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MathemAttic Problems: A Guide /311

MathemAttic Problems: A Guide
MathemAttic is a child of Crux and a sibling to Mathematical Mayhem .
As such, it has a mathematical problem-solving focus and an active problems
section. However, unlike Mathematical Mayhem , MathemAttic is intended
for a much broader audience of high-school students and their teachers. This short
article will outline the differences and help serve as guide for people wishing to
submit problems to MathemAttic.

MathemAttic is aimed at high-school students and their teachers who are in-
terested in mathematics. This includes, but is not limited to, students who are
interested in mathematics contests. Some features, such as Teaching Problems,
From the Bookshelf of . . . , and the new Mathematics From The Web, are aimed at
that broader audience, while Problem Solving Vignettes has the contest participant
in mind.

Having said that, the level of problems presented in the MathemAttic Problems
section aims to serve our broader audience. That is, we will present Pre-Olympiad
level problems in the section. Problems suitable for local, regional or national
contests at the high school level or lower, such as the Canadian Open Mathemat-
ics Challenge and the Canada Jay Mathematical Competition, will be featured.
Readers looking for problems above this level have plenty to choose from in the
Olympiad Corner and the Problems section of Crux .

Thus we are looking for problems that need no mathematics beyond high-school,
as well as none that need Calculus. Problem solving techniques that might be
outside the curriculum, but are helpful in high-school mathematics competitions,
like things featured in Problem Solving Vignettes, would be allowed.

At this point in time, we do not receive enough proposals from the readers that
meet our criteria. As such, many of the problems featured are from past math
contests, or other problem collections. We would welcome more proposals from
readers. Proposals and solutions can be submitted online at:

https://publications.cms.math.ca/cruxbox

We welcome and accept material from all the MathemAttic readers. However,
since our focus is high-school students and their teachers, we will look to promote
this audience first. That is, we will look to submissions from high-school students
first when looking for featured solutions to give this audience a chance to shine.
Student and teacher contributors to MathemAttic and their schools, will be
acknowledged, so please make sure to indicate if you are a student or teacher as
well as your school and grade on your submissions.

We hope to continue expanding the material in MathemAttic and we hope to
receive more submissions of problems, solutions and articles from our readers. We
hope you enjoy the material and the direction we are taking. Any comments are
welcome at crux-editors@cms.math.ca.

Copyright © Canadian Mathematical Society, 2022



312/ MathemAttic

MATHEMATTIC
No. 36

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by August 15, 2022.

MA176. Proposed by Rikio Ichishima and Francesca Muntaner-Batle.

Given the sequence {an}, where a1 = 11, a2 = 1111, a3 = 111111, and

ak =

2k ones︷ ︸︸ ︷
1111 . . . 11,

show that no an is a perfect square.

MA177. Proposed by Ed Barbeau.

Let ABCD be a equilateral trapezoid with BC ‖ AD, AB = CD = 1, BC = 2
and AD = 3.

a) Prove that ∠BAD = ∠CDA and that ABCD is concyclic.

b) Determine the radius of the circumcircle of ABCD.

MA178. Proposed by Vishak Srikanth.

Let x, y, and z be integers. Find the number of solutions to

(xy + 1)2 + (xy − 1)2 + (xz + 1)2 + (xz − 1)2 + (yz + 1)2 + (yz − 1)2 = 20222.

MA179. Proposed by Jakob Denes.

Given two parallel lines, `1 and `2 and a transversal, `3 intersecting `1 and `2 at
points A and B respectively. A circle with centre O lies between the parallel lines
such that it is tangent to all three lines. Show that ∠AOB is a right angle.

`1

`2

`3

O

B

A
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MA180. Proposed by Alex Bloom.

a) Find
1

1 + 2 + 3 + 4
+

1

1 + 2 + 3 + 4 + 5
+ · · ·+ 1

1 + 2 + 3 + · · ·+ 99
.

b) Find
12

12 · 32
+

24

32 · 52
+

36

52 · 72
+

48

72 · 92
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 août 2022.

MA176. Soumis par Rikio Ichishima and Francesca Muntaner-Batle.

Étant donné la suite {an}, où a1 = 11, a2 = 1111, a3 = 111111 et

ak =

2k uns︷ ︸︸ ︷
1111 . . . 11,

montrez qu’aucun an n’est un carré parfait.

MA177. Soumis par Ed Barbeau.

Soit ABCD un trapèze équilatéral vérifiant BC ‖ AD, AB = CD = 1, BC = 2
et AD = 3.

a) Montrez que ∠BAD = ∠CDA et que ABCD est cocyclique.

b) Déterminez le rayon du cercle circonscrit à ABCD.

