Thus, either all z; are equal or

1 =8,T3 = X3 = -+ = Ig;
T1 =22 =28, T3 =1T4 = Tg;
Ty =x0 =23 =8,T4 =T5 =--+ = Xg; OT

xl:xgzxg:x4:8,x5:x6:x7:x8:0.

The only possibilities for (z1,--- ,xg) are

(4,4,4,---,4) or (8,8,8,8,0,0,0,0).
This yields the two configurations, each with 128 related pairs.
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Solution 2 Minimum number of related pairs
Suppose that a given row contains k black checkers.

If £ < 4, there are k(8 — k) related pairs in the same row involving these
checkers, and this is at least 4k.

If k > 4, there are at least 32 —8(8 — k) related pairs involving these checkers
in the same column and k(8 — k) related pairs in the same row. Thus these
k checkers are responsible for at least

32— (8— k) =4k + (8 —k)(k —4) > 4k

related pairs.

The number of related pairs involving the black checkers in any row is at
least 4 times that number.

Hence, the number of related pairs is at least 4 x 32 = 128.

Solution 1 A chain is a subfamily of intervals {I, Iz, -, I} for which
I, C I, C--- CIj. For each positive integer k, we say that an interval I is
of rank k if and only if it is the largest interval in a chain of length k, but of
no longer chain.

[Thus rank 1 intervals contain no other intervals. Note that a rank k& interval
can be the largest of many chains of various lengths, but none exceeding k.]

Let I and J be two intervals of rank k. If I O J, then I must be the largest
in a chain of k4 1 intervals of which the &k largest is J. But this contradicts
the rank of I. Hence the class of rank k intervals has the property that no
one of any pair contains the other. Thus, if there are at least n + 1 intervals
of any rank, the problem is solved.

Suppose on the other hand, there are at most n intervals at any rank. Then
the intervals of rank not exceeding n account for at most n? intervals. Hence,
there is an interval of rank exceeding n+ 1, and it is the largest in a chain of
at least n+ 1 intervals (in which one of any pair contains the other). Again,
the problem is solved.

Solution 2 Let the intervals be [x;,y;] C R where the x; are indexed so
that zop < 1 < 23 < -+ < zpe2. If 2y = xi41, let y; > y;41. Consider the
sequence {yo, Y1, - ,Yn2}. This sequence has a monotone subsequence with
at least n+ 1 elements. If this monotone sequence is decreasing, we obtain a
nested sequence of intervals. If it is increasing, we get a sequence of intervals
for which no one of any pair contains the other.

Solution 3 [D. Robbins]  Arrange the intervals in order of decreasing length.
Form classes Si of intervals as follows. At the i'" stage, go through the
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intervals not already selected in order; put an interval in S; if and only if it
is not contained in any interval already selected for S;.

Suppose ¢ > 2 and [ € S;. Since I ¢ S;_1,I must have been contained in
some interval in S;_1.

If S,,11 # 0, then each interval in S,y is contained in some interval in Sy,
which is contained in some interval of S, _1, and so on, until we obtain a
chain of n + 1.

If Spy1 =0, then S;US,U---US, contains all the intervals, so there exists
an i such that S; contains n+1 intervals. No one of these contains any other.

Solution 1 Suppose student A was the last to arrive at instant a, and that
student B was the first to leave at instant b. Any third student X arrived
no later that a and left no sooner than b.

If @ was no later than b, then A, B and X were all present for the whole
interval from a to b.

If b was earlier than a, then A and B did not overlap, and X overlapped
either A or B. If X overlapped A, then X was present at instant a.
If X overlapped B, then X was present at instant b.

In any case, each student was present at one of the instants a and b.

Solution 2 [W.L. Yee] We can represent the visits of the students by
intervals on a real time line. Suppose [ is one of the intervals. Let A4y be
the set of intervals not intersecting I. Then, if A, B € Ay, then AN B # (.
Thus any two intervals in Ag intersect each other.

Let z = max{a : [a,b] € Ao}, y = min{b : [a,b] € Ap}. Then z < y;
otherwise there are two intervals in Ay that fail to intersect.

Suppose Ag = N{A: A € Ay} = [z,y]. Ao = A1 N Az where A; and A, are
in .Ao.

Suppose U, V & Ag}. T UNV =0, WOLOG, suppose A1, Az and I are
configured as in the diagram. Consider {U,V, As}. One of U and V has a
nonvoid intersection with As. Since it also intersects I, it must intersect Ag.
Augment to A4; by including it.

ey
e —
| I
Ag



72

32

By applying the argument above to A;, we determine that we have
Ay =n{A: A€ A}, anonvoid set.

Continue on in this way, obtaining a family A, with nonvoid intersection
until any pair of sets not in A, have nonvoid intersection. Then we can
apply the argument above to the set of intervals not in A, (including I) to
get a common intersection for all these intervals.

Solution 1 Specify a certain person p.

Let S be the set of p’s acquaintances and m = #5S (the number of members
of S).

Let T be the set of people not acquainted with p.

For t € T, let A; be the pair with whom p and ¢ are acquainted. Clearly
A; C S. Suppose, if possible, u € T and A; = A,. Then the members of
A; = A, have three common acquaintances (p, ¢, ), which is impossible.

On the other hand, suppose {a,b} C S. Since a and b both know p, they
are strangers. Hence they have exactly one other common acquaintance t.
Since p, t have common acquaintances, t € T and A; = {a, b}.

Thus, t — A; is a one-one map of T" onto pairs of elements of S. Thus,

m m2—m
#T:(z>:T-

Let n be the number of those present. Then n = 1+ m + (2), and so
m? +m+2(1 —n) = 0. Thus

_ —1+8n -7
S —

(the second root is negative and extraneous). Therefore 8n — 7 is a perfect
square, so that n = 16 or n = 22. Note that the number of acquaintances
for each person is the same.

Suppose n = 16. Then m = 5. The following table shows n = 16 is
possible.

Person List of acquaintances Person List of acquaintances

1 2,3, 4,5, 6 9 2, 5,11,13,15
2 1,7, 8, 9,10 10 2,6,11,12,14
3 1, 7,11,12,13 11 3,4,9,10,16
4 1, 8,11,14,15 12 3,5, 8,10,15
5 1, 9,12,14,16 13 3,6,8, 9,14
6 1,10,13,15,16 14 4,5, 7,10,13
7 2, 3,14,15,16 15 4,6,7, 9,12
8 2, 4,12,13,16 16 5,6, 7 811

Suppose n = 22. Then m = 6.
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Let person 1 know 2, 3, 4, 5, 6, 7. Each pair of these six are not acquainted.
Suppose 8 and 1 are acquaintances of each of 2 and 3.

Then 8 knows 2 and 3 and four other people, each of whom is acquainted
with two of {2, 3, 4, 5, 6, 7} (since these four are not acquainted with 1,
and the pair (1,8) of strangers has two common acquaintances). However,
none of the four knows 2 or 3 (since none of the four can have a common
acquaintance with 8).

Hence 8 knows four of the common acquaintances of the six pairs
(4,5), (4,6), (4,7), (5,6), (5,7), (6,7). Thus 8 is a stranger to one of the
common acquaintances, say 9, who knows 4 and 5.

Now, 8 and 9 have two common acquaintances. But 9 does not know 2 or 3

(since 1 and 9 know 4 and 5) nor the common acquaintances of (4,5), (4,6),
4,7), (5,6), (5,7).