MA178. Soumis par Vishak Srikanth.

Soit x, y et z des entiers. Trouvez le nombre de solutions de l’équation suivante :

(xy + 1)2 + (xy − 1)2 + (xz + 1)2 + (xz − 1)2 + (yz + 1)2 + (yz − 1)2 = 20222.

Copyright © Canadian Mathematical Society, 2022

https://publications.cms.math.ca/cruxbox/


314/ MathemAttic

MA179. Soumis par Jakob Denes.

Soit `1 et `2 deux droites parallèles et soit `3 une sécante qui rencontre `1 et `2
respectivement en A et B. Un cercle de centre O situé entre deux droites parallèles
est tangent à chacune des trois droites. Montrez que ∠AOB est un angle droit.

`1

`2

`3

O

B

A

MA180. Soumis par Alex Bloom.

a) Déterminez
1

1 + 2 + 3 + 4
+

1

1 + 2 + 3 + 4 + 5
+ · · ·+ 1

1 + 2 + 3 + · · ·+ 99
.

b) Déterminez
12

12 · 32
+

24

32 · 52
+

36

52 · 72
+

48

72 · 92
.

Crux Mathematicorum, Vol. 48(6), June 2022
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(1), p. 4–5.

MA151. Proposed by Mihaela Berindeanu.

Solve over real numbers:
√

7 + x+
√

18− x = x2 − 11x+ 25.

We received 6 submissions, all correct. We present the solution by Richard Hess.

The only solutions are x = 2 and x = 9. The left-hand side of the equation can
be written as

√
12.5 + u+

√
12.5− u, where u = x− 5.5. This expression is even

in u with a maximum at u = 0 and looks a bit like the curve shown below. The
right-hand side of the equation is x2 − 11x + 25 = u2 − 5.25 and looks like the
other curve shown below. Clearly there are only two solutions.

MA152. Proposed by Neculai Stanciu.

Prove the following cryptarithm, where each letter represents a different digit:

DEAD ×REAR < READ ×DEAR.

We received 5 submissions, all correct. We present the solution by Prithwijit De.

Let t = 100E + 10A. Then

DEAD×REAR = {(103+1)D+t}{(103+1)R+t} = (103+1)2DR+(103+1)(R+D)t+t2

and

READ ×DEAR = (103R+D + t)(103D +R+ t)

= (106 + 1)RD + 103(R2 +D2) + (103 + 1)(R+D)t+ t2.

Copyright © Canadian Mathematical Society, 2022
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Hence

READ ×DEAR−DEAD ×REAR = 103(R2 − 2RD +D2)

= 103(R−D)2 > 0.

Observe that since D and R are different digits, (R −D)2 > 0 always holds and
hence the cryptarithm is correct.

MA153. Proposed by Roy Barbara.

Let a, b, x and y be rational numbers so that x ≥ 0, a > 0 and
√
a is not rational.

Suppose further that 3
√√

a+ b =
√
x+y. Prove that 3

√
a− b2 is a rational number.

We received 2 submissions, of which 1 was correct and complete. We present the
solution by Corneliu Mănescu-Avram.

Claim. Suppose s, t, u and v are rational numbers such that s, u ≥ 0 and
√
s is

irrational. If √
s+ t =

√
u+ v,

then s = u and t = v.

Proof of claim. Suppose that s 6= u. Then
√
s−√u 6= 0 and we have

√
s−√u = v − t,
√
s+
√
u =

s− u√
s−√u =

s− u
v − t .

Adding these two equalities to solve for
√
s implies that

√
s is rational, a contra-

diction. Thus s = u; the fact that t = v follows immediately.

From the hypotheses of the problem we obtain

√
a+ b = (

√
x+ y)3 =

√
x(x+ 3y2) + 3xy + y3.

Since a, b, x(x+3y2)2 and 3xy+y3 are rational and
√
a is irrational, we can apply

the claim to conclude that

a = x(x+ 3y2)2

and

b = 3xy + y3.

Hence

a− b2 = x(x+ 3y2)2 − (3xy + y3)2

= x3 + 6x2y2 + 9xy4 − (9x2y2 + 6xy4 + y6)

= (x− y2)3,

which implies that 3
√
a− b2 = x− y2 is rational.

Crux Mathematicorum, Vol. 48(6), June 2022
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MA154. Two bags, Bag A and Bag B, each contain 9 balls. The 9 balls in
each bag are numbered from 1 to 9. Suppose one ball is removed randomly from
Bag A and another ball from Bag B. If X is the sum of the numbers on the balls
left in Bag A and Y is the sum of the numbers of the balls remaining in Bag B,
what is the probability that X and Y differ by a multiple of 4?

Originally from The 32nd W.J. Blundon Mathematics Contest, Memorial Univer-
sity of Newfoundland, 2015, problem 10.

We received 6 submissions, five of which were correct. We present the one by
Prithwijit De, slightly modified by the editor.

Let a be the number on the ball removed from bag A and b be the number on
the ball removed from bag B. Then a and b are random variables with range
{1, . . . , 9}. Further X = 45− a and Y = 45− b. Therefore |X − Y | = |a− b|. The
possible multiples of 4 are 0, 4, and 8.

Case 1: |a− b| = 0
(a, b) ∈ {(k, k)| k = 1, . . . , 9}. (9 pairs)

Case 2: |a− b| = 4
(a, b) ∈ {(k, k + 4)| k = 1, . . . , 5} ∪ {(k + 4, k)| k = 1, . . . , 5}. (10 pairs)

Case 3: |a− b| = 8
(a, b) ∈ {(1, 9), (9, 1)}. (2 pairs)

The probability that X and Y differ by a multiple of 4 is therefore

9 + 10 + 2

9× 9
=

21

81
=

7

27
.

MA155. An arbitrary point is selected inside an equilateral triangle. From
this point perpendiculars are dropped to each side of the triangle. Show that the
sum of the lengths of these perpendiculars is equal to the length of the altitude of
the triangle.

Originally from The 23rd W.J. Blundon Mathematics Contest, Memorial Univer-
sity of Newfoundland, 2006, problem 8.

We received 8 solutions. We present the solution by Henry Ricardo.

Suppose P is an interior point of an equilateral triangle ABC with side length a
and altitude h. Let h1, h2, h3 denote the lengths of the perpendiculars dropped
from P to sides AB, BC and CA respectively.

Copyright © Canadian Mathematical Society, 2022
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Then the area of 4ABC is the sum of the areas of triangles APB, BPC and
CPA; that is,

ah1

2
+
ah2

2
+
ah3

2
=
ah

2
.

Multiplying by 2 and dividing through by a gives h1 + h2 + h3 = h, as desired.

Crux Mathematicorum, Vol. 48(6), June 2022
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Telescoping Sums
Alex Bloom

In middle and high school, nearly all the series encountered are arithmetic or
geometric. However, when they are not, they tend to be much more exciting.
Telescoping series will pop up from time to time, usually remaining unsolved by
the confused students before a solution is revealed. Despite significant confusion
over how to approach them, there are many ways to both recognize and solve
problems involving telescoping sums. Generally, the solver reaches a series of
main terms, each of which can be transformed into a few simple expressions in
such a way that when all of the terms are added together, everything cancels out
except for a few terms in the beginning and a few terms at the end. This is similar
to what happens when developing the formula for a sum of a geometric series. We
start with

Sn = a+ ar + ar2 + · · ·+ arn−1.

We then evaluate Sn − rSn; when we gather like terms, we get

Sn − rSn = a−��ar +��ar −��ar2 +��ar2 − · · · −���
arn−1 +���

arn−1 − arn

which leads to our formula Sn =
a(1− rn)

1− r . This effect of the middle terms

colliding into each other and canceling out is in fact where it gets its name: after
an old-fashioned collapsible telescope.

In our investigation today, we will cover two of the most common techniques used
to create the telescoping effect.

To fit our definition of telescoping sums, a series must eventually reach the form:

f(1)− f(1 + n) + f(2)− f(2 + n) + f(3)− f(3 + n) + · · ·

for some function f . This series can be infinite, in which case the answer is
f(1) + f(2) + f(3) + · · ·+ f(n), as the first positive term to cancel out is f(n+ 1),
but it can also be finite, leaving both the first n terms and the last n terms.
While these terms must have opposite signs, so that the terms in the middle
cancel out, f(x) can be negative, as the first term can have either sign. While n
could theoretically be fairly large, for the most part, in practice, the value of n is
relatively small, leaving just a few terms at the beginning and end.

In algebra, some likely candidates for a telescoping sums problem are infinite
or long non-geometric and non-arithmetic series. Usually, the terms are strictly
decreasing or increasing, meaning that after they are split into two terms, the
smaller part of one term can cancel out with the larger part of a later term or vice
versa. Often, certain numbers in each expression increase arithmetically when

moving to the next terms (e.g:
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · ). Sometimes the final

terms used to telescope are given, but other times solving it requires simplifying a
function and plugging terms in or combining groups of terms into one term before

Copyright © Canadian Mathematical Society, 2022
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splitting them again to create the telescoping effect. To find the final group of
terms, it is usually necessary to modify and move the given expressions around
until they fit the criteria mentioned above.