Hence the only common acquaintance of 8 and 9 is the common acquaintance
of 6 and 7.

This is untenable. Hence the case n = 22 is not possible. Thus n = 16.

Remark:  From the first part, the candidates for n are

141=2,1+2+1=4,14+3+3=7,1+4+6=11,
14+5+10=16,1+6+15=1221-+7+21 = 29, etc.

Note that n = 2 and n = 4 are possible (with respective acquaintances
graphs _ [ ) but 7 is not. It would be interesting to characterize the
possible n.

Solution 2 [B. Marthi] Example for n = 16

Denote the sixteen individuals by P, ; [0 <1i,j < 3].

Suppose P;; knows only P; i1, P j—1,Pi—1,, Pit2,j+2 where addition and
subtraction are taken modulo 4.

This satisfies the conditions.

Solution 3 [A. Chan] Proof that each person has the same number of
acquaintances.
Suppose A and B are acquainted. Let B have r acquaintances.

Let C be acquainted to B. Then A and C have two common acquaintances,
namely B and someone else, say D. The mapping C — D thus maps
acquaintances of B to acquaintances of A.

This mapping is one-one. (Otherwise, suppose C — E,F — D for two
acquaintances C' and E of B. Then B and D have three common acquaintances,
namely A, C, E, a contradiction).

Thus B has no more acquaintances than A.
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Reversing the roles of B and A, we see that A has no more acquaintances
than A.

Hence A and B have the same number of acquaintances.

Suppose now that A and B are not acquainted. Then they have a common
acquaintance C, and so A, C' and B have the same number of acquaintances.

32 Solution 4 [D. Robbins] Example for n = 16.

The graph is that of a 4 dimensional hypercube with additional edges joining
each opposite pairs of vertices.

33 Solution 1 Each choice of k numbers corresponds to an ordered
n—tuple (z1,x9,xs3, -+ ,2,) with k 1’s corresponding to indices chosen and
(n — k) 0’s corresponding to indices not chosen.
An ordered n—tuple is acceptable if and only if it does not have three 1’s in
a row. We need to count the number of acceptable n—tuples.

Let a be the number of appearances of pairs 11, b be the number of appearances
of singleton 1.

Then 2a + b = k. We can arrange the a pairs and b singletons in order in

a+b) distinct ways. Now we have to insert the 0’s between and possibly at
the ends of the designated pairs and singletons. Begin by placing (a +b— 1)
0’s to make sure the pairs and singletons are separated. There are ((n— k) —
(a+b—1))=((n+1)— (k+a+b)) 0’s left to be distributed into a + b+ 1
positions [a 4+ b— 1 between blocks of 1 plus 2 at the end], provided of course
a+b+k=3a+2b<n+1.

To put r zeros in s positions, indicate r+s—1 slots, select s—1 of them to be

-1
position barriers and r of them to be zeros. This can be done in (r T 1 >
5 —
ways. In this case, the (n +1) — (k + a + b) zeros are put into a +b + 1

ositi i n—k+l ays
10101S 1n W .
P a+b v
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Hence the total number of acceptable n—tuples is

e £ ()0

a,b>0
2a+b=Fk
3a+2b<n+1

N a k—a )
a >0
2a < k
a>2k—(n+1)

[This assumes k < n. The answer is 0 if n < k.]

Check

fL1

B0
o = () =»
8

f(2,2) =

n— n
_ _ > 3-
5 ) (n—1) <2> forn > 3;

f(3,3) = 0 since the sum requires 2a <3 and a > 2;
2
1

)
§)+(”‘2> ()

(nt+2(n=-2(n=3) _ (g)—(n—2)f0rn>5.

( ) = 2 since the sum requires 2a < 3 and a > 1;

f(n,3)

33 Solution 2 [S. Cautis; C. Percival] As in solution 1, we need to find all
arrangements of n 0’s and 1’s so that at most two ones are adjacent. This is
equivalent to selecting

i blocks of 110
k — 2i blocks of 10 a total of n — k + 1 blocks,
n — 2k + i+ 1 blocks of 0

for a total of n + 1 symbols and then neglecting the last symbol where
2i < k,i> 2k —1 —n. The answer is
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34

35

(n—k+1)!
Z il(k —2)!(n — 2k + i+ 1)1

Solution 1 Let A ={X: f(X) C X C S}. Ais a nonvoid class of sets,
since S € A.

Let Z=n{X: X € A}.

Observe that, if X € A, then f(X) € A since f(X) € X implies that
f(f(X)) € f(X) by the condition on f.

Observe also that, if f(Y) CY,thenY € A, so Z CY (thus Z will turn out
to be the miniumum set satisfying the condition).

For each X € A and Z C X, we have f(Z) C f(X) € X. Thus f(Z) C
N{X : X € A} = Z. Tt follows that Z € A, and further that f(Z) € A.
Therefore Z C f(Z).

Hence Z = f(Z) and this is the required set C.

Solution 1 Suppose, if possible, that one point O is connected to six others
P, Py, -, Pg, labelled so that the segments OP;, OP,, - -+, OFs occur in
counterclockwise order (as indicated in the diagram).

First, none of the angles ZP,0P;+1 (1 <i <6, P; = Py) is zero. (Otherwise,
if P; is on the segment OP;, then F; is closer to O than P; and P; is closer
to P;j than O, and OP; would not have been joined.)

Consider the three points O, P;, P;11

Either ZP,OP;;1 > 180°, or OPF; P,y is a triangle with ZP,OP;; < 180°.
Suppose the latter.

If O is the closest point to both P, and P;y1, then PP,y > PO and
P;P,y1 > P;110. On the other hand, if say, P; is the closest point to O,
then O is the closest point to P;y; and OP; < OP;41 < P;P;41. In either
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7

case, P; P;11 is the longest side of AOP; P;1 1, so that ZP;OP;; is the largest
angle. Hence

1
/P,OP; | > 5(4303+1 + ZOP,P;y1 + LOP;i (1 P;) = 60°.

6
Hence Z P,OP;11 > 360° which is a contradiction.

i=1
Comments: Do not neglect to consider the case that ZP;OP;y; could be
0 or reflex. The argument does not preclude the possibility that O could be
joined to more than six others.

Solution 2 Carry out the above argument for ¢ = 1,2,--- |5, and get to

5
> POP;;1 > 300°
i=1
Then FPsP; is not the longest side of APsOP;. Hence, PsP; < OP; or

PsP), < OFs. If PsP; < OPy, say, then P; must be the closest point to O
(O is not closest to Pp)

Therefore PsP, < OP; < OF; so that O is not closest to Ps, which implies
that OFs should not have been joined, a contradiction.

Solution 3 Suppose there exists a point A such that it is the closest point
to each of two points B and C. Note that C' must lie on the same side of
right bisector of AB as A. (Otherwise B is closer to C' than A).

Also, C must lie outside the circle with centre B and radius AB. (Otherwise
C'is closer to B than A).

Hence Z/CAB > /DAB = 60°.

Thus, there are at most five points for which A is the closest point. There
is exactly one point closest to A, say P.



78

35

If the result fails, then there is a point A for which it closest to exactly
five points and a point P closest to A. Let E be one of the five points
for which ZPAE < 60°. Form a triangle AEF as in the diagram with
/EAF =60°, AE = AF.

Since AP < AFE, we obtain that P must lie in the sector AEF.