In our investigation today, we will discuss the two most prevalent techniques used
to arrive at a sequence of telescoping sums.

The first and most common technique is to reach a series such as

1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 2)(n+ 3)
+ · · ·

which simplifies using partial fractions to

1

n
− 1

n+ 1
+

1

n+ 1
− 1

n+ 2
+

1

n+ 2
− 1

n+ 3
+ · · · ,

leaving one term at the beginning and in the case the sum is finite, one term at
the end. The same technique can also be seen in

1

n(n+ 2)
+

1

(n+ 1)(n+ 3)
+

1

(n+ 2)(n+ 4)
+ · · · =

1

2

Å
1

n
− 1

n+ 2
+

1

n+ 1
− 1

n+ 3
+

1

n+ 2
− 1

n+ 4
· · ·
ã
,

as
1

n
− 1

n+ 2
=

(n+ 2)− n
n(n+ 2)

=
2

n(n+ 2)
.

In this latter case, we have two terms left in the beginning, and if the sum is finite,
two at the end.

In general, we want to reach the form

y∑
n=1

b

n(n+ x)
, with a given y, x, and b,

which simplifies to

b

x

Å
1

n
− 1

n+ x
+

1

n+ 1
− 1

n+ x+ 1
+

1

n+ 2
− 1

n+ x+ 2
+ · · ·

ã
,

where terms start to cancel out. Given that the sequence is long enough, there
will be x terms left at the beginning and if it isn’t infinitely long, x terms left at
the end. We will now cover some problems of varying difficulty that demonstrate
this technique.

Example 1. Given that a1, a2, a3, . . . , an is an arithmetic sequence with a com-

mon difference d, find
n∑
k=1

1

ak · ak+1
in terms of n, a1, and d.

We first notice that since (an) is an arithmetic sequence, the two factors in the
denominator have a constant difference d. Furthermore, to reach the next term,
we are replacing the ak with ak+1 and the ak+1 with ak+2. Both of these should

Crux Mathematicorum, Vol. 48(6), June 2022
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be indicators that the solution likely contains telescoping. Acknowledging that,
we can rewrite it as

n∑
k=1

1

ak · ak+1
=

n∑
k=1

Å
1

d
· d

ak · ak+1

ã
=

n∑
k=1

Å
1

d
· ak+1 − ak
ak · ak+1

ã
=

n∑
k=1

1

d

Å
1

ak
− 1

ak+1

ã
.

Now, expanding it out, we get:

n∑
k=1

1

d

Å
1

ak
− 1

ak+1

ã
=

1

d

Å
1

a1
− 1

a2
+

1

a2
− 1

a3
+ · · ·+ 1

an
− 1

an+1

ã
=

1

d

Å
1

a1
− 1

an+1

ã
.

Since an+1 = a1 + nd, we find that the desired sum is equal to

1

d

Å
1

a1
− 1

a1 + nd

ã
=

n

a1(a1 + nd)
.

Example 2. [1] Find
63∑
n=2

(logn 2)(logn+1 2) log2

Å
1 +

1

n

ã
.

Converting all logarithms to base 2 using the exchange formula, we obtain:

log2

Å
n+ 1

n

ã
log2 n log2 (n+ 1)

=
log2 (n+ 1)− log2 n

log2 n log2 (n+ 1)
=

1

log2 n
− 1

log2 (n+ 1)
.

Therefore, the sum becomes:

1

log2 2
− 1

log2 3
+

1

log2 3
− 1

log2 4
+· · ·+ 1

log2 63
− 1

log2 64
=

1

log2 2
− 1

log2 64
= 1−1

6
=

5

6
.

Example 3. Let (an) be a sequence of numbers with the property that

a1 + a2 + · · ·+ an =
n(n+ 1)(n+ 2)

6

for all n ≥ 1. Evaluate
1

a1
+

1

a2
+ · · ·+ 1

a50
.

We start by finding a formula for the general term an. We know that:

a1 +a2 + · · ·+an =
n(n+ 1)(n+ 2)

6
and a1 +a2 + · · ·+an−1 =

(n− 1)(n)(n+ 1)

6
.

By subtracting, we find that

an =
n(n+ 1)(n+ 2)

6
− (n− 1)(n)(n+ 1)

6
=
n(n+ 1)(3)

6
=
n(n+ 1)

2
.

Copyright © Canadian Mathematical Society, 2022
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Thus,
1

an
=

2

n(n+ 1)
= 2

Å
1

n
− 1

n+ 1

ã
and

1

a1
+

1

a2
+ · · ·+ 1

a50
becomes:

2

Å
1

1
− 1

2
+

1

2
− 1

3
+ · · ·+ 1

49
− 1

50
+

1

50
− 1

51

ã
= 2

Å
1− 1

51

ã
=

100

51
.

Example 4. [3] Let f(n) =
1

2n
+

1

3n
+

1

4n
+ · · · . Find

∞∑
n=2

f(n).

By writing out the first few terms, we get

f(2) =
1

22
+

1

32
+

1

42
+ · · ·

f(3) =
1

23
+

1

33
+

1

43
+ · · ·

f(4) =
1

24
+

1

34
+

1

44
+ · · ·

...

Notice that there does not appear to be any obvious way to find the sum of each
individual row f(n). However, for each n ≥ 1, the nth column is a decreasing

geometric sequence with first term
1

(n+ 1)2
and common ratio

1

(n+ 1)
. The sum

of each geometric sequence is equal to

1

(n+ 1)2

1− 1

n+ 1

=
1

(n+ 1)2

Å
n

n+ 1

ã =
1

(n+ 1)(n)
.

Therefore, our sum can be written as

∞∑
n=2

f(n) =
∞∑
n=1

1

n(n+ 1)
=
∞∑
n=1

Å
1

n
− 1

n+ 1

ã
=

Å
1

1
− 1

2

ã
+

Å
1

2
− 1

3

ã
+

Å
1

3
− 1

4

ã
+ · · · = 1.

Our second technique for problems recognized to likely involve telescoping is to
rationalize or simplify the denominator of each term of a sequence of fractions
to create a common denominator. While it can involve factoring or other ma-
nipulation of the denominator or numerator, the crucial part is to rationalize
the denominator, making it possible to spot the telescoping pattern. While it can
sometimes take more manipulation of the numerator, the telescoping terms mostly
appear soon after the denominator is simplified.

Crux Mathematicorum, Vol. 48(6), June 2022
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Our first problem with this technique is the following:

Example 5. Find

S =
1√

1 +
√

2
+

1√
2 +
√

3
+

1√
3 +
√

4
+ · · ·+ 1√

99 +
√

100
.

Note that the terms of S form a decreasing sequence that is neither arithmetic nor
geometric. In order to see if S is telescoping, we rationalize the denominators:

S =

√
2−
√

1

2− 1
+

√
3−
√

2

3− 2
+

√
4−
√

3

4− 3
+ · · ·+

√
100−

√
99

100− 99

Since the denominators are all 1, we obtain:

S =
√

2−
√

1 +
√

3−
√

2 +
√

4−
√

3 + · · ·+
√

100−
√

99 =
√

100−
√

1 = 9.

Example 6. [2] Find

1

2
√

1 +
√

2
+

1

3
√

2 + 2
√

3
+

1

4
√

3 + 3
√

4
+ · · · 1

100
√

99 + 99
√

100
.

Proceeding as in the previous example, we realize that the sum is telescoping after
rationalizing the denominators:

2
√

1− 1
√

2

2
+

3
√

2− 2
√

3

6
+

4
√

3− 3
√

4

12
+ · · ·+ 100

√
99− 99

√
100

9900

=

√
1

1
−
√

2

2
+

√
2

2
−
√

3

3
+

√
3

3
−
√

4

4
+ · · ·+

√
99

99
−
√

100

100

=

√
1

1
−
√

100

100
=

9

10

Example 7. Find
287∑
n=0

6(
√
n+ 1 +

√
n+ 2)√

n2 + n+
√
n2 + 2n+

√
n2 + 4n+ 3 +

√
n2 + 5n+ 6

.

We first simplify the denominator by factoring each of the quadratic expressions
under the square roots:

6(
√
n+ 1 +

√
n+ 2)√

n(n+ 1) +
√
n(n+ 2) +

√
(n+ 1)(n+ 3) +

√
(n+ 3)(n+ 2)

Using factoring by grouping, we get

6(
√
n+ 1 +

√
n+ 2)√

n(
√
n+ 1 +

√
n+ 2) +

√
n+ 3(

√
n+ 1 +

√
n+ 2)

=
6(
√
n+ 1 +

√
n+ 2)

(
√
n+ 1 +

√
n+ 2)(

√
n+ 3 +

√
n)

=
6√

n+ 3 +
√
n
.
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Now rationalizing the denominator yields:

6(
√
n+ 3−√n)

(n+ 3)− n =
6(
√
n+ 3−√n)

3
= 2
√
n+ 3− 2

√
n.