E

60°
A F

Thus, P must be closer to E than A, giving a contradiction.

Solution 4 [W.L. Yee] Suppose there is a point A connected to six others.
Then there are two points B, C of these six for which
/BAC < 60°. Let AC > AB, so b > c.

a> = b 42 —2ccosA
b2+ % —2c%cos A
b2+ c2(1 —2cos A) < b,

A

since 1 < 2cos A.

Thus a < b, ¢ < b, so neither of A and C' is closest to the other.
The result follows.
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36 Solution 1 (a)

1 1
1 2 2
1 1
A 8 A J& B
7
B C H C
1 1
8 8
1 1
2 2

(b) Let P, Q, R, S be the vertices of the unit square. Suppose it is possible

that there are three sets that cover the square, all of diameter less than @.

By the Pigeonhole Principle, one set must cover two of the vertices, say P

and @, and these must be adjacent (since the distance between opposite

vertices exceeds Y22).

Let U, V, W be points indicated in the diagram, where

1 1 1 1
|PU|—§ |QV|—§ |5W|—§ |RW|—§~
U T
P S
w
Q R

v

Then |PV| = |QU| = ¥ and [UW| = [VW| = ¥5.
The set which contains P and @ contains none of U, V and W. Hence, U,

V and W must be contained in the union of the other two sets.

Since U and W, and since V and W, cannot belong to the same sets, U and
V' must both be in a second set and W in a third.

Since |[UR| > @, VS| > @, we obtain that R and S do not belong to

the second set and hence must be in the third.
Consider the midpoint 7" of PS.

65 65
TQ| > |TV| > % and |[TR| > %

Thus, T cannot belong to any of the sets and we obtain a contradiction.
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PROBLEM SET 4 — Maziscellaneous

37

38

39

40

41

42

43

Problems

Determine a such that the roots of the equation

22— Ba+1Dz+ (26> —3a—2)=0

are real and the sum of their squares is minimum.

Find a necessary and sufficient condition on the coefficients in the equation
ax? + bz + ¢ = 0 such that the square of one root is equal to the other root.

Find all possible finite sequences (wp, w1, wa, - - - , wy, ) of nonnegative integers
with the property that, for each i = 0,1,2,--- ,n, the integer ¢ appears w;
times and no other integer appears.

A function f(z) is periodic with period p if and only if f(x + p) = f(z) for
each z. Prove that sin2? is not periodic with any non-zero period.

(a) A set S contains a finite number of elements. For any pair a, b of elements
in S, an operation * is defined such that a * b is in S. This operation is
associative (that is, a* (bxc) = (axb)*c). Prove that S contains an element
u for which u * u = u.

(b) Give an example to show that (a) fails if we drop the condition that S
is finite.

The real-valued function f satisifies
f(tan2z) = tan* z + cot* =
for all real z. Prove that
f(sinz) 4+ f(cosx) > 196
for all real x.

The centre of gravity of points (z1,y1), (z2,%2), - , (K, yk) in the plane is
(,7) where

1o R
EZEZQH and y:EZyi'
i=1 i=1

A lattice point in the plane is a point (z,y) both of whose coordinates are
integers.

(a) For any positive integer n, find n lattice points in the plane for which the
centre of gravity of any nonempty subset of these points is a lattice point.
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(b) Is it possible to find an infinite set of lattice points in the plane for which
the centre of gravity of any finite subset of them is a lattice point?

44 Determine all solutions in integer triples (x,y, z) of the equation

{’/x—!—\/@—i— {’/x—\/@:z.

45 Determine necessary and sufficient conditions on the real numbers
a, b, ¢ such that the system of equations

ax+by+cz=0

aV/1—224+by/1—12+cV/1—-22=0

admits a real solution (z,y, z).

46 Find all integer triples (z,y, z) that satisfy the system
3=x+tyt+z=a>+y°+2%
47 Let f be a function defined on the positive reals with the following properties:

W fO) =1 2) fle+1)=zf(x); 3) f() =109
where g(z) is a function defined on the reals satisfying
g(ty + (1 —1)z) < tg(y) + (1 —t)g(2)

for all y and z and for 0 <t¢ < 1.
(a) Prove that

tlg(n) —gn —1)] <g(n+1t) —g(n) <tlgn+1)—g(n)]

where n is an integer and 0 <t < 1.
(b) Prove that 3 < f (3) < %\/5

48 Let x1,x, -+ ,x, be positive real numbers. Prove that
2 2 2 2
xry x5 L Thp—1 T
T1+x2 X2+ T3 Tpn-1+Tn Tp+21

> Moy +aa+ 4 mn).
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Solutions

37 Solution 1 The roots of 2% — (3a+ 1)x + (2a® — 3a — 2) = 0 are real if and

38

38

only if (3a +1)? — 4(2a®> — 3a —2) > 0,

that is, if a® +18a+9 > 0 or (a + 9)% > 72.

This occurs when @ < —9 — 6v/2 and a > —9 + 6v/2.
Let 7, s be the roots of the polynomial. Then

2452 = (r+s)?—2rs
= (3a+1)*—2(2¢* — 3a —2)
= 5a*+12a+5
2
6 11
= 5 — —_—
(a + 5) 5
The overall minimum of 7% + 5% occurs at a = —£ and the minimum, subject

to the constraint, occurs for the value of a closest to —g for which a <
—9 —6v2 or a > —9 + 6/2, namely

a=—-9+6v2.

Solution 1  Let the roots of az? + bz + ¢ = 0 be 7 and s.
One root is the square of the other if and only if

0=(r—s)(r?—s)=7r+5 —rs—rs

This is equivalent to

b\? c b c 2
0 = l<‘5> -3(3) (‘5)]‘5‘;2
1
= —$[a2c+a02+b3—3abc],

or
0= b+ a%c + ac® — 3abe.

Solution 2  Suppose the roots of az? + bz + ¢ = 0 are v and v2. Then

u4u? = —g, so au? + au + b = 0. Thus, u is a common root of the two

equations
az? + bz 4+ ¢ =0,
az® +ax +b=0,
and so (b—a)u=">b—c.
If b = a, then b = c and u is a root of #* + z + 1 = 0 (that is u and u? are
71+2‘/53 and 7172‘/773 respectively).
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Otherwise, u = g:;, so that

2
O=au’4+au+b=a b—c + b—c
b—a b—a

1
(b—a)?

Thus

0= [b3 +ac® 4+ a’c — 3abc] ,

which implies that
b + a’c+ ac® — 3abc = 0.
(Note this is satisified when a = b = c.)

On the other hand, let v and v be the roots of az? + bx + ¢ = 0, where
b +a%c + ac® — 3abc = 0. Then b = —a(u +v), ¢ = auv, so that

0 = —(u+v)®+uw+u*v® + 3uv(u+v)
= wv+uv?—ud—?
= (u—12*)(v—u?).
Hence, either v = v? or v = u?.

Solution 1 The sum of all the numbers is the total of the frequencies of
the numbers, which is n + 1. Hence

n+1l = wy+w +ws+---+w,
= 0w+ lwi + -+ nwy,
whence wg = we + 2ws + 3ws + -+ -+ (n — Dw,.
Consider the possible values of wyg.
(i) wp = 0. This is impossible (since wy = 0 implies that the number of 0’s
exceeds 0, so that wg > 0).
(ii) wo = 1. This implies that we = 1 and w; = 0 (2 < ¢ < n). From this
we get that wy = 2, n = 3 and so we have (121 0).
(iii) wo = 2. This implies that we > 1.
Thus wg = wy = -+- = w, = 0 (since 2wz + -+ + (n — Dw, < 1).