Hence our original sum becomes
∑287
n=0(2

√
n+ 3− 2

√
n), which expands to:

2(
√

3−
√

0+
√

4−
√

1+
√

5−
√

2+
√

6−
√

3 · · ·+
√

288−
√

285+
√

289−
√

286+
√

290−
√

287),

with three terms left at both the beginning and the end, giving a final answer of

2
Ä
−
√

0−
√

1−
√

2 +
√

288 +
√

289 +
√

290
ä

= 2
Ä
0− 1−

√
2 + 12

√
2 + 17 +

√
290
ä

= 32 + 22
√

2 + 2
√

290.

I will leave the following problems for experimentation with these methods.

1. If S =
1

1 + 2 + 3 + 4
+

1

1 + 2 + 3 + 4 + 5
+ · · ·+ 1

1 + 2 + 3 + · · ·+ 99
, find S.

(see MA 180)

2. Find
99∑
n=1

1

(
√
n+
√
n+ 1)

√
n(n+ 1)

.

3. Find
∞∑
n=1

8 · 3n
32n+2 + 3n+2 + 3n + 1

.

4. Find
12

32
+

24

32 · 52
+

36

52 · 72
+

48

72 · 92
. (see MA 180)
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TEACHING PROBLEMS
No.17

John McLoughlin & Elias Brettler

A Geometry Problem: Inviting Numerous Forms of Proof

This problem has a story. The original version appeared in an ATOM publication
prepared by Jim Totten. Subsequently an occasional request was made to one of
the authors (John) to provide a problem that could be a filler in a journal, For the
Learning of Mathematics (FLM). This geometry problem seemed to suit that role
with the figure adding to its value. The problem was inserted on a page following
the completion of an article. Curiously Elias Brettler saw this problem and shared
it with students in a first-year undergraduate course at York University. The
course was called Problems, Conjectures and Proofs. That is where it emerged as
a teaching problem in that solutions of many forms were offered by students.

Here a glimpse into the problem is provided. The statement of the problem is
followed by a brief description of some directions that were pursued by students in
that class. The details in these proofs are not provided in full here. Rather they
will appear in the next issue of Teaching Problems. Meanwhile readers are invited
to play with some of the ideas and directions to gain greater appreciation for the
problem’s potential as well as perhaps learning more about proof.

Given a square ABCD with E the mid-point of the side CD. Join A
to E and drop a perpendicular from B to AE at F . Prove CF = CD.

A B

CD E

F

At a 2010 meeting of the Canadian Mathematics Education Study Group, Elias
Brettler led a short session discussing the problem and his experience with the
class at York. The remainder of this feature is mainly excerpted from the summary
that appears in the proceedings of that meeting. A detailed discussion of various
solutions will follow in a future issue this autumn. For now, it is starting points
or directions only that are offered. Engage and see if some of these appeal to you.
Maybe you have another approach altogether. Students in the course were to look
for two or more different ways to prove that CF = CD. Generally these proofs
used measurement or the ideas of congruence and/or similarity.
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The simplest measurement proof is obtained by using coordinates such as A(0, 10),
B(10, 10), C(10, 0), and D(0, 0). Then F has coordinates (2, 6) and the distance
formula gives the length of CF as 10. Another proof based on measurement
extends AE and BC to meet at G and uses the law of cosines in ∆CGF . Further,
the observation that the points E, F , B, and C lie on a circle gives a third
measurement proof based on the idea that chords which subtend equal arcs are
equal in length. A proof based on classical construction ideas and the fact that an
angle inscribed in a semi-circle is a right angle was given.

Another solution used the idea of showing that C lies on the perpendicular bisector
of FB. As the non-right angles which appear in the diagram are either equal or
complementary, there are proofs which exploit this in order to use congruence or
similarity.

This problem is simple to present making it accessible. Virtually any reasonable
form of attack yields results. These two features distinguish this as a teaching
problem. Many forms of proof turn out to be viable. What remains unclear
however is to identify what it is about this problem that supports such variation.
Can such qualities be seen in advance with particular problems or is it necessary
to have the experience with a class that brings to light the relative merits of one
problem or another?
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Nerdle: A Variant of WORDLE
for Math Enthusiasts

Doddy Kastanya

Since the beginning of 2022, the WORDLE word puzzle has enjoyed a world-wide
popularity. It is a straight-forward game in which a player has six attempts to
guess a five-letter word. As each guess is entered, the game will provide color-
coded feedback to the player informing them if any of the letters match or occupy
the correct position. The popularity of this game has inspired Richard Mann, a
British data scientist, to launch a numerical version of this game called NERDLE.