Therefore wy = wo = 2.
There are two possibilities: (2020),(21200).

(iv) wog > 3. Let wg = k. Then k > (k — 1)wg. This implies that
§L21+ﬁ < 2, so that wg, = 1.

k—(k-1) = 1
= wy+2ws+ -+ (k—2)wk—1 + kwg1
+-+ (n—=1Dwy,.
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Therefore wy = 1 and wg = wy = - -+ = w, = 0 implying that w; = 2.
Thus, there are n — 3 zero, (namely all of w3, wy, - -+ , wy, except wy) so
that k = n — 3 yielding that n > 6.

Hence the remaining possibilities are:

(n—321000...01000) (n>6).

For example, we have

(3211000), (42101000), (521001000), etc.

There are no sequences with n =0, 1,2, 5.

Solution 2 Let S = {i:w; =0}. Then 0 ¢ S and

wo+ Y {wj i@ Sj=1p=> wi=n+l
=0

Therefore
> {wj i ¢8,j>1} =n+1—uwp.

Now S has wy elements, so that

has
m+1)—(wp+1)=(Mn+1—wy) —1
elements, all of which are positive.

The only way that (n+ 1 —wp) — 1 elements can add up to n+ 1 — wy is for
there to be (n +1 —wp —2) “I’s” and 1 “2”.

Hence w; = 0 when i # wq,i > 3.
Consider cases:
(i) w1 = 0. This implies that ws # 1, so that wy = 2 and that wy = 2, and
so we get (202 0).

(ii) wy = 1. This implies that we # 1, so that we = 2 and so we get
(21200).

(iii) w1 =2 and wg = 1. This implies that we = 1, and so we get (1210 0).

(iv) w; =2 and wy = k > 2. This implies that we = wy, = 1, so that k # 2,
and so we get
(k2100...0001000).
—_——

k-3 0’8
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40

40

40

41

Solution 1 Let f(x) = sin(z?), and suppose if possible there exists a p > 0

with f(z + p) = f(z) for all z. Then f(2p) = f(p) = f(0), so p = /n= for
some positive integer n.

Now, f(z) =0 for 0 < & < 2p. This occurs exactly when

x=0,v/7,V2r, - Vinm.

Thus f(x) =0 has n — 1 solutions when 0 < z < p, anddn—n—1=3n—1
solutions when p < z < 2p.

But this contradicts the periodicity of f (which would force the same number
of solutions in both intervals).

Solution 2 Let p be a period for f. For all x, we have

0 = sin((z + p)?) — sin((z — p)?) = 2 cos(p? + x?) sin 2pz.
Consider any interval I = {z : a < x < b}. Now cos(p? + 2?) vanishes in I
for at most finitely many values of x. Hence sin 2px = 0 for infinitely many

values of x. But this occurs only if p = 0. Hence f cannot have a nonzero
period.

Solution 3 [A. Tang] Note that sinz? has a relative minimum value of 0
exactly once at = = 0. If sinz? were periodic, this same relative minimum
value would occur infinitely often (once in each period). Hence, sin 2? cannot
be periodic.

Solution 1 (a) Let v be any element of S and define

o™ = ((((v*v) *xv) xv) *v) with m v’s.

Because of associatively, it does not matter how the brackets are
arranged and we get v™ " = v™o™ for any pair of positive integers m, n.

Consider the set {v,v?,v% .-+ 0" -} of all “powers” of v. Since S is finite,

not all are distinct. Let vP be the first power equal to another power, say
v? (p < ¢). Then

WP = ol — Pl P — 2yd—P
— 207 — Py29—2p _— B3a—2p _— ...
U(kJrl)q*kP(k =1,2,-- )
k+2
Choose k sufficiently large to make q > k—Il so that
p

x=(k+1)g—(k+2)p>0.
Thus 2p+ 2z = (k + 1)q — kp. Hence

(,Up+z)2 _ 02p+2fc
—  pktDg—kptzs _  (k+1)qg—kp >
= oPy® = pPte,
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Hence u = vP*? is the required element.

A counterexample to show that the result could fail when S is infinite is
S={1,2,3,4,--- ,n,--- } with the operation of addition.

Solution 2 [S. Cautis] Determine v?,v? as above. Let w = vP. Then
w = P = pPa—(P—Lp — (Up)quJrl — Pt — gl

where r = q — p.
Then w" = (wT“)T = (w"t) (w“rl)r_1 = w w1 = w?" since wt! =
w.

u = w" is the required element.

Solution 3 [D. Kisman] Two powers among v, v?, v* %, .. must be equal.
Let them be vP, v where p < q and p, g are both powers of 2. Then ¢ > 2p.
Let u = v97P.

Then u2 — ,U2q*2p — UQUQ*QP — UPU‘Z*QP =9 P = .

Solution 4 [A. Chan] As in 41 Solution 1, select v, p, ¢ such that
p < q and vP = v4.

Then v"P = v"t% (r > 0). It follows that v™ = v"™v?"P for every positive

integer n > p. Multiplying by v?7P, we find that

v = "I TP = ") = = ns@TP) (5 > 1),

Choose s sufficiently large that s(¢ — p) > p and set n = s(¢ — p). Then
u = v*@~P) is the desired element.

2
Solution 1 Let u = tan2z and v = tanx. Then u = 1—1)2, so that
—v

v2—|—<g>v—120.
U

For each w, v may assume one of two values v; and wvs, where

vive = —1 and vy + vy = — 2.

For i = 1,2, we have that



whence

2 4
vl = 2_E(U1+U2) = 2—}—@,
2
v vy = (U1+U2)—<5> (v} +3)
2 4
e —_— 3 —_— ,
u( +u2)
4, .4 2., .2 2 3,.3
vitvy = (v tvy) - 0 (0] + v3)

4 4 4
= <2‘+'E§) +'a§ (3‘+'E§)

2ut + 16u” + 16

ud

_2ut 4 1602 + 16

Thus f(u) = ——————— is well defined when u # 0.
u

(When u = 0, tan 2z = 0 so z is a multiple of 7. If we take f(0) = oo, then
the result is trivially obvious.)

Suppose y = sinz, z = cosz. Then 3% + 22 = 1, and

16 16 16 16
2+?+E + 2+z—2+;

16 16(y* + 2%)

fy)+1(2)

Y222 ytzt
16 16[(y% + 22)? — 2222
= a5y [(y 4)4 y*2%]
Y2z ytz
16 16

Y222 gt

2
2

By the arithmetic-geometric mean inequality, we have

20y < (y* +2%)7 =1,

1
so that |yz| < 7

1 2
Therefore y222 < =, and further, — —1>8-1=7.
4 y2a?

Hence f(sinz) + f(cosx) > 4 -7% = 196 with equality if and only if

—_

sinr =cosx = +——.
V2



89

Alternatively:

9 2
f(sinx) + f(cosz) = 4[.27—1]
sin® x cos? x
8 2
- 4[—, - —1] > 4.7 = 196.
sin“ 2x

42 Solution 2 [S. Yazdani] With u and v as above

4 2
f(u) v4—|—vi4 = (v—%) +4(v—%> +2

1
S
4
[\v]
Sl
—_
~__
B
+
=
N
<
[\v]
Sl
—_
~~_
(V)
+
]

= —+— +2
Complete as above.

43 Solution 1 Tt is required to find a pair of finite sequences.

{x17x27 e axn} and {yla Y2, ayn}
such that, if K is any subset of {1,2,---,n} with & members
Z T = Z y; = 0(mod k).
€K jEK

This can be achieved by arranging, for example, that each z; and y; is
divisible by each k with 1 < k < n. Accordingly, let x; = a;n!, y; = b;n!
where (a;, b;) are distinct pairs of integers. The required n lattice points are

(v, )  (L<i<mn).

We show by contradiction that it is not possible to find an infinite set of
distinct lattice points for which the centre of gravity of every finite subset is
a lattice point. Suppose, if possible, such a set exists and let (r, s) and (u,v)
be any pair of points in the set.
Let k be any positive integer. Choose k& — 1 other points from the set, say
(1,y1),* , (Xg—1,Ygr—1). Then

r4+x1+ -+ xk—1 = 0(mod k),
u+x1 + -+ xk—1 = 0(mod k),
whence r = u(mod k). Similarly s = v(mod k).

Thus 7 — w and s — v are each divisible by each integer k, so r = u and
s = v. But this contradicts the fact that (r,s) and (u,v) are supposed to be
distinct.
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Solution 2 [C. Percival] Follow the above argument, taking
k > 1+ dist [(r,s), (u,v)], and observe that dist [(r,s), (u,v)] < k is not
possible when r — u, s — v are multiples of k£ of which at least one is not zero.

We first note that the equation is satisfied by (x,y,z) = (0,y,0) for any
integer y. In what follows, we exclude this case.

Solution 1 Let u= {/x + \/y,v= {/x —/y. Then

(1) u+v=z
(2) u® + v3 + 3uv(u + v) = 23. Therefore

3wz =22 —ud—v¥ =22 -2

so that uv is a rational number.
[We have excluded z = 23 — 22 = 0.] Let uv = £ in lowest terms.

(3) w?v® = (z + /y)(x — \/y) = 2® — y, which is an integer. Therefore

p® = (22 — y)¢®. Now any prime dividing ¢ must divide p. Since

ged(p, q) = 1, we have ¢ = 1. Hence uv = p, which is an integer.

Thus u and v are roots of the quadratic expression t2 — zt + p. Hence
2u = z + y/w, 2v = z — \Jw where w = z? — 4p, which can be positive or
negative.

[If w > 0 the choice of signs is determined by u > v; if w < 0 we choose by
convention.]

Hence

8(z+vy) = 8ud=(2*+3z2w)+ (322 + w)Vw,
8(z —y) = 8= (2*+32w) — (322 + w)Vw,
so that 8z = 2% + 3zw = 2(2% + 3w) and 8,/ = (32% + w)/w.
Thus 64y = (322 + w)?w.
Thus, if there is a solution, we must have
(%) (2,9, 2) = (52(2 + 3w), Gw(32% + w)?, z) for suitable w, z.

On the other hand, (%) yields solutions since

{’/(z?’ +3wz) + (322 + w)Vw

frevitifa—vi = 3

—|—</(z3 +3wz) — (322 + w)\/ﬁ}

e var+ ife - vor
(e + Vi) + (=~ Vi)

VP~ N
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We impose conditions to ensure that x,y, z are integers:
Suppose that z is even. Let z = 2s.

Then 0 = (322 + w)?w = (125 + w)?w = O0(mod 64). Therefore
w is even. Let w = 2r, so that (6s + r)?r = O(mod 8). Thus r is even,
yielding that 4|w, so that w = 4¢.

Suppose now that z is odd.

Then z(2% + 3w) = 0(mod 8), yielding that

1+ 3w = 2% + 3w = 0(mod 8), so that w = 5(mod 8).

We find that the integer solutions are given by (*) where
(z,w) = (2s,4t) or (z,w)=(2k+ 1,81+ 5)

for integers s,t, k, .

Ezamples: (1) (z,w) = (1,5). Then (z,y,2) = (2,5,1), and

u=1(1+5), v’ =2+5.

(i) w = 0. This implies that (z,y, 2) = (s3,0,2s).

(iii) (z,w) = (6,—4). This leads to v = 3 +4,v = 3 — ¢, and further to

(z,y,2) = (18,—676,6).

Solution 2

Vet vitife-vi = = (1)

Therefore

20 +323/x2 —y = 2

This is equivalent to

which is equivalent to

, - x2_(23?j—z2x)3. @)

To solve the given equation, we need to solve (2). This can be done by
selecting any integer values of x and z for which z® — 2z is a multiple of
3z. It is convenient to look at case of z modulo 6. A summary of the result
follows.

(i) z = 6a. Since 2% =

(mod 3z), we require that
2z = 0 (mod 18a), or that x = 9ab for some integer b. This yields the
solution

(%, y,2)

(9ab, 81a?b? — (12a% — b)3,6a)
= (9ab, (b — 3a?)(24a® + b)?,6a).
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(ii) 2z = 6a + 1. We require that 22 = 23 = 1 (mod 3) and
x =0 (mod 6a + 1), so that x = (6a + 1)(3b + 2). Thus
(2,,2)
= ((6a+1)(3b+2),
(18ab + 12a + 3b + 2)? — (12a® + 4a — 2b — 1)3,
6a+1)
= ((6a+1)(3b+2),
(8b+ 5 — 4a — 12a%)(12a* + 4a + b + 1)?,
6a +1).
For example, (a,b) = (0,0) yields (x,y,2) = (2,5,1), while (a,b) =
(1,1) yields (35, —972,7).

(iii) 2z =6a+2. Then 2z = 2% = 2 (mod 3) and z = 0 (mod 3a + 1), so that

(z,y,2)
= ((Ba+1)(3b+1),
(9ab+3a +3b+1)% — (12a% +8a + 1 — b)?,
2(3a+1))
= ((Ba+1)(3b+1),
(b —3a? — 2a)(24a® + 16a + 3 + b)?,
2(3a +1)).
For example, (a,b) = (0,0) yields (z,y,2) = (1,0,2), (a,b) = (0,1)
yields (z,y,2) = (4,16,2), and (a,b) = (1, 3) yields
(x,y,2) = (40, —4232, 8).
(iv) z=6a+ 3. Then 2z = 0 (mod 3z), so that
(2,1, 7)
= (96(2a + 1),
81(2ab + b)? — (1242 + 12a + 3 — 2b)?,
3(2a+1))
= (9(2a +1),
(8 — 12a% — 12a — 3)(12a% + 12a + 3 + b)?,
3(2a +1)).
For example, (a,b) = (0,1) yields (z,y, z) = (9, 80, 3).
(v) z=6a+4. Then 2z = 1 (mod 3) and x = 0 (mod 3a + 2), so that
(z,y,2)
= ((Ba+2)(3b+1),
(9ab + 3a + 6b+ 2)? — (12a% + 16a + 5 — b)3,
2(3a +2))
= (Ba+2)(3b+1),
(b—1—3a? —4a)(24a” + 32a + 11 + b)?,
2(3a +2)).
For example, (a,b) = (0,0) yields (z,y,z) = (2,—121,4), and (a,b) =
(0,2) yields (z,y, z) = (14,169,4).