Similar to WORDLE, the player needs to guess the NERDLE in six attempts
by guessing the right combinations of numbers and operations for the desired
mathematical expression. However, NERDLE involves eight ‘tiles’ instead of
just five in WORDLE. Before discussing the mathematical aspects of this game,
we should start by introducing the basic rules for this game:

• As mentioned above, there are eight ‘tiles’ to fill up in each attempt. Each
tile is one of “0 1 2 3 4 5 6 7 8 9 +− ∗ / =”.

• Each attempt must be a calculation that is mathematically correct. This
means that each attempt must include one “=” sign.

• While the left side of the “=” sign involves mathematical operations, the
right side of the “=” sign involves just a number.

• The standard order of operations applies. In other words, “∗” and “/” will
be executed before “+” and “−”.

• A number is expressed in a standard fashion and no leading zero is allowed.

• The game starts with six rows of eight gray tiles. After each attempt, the
game will provide one of the following color-coded feedbacks for each tile:

– Green : the guessed number or operation is a part of the solution and
occupies the correct tile location.

– Purple : the guessed number or operation is a part of the solution but
does not occupy the correct tile location.

– Black : the guessed number or operation is not a part of the solution.

Now that the general rules of the game have been covered, it is curious to define
the “best” starting guesses and a reasonable strategy for a successful completion of
this game. Some of them, based on my experience and observations, are discussed
herein.
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Placement of the “=” sign

Figure 1. Empty tiles for the six attempts.

At the beginning of the game, the “game board” resembles the one shown in
Figure 1. Could the “=” sign be placed in any one of them? No. The simplest
operation will be an operation involving two single-digit numbers. So, for each
attempt, the first possible tile to place the “=” sign is the fourth tile from the left.
In this scenario, the result of the operation will be a four-digit number. This is not
a feasible scenario, since the operation that will give the highest number involving
two single-digit numbers is 9 × 9 which will give us 81, a two-digit number. The
next available tile to place the “=” sign is the fifth tile from the left. This is a
feasible tile since there is at least one scenario which satisfies the requirement,
namely 9 × 99 = 891. The sixth tile from the left is also possible since there are
many operations involving an operation between two two-digit numbers which will
result in another two-digit number that could be used as examples. Placing the
“=” sign in the seventh tile from the left is also possible. An example for this is
100− 99 = 1. The “=” sign cannot be placed in the eighth tile from the left since
it will not be a correct mathematical expression. So, now we know that we could
only put the “=” sign in the 5th, 6th, or 7th tile from the left.

Starting Guesses

For each attempt, we would like to get as much information as possible related
to the numbers and operations involved in the desired expression. Figure 2 shows
an example of a reasonable starting guess since it will confirm whether or not
the addition operation is used as well as checking the usability of six out of ten
numbers. So, it is important to maximize the usage of unique numbers in the
guess.

3 4 + 5 6 = 9 0

Figure 2. A reasonable starting guess.

Another strategy is to have a sequence of two or three guesses which will give
us a clue as for what operations and what numbers are involved in the desired
expression. Figure 3 shows an example of three guesses that could be useful in
deciphering the puzzle. For the fourth guess, we will already know where the
location of the “=” sign is and what numbers/operations are involved.
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1 0 5 − 9 8 = 7

2 3 + 4 6 = 6 9

9 / 3 ∗ 6 = 1 8

Figure 3. An example of three guesses to reveal required numbers and operations.

Rearranging the known components

After making three reasonable guesses, we usually already know the components
required to solve the puzzle. However, there is one more twist that we need to
consider. A number could be used more than once. Nevertheless, there are other
clues that we could use to find the answer based on the information that we have
at this point. Various possible outcomes are provided below along with examples.

• If the “=” sign is on the fifth tile from the left, then we have two possible
scenarios involving the following on the left side of the “=” sign:

– Two numbers (one two-digit and one one-digit) with:

∗ One multiplication.

5 7 ∗ 8 = 4 5 6

∗ One addition.

9 9 + 2 = 1 0 1

• If the “=” sign is on the sixth tile from the left, then we have eleven possible
scenarios involving the following on the left side of the “=” sign:

– Two numbers (one three-digit and one one-digit) with:

∗ One subtraction. Moreover, we know that the first tile will be “1”
and the seventh tile will be “9”.

1 0 3 − 9 = 9 4

∗ One division.

1 2 5 / 5 = 2 5

– Two numbers (both two-digit) with:

∗ One addition.

1 1 + 7 7 = 8 8

∗ One subtraction.

6 9 − 1 5 = 5 4
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– Three numbers (all one-digit) with:

∗ Two additions.

8 + 4 + 3 = 1 5

∗ One addition and one subtraction.

9 + 7 − 2 = 1 4

∗ Two multiplications.