(vi) z=6a+ 5. Then 2z = 2 (mod 3) and x = 0 (mod 6a + 5), so that
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((6a + 5)(3b + 2),
(18ab + 12a + 15b + 10)% — (12a® + 20a + 7 — 2b)3,
6a + 5)
= ((6a+5)(3b+2),
(8b — 3 — 12a% — 20a)(12a% + 20a + 9 + b)?,
6a +5).
For example, (a,b) = (0,1) yields (z,y, z) = (25, 500, 5).

Comments: A little care is needed with the equivalence of equations (1) and
(2). Setting z = —1, z = 1 in (2) leads to y = 0, but substituting z = —1,
y = 0 in the left side of (1) apparently leads to z = —2. However, (1) and
(2) can be reconciled if we are careful with our choice of cube roots. When
y > 0, both terms of the left side of (1) have real cube roots and there is
only one choice of cube roots to make the left side real. In this case, (1) and
(2) are manifestly equivalent.

When y < 0, there are three choices of the cube root pairs (all non-real) that
make the left side real, while if y > 0, we also have different possible choices
of cube root. Thus, for example,

(Z‘, Y, Z) = (_15 07 1)
is a solution of (1) if we make the choices (1 +iv/3) and (1 —iv/3) for the

cube roots of —1.

Let us specialize to the case z = 1 and consider the relationship between
equations (1) and (2).

Equation (2) becomes:

1
Yy = Z‘Q — 2—7(1 — 233)3
1
= 2—7(27x2 + 823 —122% + 62 — 1)
1
= 2—7(8x3 + 1522 + 62 — 1)
1
= — 1)%(8z —1
5 (@ + 1) (8 — 1),
giving
y = i(24x2 + 30z + 6)
27

= §(4x2 + 5z +1)
2
= Uz +1).

The graph of equation (2) is shown in the diagram on page
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If y >0, then 2 + /y,z — /7, \3/x +VY+ %/x — /¥ are all real. Using the
fact that cubing is a one-one function on the reals, we see that equations (1)
and (2) are equivalent. Thus, for example,

(z,y) = (2,5), (5,52) or (8,189)

satisfies both equations.

However (z,y) = (—1,0) satisfies equation (2) but not equation (1). To
obtain equation (1) with (x,y) = (—1,0), we need to take imaginary cube
roots. Thus

YT+ VT = (D) + (D) = (-Dw+e?) = 1
where w is an imaginary cube root of 1.

In general, if z = k, a real, then the equation

f/x—i—\/@—l— Ve —y=k

)i+ ) -

when = and y are real.

is equivalent to
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When y > 0, as before, this is equivalent to
2 k3 — 22\
y - 3]€ 9

U (o (= 2(e/k*))’

kS \k3 3k '
Thus the mapping (z,y) — (%, %) changing horizontal and vertical scales
takes the locus to the above diagram.

53
When z = 3 we find

and so to

and indeed we have

f/x+\/§+</x—\/§=§+g=z
as desired.

Let y = —r? < 0 for some r > 0.
Suppose that cos36 = %, sin30 = % where 0 < 6 < 60° and

p=+vVr2+r

Then
3/x+\/§
1/3(cos 0 + isin 6),

p
= p*/3(cos(0 + 120°) + i sin(f + 120°)),
p*/3(cos(6 + 240°) + isin(6 + 240°)).

p/3(cos@ — isind),

= p*/3(cos(f + 120°) — isin(f + 120°),
p*/3(cos(0 + 240°) — i sin(f + 240°).

If ¢/x+ /y+ {/x —\/yis to be real, its value is one of
2p'/3 cosh, 2p'/3 cos(f + 120°), 2p(cos b + 240°).
Suppose that z = 2p'/3 cosf. Then

22— 2 = 8pcos®H — 2pcos3h
= 8pcos® O — 2p(4cos® 6 — 3cos )
= O6pcosh.
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23—2x_ 6pcost
3z 6p/3cosf

3_2 3
x? — (z P x) =p2cos?30 — p? = —p?sin?30 = —r = y.

Suppose that z = 2p*/3 cos(# + 120°). Then

Therefore

p?/3, and further

23 —2r = 8pcos’(f£120°) — 2pcos3h
= 2p[cos3(0 + 120°) + 3 cos(d £ 120°)] — 2p cos 36
= 6pcos(f £ 120°).

23 — 22
3z
When y < 0, the choice of the pair (z,y) gives rise to three possible real

values of z, depending on which choice of cube root is taken. Taking this
value of z will lead back to the correct value of y.

3
Therefore 22 — < ) =p?cos?30 —p? = —r? =y.

For example, let z = —1,y = r = 0, so that § = 60° and p = 1. Then
z=1,-2,1.

With (z,2) = (1,1), we have 22 — (2372””) =1-(&2)=0.

3z

With (z,z) = (=1, —2), we have 22 — (zsgz%) =1- (:—g =0.

When y > 0, then we have that u = z + \/y and v = x — ,/y are real and
distinct. The possible values of

{’/x—i-\/@—i— {’/x—\/@

are
Vit o, (Vu+ Yoo, (Vu+ Jo)w?,
\S/E + (%)UJ, %4_ (\S/E)WQ’ (%)UJ + (\S/E)w27 T
where w3 = 1, w # 1, that is, a linear combination of two roots of unity

(with coefficients ¢/u, &/v, the real cube roots of v and v). The only such
real linear combination is &/u and /v, and there is no ambiguity.

Solutions 1 and 2 appear to be quite different and should be reconciled. We
will indicate how to do this for solutions of equation (2) in the particular
case that z = 6a and x = 9ab. If this is to fall into the form of the general
Solution to equation (1) given in solution 1, then w must satisfy

1(6a)(36a* + 3w) = 9ab.

This gives w = 4(b — 3a?), whereupon

1 2 2
6—4w(3z + w)

1—16(b — 3a)? (10842 + 4(b — 3a)%)”
= (b—3a®) (24a* + b)2 ,

so that the values of y given in the two solutions agree.
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45 Solution 1 We will suppose that all quantities involved are real and that
7 refers to the non-negative square TtoOt. Thus, we have
2l <1yl < 1,]2 < 1.

Let us clear away some preliminary situations.
(1) a = b= ¢ = 0. The system is trivally solvable.
(2) a = b, ¢ # 0. The system is not solvable.

(3) a =0, bc # 0. The system becomes

by+cx=by/1—y2+cV1—22=0

or

by = —cz,b\/1 —y%2 = —c\/1 — 22.

Suppose that a solution exists. Then, from the second equation, b and ¢ have
opposite signs and be < 0. Also,

biy? = 222 0% (1 — y%) = (1 — 22).

Therefore b = ¢2. Hence b = —c.
On the other hand, if b = —c¢, the system is

y—z=11-12—V1-22=0,

which is solvable by, say (z,y,z) = (1,1,1).

Hence if a = 0, the system is solvable if and only if b+ ¢ = 0.

More generally, if abc = 0, the system is solvable if and only if

a+b+c=0.

Henceforth, assume abc # 0. Let there be a solution
(z,y,2) = (cos A, cos B,cos C') where 0 < A,B,C <.

Then
acosA+bcosB+ccosC =asinA+bsin B+ csinC = 0, (1)

whence, for all §, we have

acos(A+6) + bcos(B + 0) + ccos(C + 0)
= cosflacos A+ bcosB + ccos (]
—sinflasin A + bsin B + ¢sin C|
= 0.

Similarly, for all 8, we have

asin(A + 6) + bsin(B + 0) + ¢sin(C + ) = 0.
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Take 8 = —A. We then have

a—+bcos(B — A) + ccos(C — A) =0. (2)
Therefore a = —bcos(B — A) — ccos(C — A), so that
la] < [b[ + |e]- (3)
Similarly,
[b] < laf +|e| and |e| <a] + b]. (3)

Furthermore, since av/1 — 22 + by/1 — 42 + /1 — 22 = 0, we obtain that a,
b, ¢ cannot have all the same sign. Thus, either

a>0,b<0,c<0anda+b+c<0<a+b—ca—b+c }
or

(4)

a>0,b>0,c>0anda+b—c,a—b+c<0<a+b+ec

up to permutation of a, b, c.

Now suppose the conditions (3) and (4) are satisfied. We have to find angles
A, B, C to satisfy (1). Thus we have to solve

acos A= —(bcosB+ccosC) ,asinA = —(bsin B+ csin(),
so that
a? = a®cos? A+ a?sin® A = b? + ¢ + 2bccos(B — C).
Similarly
b = a® + ¢ + 2accos(A — C), and ¢* = a® +b* + 2bccos(A — B).

Suppose bc > 0, ab < 0, ac < 0.

Form the triangle with sides |al, |b|, |¢| which is possible by (3). Let U, V, W
be the respective angles opposite the sides.

We have to arrange that
cosU = —cos(B — C),cosV = cos(A — C),cos W = cos(A — B).
that is, either

A-C=V,B—-A=W,B-C=n-U
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(which implies B > A > ('), or
C-A=V,A-B=W,C-B=n-U

(which implies C > A > B).
[The Law of Sines gives |a|sin W = |¢|sinU and |a|sinV = |b|sin U which

suggest looking at
(A,B,C)=W,0,7 —U),(x — W,m,U),(V,® —U,0),(x —V,U,0),
each of which yields
asin A+ bsin B+ csinC = 0.
Now (A, B,C) = (W,0,7 — U), so that

acosA+bcosB + ccosC
= acosW +b—ccosU
2 —a?—-b? a’? —b2—¢c?
- a{ —2ab ]_H)_C{ 2bc ]
—c?+a? + b2 +2b% — a® + b + 2

= % = 2b.

Also (4, B,C) = (m — W, m,U) implies that

acos A+bcosB+ccosC = —acosW —b+ ccosU = —2b.
Further, (A, B,C) = (r — V,U, 7) implies that
acosA+bcosB + ccosC = —2¢,
and (A, B,C) = (V,m — U, O) implies that
acos A+ bcosB + ccosC = 2c.

None of these is what we want, but we try to combine them in some way.
Note that b and ¢ have the same sign and that 2b and —2b have opposite
signs.]
We construct functions f(t), g(t), h(t) (0 < ¢ < 1) which are continuous and
satisty

f0) =W, f) =m=W;
9(0) =0, 9(1) = m;
h(0)=7—-U, h(l)="U;
and asin f(t) + bsing(t) + csinh(t) = 0. (5)

Note that equation (5) holds for t =0 and t = 1.

Choose t; with 0 < #; < 1 and let f(t1) = . As sin f(¢) increases from
sin f(0) = sin W to sin f(¢1) = 1, we hold h(t) constant and let g(¢) increase
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so that equation (5) holds. Since |a|] < |b|+]c|, it may happen that at t5 (0 <
ty < t1), we have g(t2) = 5. Then between ¢ and t1, hold g(t) constant
and let h(t) vary to maintain equation (5). Choose t3 with ¢; < t3 < 1. Let

f(t) be constant at 7, allow g(t) to vary and h(t) to vary to 5 maintaining

2
equation (5). Finally, let f(¢) move to m — W with ¢(¢) and h(t) varying to

maintain equation (5).

Let ¢(t) = acos f(t) + bcosg(t) + ccosh(t). Then ¢ is continuous and
?(0)p(1) —4b%? < 0, and so, by the intermediate value theorem, there
exists to with ¢(to) = 0.

The desired solution is (z,y, z) = (cos f(to), cos g(tog), cos h(tp))-

Solution 2 Consider, for example the case that
ab > 0,ac < 0,bc < 0.
Dividing through by ¢, we reduce the system to
V1I-22=pV/1 - 22+ q\/1— 2,2 =pa+qy

(where p > ¢ > 0, say). Squaring and manipulating leads to

1_p2 _ q2
zy+ /-1y = —L L

2pq

We have

1< oy /I-D) (- )
2 2 2 22
L Py (-a) (-9
- 2 2
=1

when |z| <1, |y| <1 with equality on the left when (z,y) = (1, —1) and on
the right when (z,y) = (1, 1).

Because zy + /(1 — 22)(1 — y?) is continuous in z and y, it assumes all
values between —1 and 1 for —1 < x,y < 1. Thus, if there is a solution, we
must have

.22
_1§l_£_JL§L
2pq

This is equivalent to
—2pg <1-p° —¢* < 2pq,

which is the same as
(P—q)? <1< (p+q),
or
p—q<1<p+gq.
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If a > 0,b > 0,c < 0, we have p = i,q = —, so that
—c —c

a+b+c>02>a—0b+c The imposed condition p > ¢ corresponds to

a>b,sothat 0 > —a+ b+ c as well.

— —b
Ifa<0,b<0,c>0,wehavep:Ta qu so that

at+b+cec<0<a—-b+ec
Now suppose that the conditions on p and ¢ are satisified. We find x,y to

make ) )
1—p2 —
2y + /(1 — 21— g2) = L '

2pq
and let z = px + qy. Then

(p\/l — 2%+ q\/1 —y2)2
= pP(1—2))+ (1 —v*) +2pg/(1 — 22)(1 — y?)

1—p*—¢?
= p’+¢*+2pqg (72 —ay | —p’2® — ¢y°
pq

1 —p*z® — ¢’y — 2pq(zy)

= 1-22

Hence V1 — 22 = pv1 — 22 4+ ¢\/1 — 2.

Solution 3 [C. Percival] =~ We can handle the case abc = 0 as in
45 Solution 1. Suppose abc # 0. Then

a\/l—x2+b\/1—y2+0\/1—22

cannot vanish if all of a, b, c have the same sign. WOLOG, suppose that

a<0<ec Let
A —a?-b? a2 —b> -2
pr— ]_ .
(z,y,2) < SR v )

Then
2_ a2 p 2 2

Tby4ez=2 S
arToy TR = Ty 2 2

Thus

at + b4 4 ¢t — 2a2¢? — 2¢2b? + 2a2b?
V1—22 = 1-—

4a2b?

= L\/—a‘l —b* — c* + 2a2¢? + 2b%c? + 2a2b?
|2ab|

1

= 2] —at — bt — ¢t + 2(a?b? + a?c? + b2c?)

since a < 0.
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Similarly
1
V1-22 = —|2bc| —a* —b* — ¢* 4 2(a?b? + a?c? + b2c?)
1
= o —a* —b* — ¢* 4 2(a?b? + a?c? + b2c?).
Hence

av/1— 22 +by/1— 42 +cy/1—22
1 1
= _2_bF+O+%F
= 0.

Solution 1 Plugging z = 3 — (z + y) into 23 + y3 + 2% = 3 yields
Pyt 2127 +y) + 9z +y)? — (z+y)* =3.

This is equivalent to

24
(z+y) [-(&® — 2y + ) + 27 — 9z — 9y + (2° 4 2zy + ¢°)]
= 3(z+9)(9 -3z — 3y +ay)
= 3x+y)B-—2)3-y),

or8=(z+y)3—x)(3—-y).
Without loss of generally, we can assume that zy > 0.

Ifz <0,y <0, then the right side would be nonpositive giving a contradiction.
Hence x +y =1, 2,4 or 8.

If t+y =8, then (3—12)(3—y) =1, yielding x = y = 4, and we get
(xvyaz) = (4745_5)'

If  +y = 4, then (3 — 2)(3 — y) = 2. But these are incompatible.

If x+y = 2, then x = y = 1 is the only possibility and we get
(z,y,2) = (1,1,1). Finally,  + y = 1 is not a possibility.

By symmetry, we have also (z,y, z) = (4, —5,4), (=5,4,4).
Solution 2 Suppose
r4+y+z=a3 4+ +23=3

and
Ty + 22+ Yz = a.

Since

Byt —Bayr=(r+y+2) @+ 97 + 22— xy — zz — y2),
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we obtain that
1—ayz=(r+y+2)? -3y +2zz+yz) =9 3a,

so that
zyz = 3a — 8.

Hence z,y, z are roots of the cubic equation t3 — 3t? + at — (3a — 8) = 0.
Solving this for a, we have a = —t2 + %.

Since a must be an integer, we have that 3 — ¢ must divde 8. Checking out
t=-5,-1,1,2,4,5,7,11, we find that only t = —5, 1,4 work.

The solutions are (z,y,z) = (1,1,1), (4,4, -5), (4, -5,4), (=5,4,4).

Solution 3 [S. Yazdani] x+y=3—zand 2®+y® = 3 — 23 imply that (z +
y)? — 3z + ywy = 3 — 2% This further implies that
(3—2)3—3(3—2)ry =3 — 23, and so that zy = 8_?;%322 =32 -3z
Hence (3 — 2)|8.

Similarly (3 — «)|8 and (3 — y)|8. Thus z,y, z must be chosen from among
{11,7,5,4,2,1,—1,—5}. We can now check out the possibilities.

Solution 4 [A. Chan] The equation 3 = x +y + 2z = 2% + y> + 23 implies
that
27 = (v+y+2)>
(2 4+ 3> +2°) + 3(x +y + 2)(wy + 22 + y2) — 3zy2.

This leads to zyz = 3(zy + 2z + yz) — 8 = 1(mod 3).

Hence, modulo 3, we have

(z,y,2) = (1,1,1),(1,2,2),(2,1,2), (2,2, 1).

But we also have that x + y + z = 0(mod 3).

Hence, the only possibility is (z,y,2) = (1,1, 1)(mod 3).
Let x=3u+1,y=3v+1,z=3w+ 1.

Then 0=z +y+ 2z —3=3(u+v+ w), and so

0 = 2+ +23-3 = 3u+tvtw)
= Bu+1)P+Bv+1)*+Bw+1)*-3
= 27(u® 4+ v® + w?®) 4+ 27(u? + v + w?) + 9(u + v + w).

Hence
DHu+v+w=0.
(2) (u® + 03 +w?) + (u? + 0% +w?) = 0.
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so that
(3) wo+uw +ovw = F{(u+v+w)? — (u? + 02+ w?)] =%
where s = u? + v? + w?.

Since zyz = 3(zy + xz + yz) — 8, we have

27uvw + 9(uv + vw + vw) + 3(u + v+ w) + 1
= 3[9(uv 4+ uw + vw) + 6(u + v+ w) + 3] — 8.

2 s
so that wvw = g(uv—kuw—i—vw) =-3

The case s = 0 corresponds to u = v = w = 0, which yields the solution
({E,y, Z) - (1a ]-7 1)

Suppose s # 0. Since ; and % are integers, we know that s = 6r for some
positive integer r. Since u,v,w are roots of the equation > — 3rt 4+ 2r = 0,
we have that (3t — 2)r = t3.
Any prime divisor of 3t — 2 must divide #3, and so must divide ¢ (where ¢ is
u, v or W).
Hence 2 is the only prime dividing 3t — 2. Let 3t — 2 = 2*
2]@71 1 2]{:71 1
-zt where = +1 is odd.

3 3
Since 2%|t3, we get k < 3. We consider the possibilities:
3t—2 = 1. This implies that ¢ = 1, and further, » = 1, so that 0 = t3—3t+2 =
(t —1)2(t + 2). Therefore (u,v,w) = (1,1,-2), and so (x,y,z) = (4,4, —5)
in some order.
3t — 2 = 2. This is not possible.
3t—2 = 4. This implies that t = 2, and futher, r = 2, so that 0 = t>—6t+4 =
(t — 2)(t? + 2t — 2), which does not have three integer roots.

3t — 2 = 8. This is not possible.

Thent:2(

Solution 5 [B. Marthi]  As in Solution 1, we have

8=(r+y)9—-3=z+y)+azy).
8
Let  +y = w. Thena:yza—i—Bw—Qsothat
2 2 8
(z—y) =w —4(—+3w—9>.
w

Using the fact that w|8 and that (x — y)? is a perfect square, we arrive at
the desired solutions.
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Remark: [S. Cautis] z+y+2z=2%+y>+ 2% =n leads to

(n+nn—1)=3n—z)(n —y)(n—2).

Solution 1
(a) When t = 0, the required inequality is trivial.
When ¢t = 1, since 2g(n) < g(n + 1) + g(n — 1), we have that
g(n) —g(n—1) <g(n+1) —g(n).
For 0 < t < 1, the substitution y = n + 1, = n yields
gn+1) <tgn+1)+ (1 —t)g(n),
which implies that
g(n+1t) —g(n) <tlg(n+1)—g(n)],

while the substitution y =n—1,z=n+t,t — yields

T
sn) = g(tj1<n—1>+ )
< (%ﬂ) (1+t> (n+ ).

Therefore g(n) + tg(n) < tg(n — 1) + g(n + t), implying that

tlg(n) —gn —1)] < g(n+1t) — g(n).

(b) Writing the inequality in (a) in terms of f yields

o =[] <2 < [5] =

Since f(1) =1, we have f(2) = 1, so that when n = 2,¢t = 1/2, we have

1Sf(H) =3 (1) =W @) <VE

giving that
% <f (%) < %\/ﬁ as desired .

48 Solution 1  Let x,41 = x1. Observe that

n
P
i=1

sz—wzﬂ =0,

$1+1

105



106

so that

Now

2 - 2 ’
implying that
 +
x x> (= ;Hl)

Hence

n 2 n

z; 1 Ti + it
> — = —(x1+ 22+ +2),

Z$¢+$z‘+1722 2 (@1 + 22 )

=1 i=1
as desired.

48 Solution 2 Let xp41 = 1. Then Jrx;41 < xi—l—# implies that

Tiiyl T + Tt
Ti+ Tit1 4
Hence

(121,2, 7n)'

n

2 n
oy (x _ &)
- 3
Zi + Tip1 ] i+ Tig1

=1
n n

Z Z TiTi41

x; +x;

i=1 1T

1=

> ;xi - i <i_1($i + xi+1)>
n 1 n

= in - 5 sz
i=1 =1
1 n

= = Zj.
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