2 ∗ 2 ∗ 5 = 2 0

∗ One multiplication and one division.

9 ∗ 8 / 2 = 3 6

∗ One multiplication and one subtraction.

6 ∗ 8 − 3 = 4 5

∗ One multiplication and one addition.

7 ∗ 9 + 5 = 6 8

∗ One division and one addition.

9 / 1 + 8 = 1 7

• Finally, if the “=” sign is on the seventh tile from the left, then we have
eight possible scenarios involving the following on the left side of the “=”
sign:

– Two numbers (one three-digit and one two-digit) with:

∗ One subtraction. Moreover, we know that the first tile will be “1”
and the fifth tile will be “9”.

1 0 4 − 9 9 = 5

∗ One division.

7 9 2 / 9 9 = 8
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– Three numbers (one two-digit and two one-digit) with:

∗ Two subtractions.

1 8 − 8 − 9 = 1

∗ One addition and one subtraction.

1 0 + 3 − 7 = 6

∗ One division and one subtraction.

1 8 / 3 − 1 = 5

∗ One division and one addition.

2 8 / 4 + 2 = 9

∗ One multiplication and one subtraction.

3 ∗ 5 − 1 2 = 3

∗ One division and one multiplication.

3 / 7 ∗ 2 1 = 9

Understanding various possible outcomes, as outlined above, as well as having
reasonable starting guesses would likely help you to solve the puzzle in six attempts
or less. Have fun and good luck!

The online game is accessible at https://nerdlegame.com/.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doddy is a math enthusiast working as a nuclear engineer.
The love of math and physics was the reason for him to
choose this field. In his spare times, among other things
he likes to solve math puzzles and problems. In addi-
tion to Crux, the Project Euler has provided him with
enough challenges and enjoyment in this area. Doddy and
his family share their Oakville home with their four cats:
Luke, Lorelai, Lincoln, and Lilian. Communications con-
cerning the article can be shared with the author via email:
kastanya@yahoo.com.
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From the bookshelf of . . .
Veselin Jungic

This new feature of MathemAttic brings attention to books of potential interest
to the readers. Some of these will be reviews whereas others will be hearty recom-
mendations from the contributors. If you have a book related to mathematics that
would be of interest to secondary school students and/or teachers, feel welcome
to send along a submission to MathemAttic@cms.math.ca. Publishers are also
welcome to send along books for possible review.

A New Year’s Present from a Mathematician
by Snezana Lawrence
ISBN 978-0367219369, 200 pages
Published by Chapman and Hall/CRC, Boca Raton, 2019.

Snezana Lawrence, the author of “A New Year’s Present from a Mathematician,”
is a British historian of mathematics and a mathematics educator. An archi-
tect by undergraduate training, Lawrence earned her PhD in 2002 from the Open
University, a British public research university. Her dissertation, “Geometry of Ar-
chitecture and Freemasonry in 19th Century England,” was supervised by Jeremy
Gray, an English mathematician primarily interested in the history of mathemat-
ics. Currently, Lawrence is a senior lecturer in mathematics and design engineer-
ing at Middlesex University in London, England. Before her career as a university
faculty, Lawrence worked as a high school mathematics teacher for several years.
Among her numerous community engagements, Lawrence is Chair of the “History
and Pedagogy of Mathematics” group, affiliated with the International Commis-
sion on Mathematical Instruction.

As this brief biographical sketch indicates, Lawrence’s
academic interests and experiences are wide and varied
with mathematics, an engine and a mirror of human
development over many centuries, at their centre. Hav-
ing this in mind, “A New Year’s Present from a Math-
ematician” reads as the author’s intellectual memoir:
Wherever we look in time and space, we find mathe-
matics.

The author takes her readers on a journey through the
wonderland of mathematics with the goal of visiting
twelve landmarks depicted by the lives and work of
9 mathematicians (Isaac Newton, Christopher Wren,
Emmy Noether, Maria Gaetana Agnesi, Luca Pacioli,
John Dee, Paul Erdős, Jean-Baptiste le Rond d’Alambert, and Johannes Kepler),
a famous group of mathematicians (under the collective pseudonym of Nicolas
Bourbaki), an architectural masterpiece (Hagia Sophia), and an institution that
marked the development of mathematics as we know it (The Royal Society of Lon-
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don for Improving Natural Knowledge). What connects these landmarks, spread
out through Europe over two millennia, is their everlasting mathematical legacy
ranging from the foundations of geometry to calculus to Ramsey theory.

Lawrence also demonstrates that it is impossible to look at the development of
even a piece of mathematics in isolation: the landmarks she highlights are only a
personal choice of a discrete set of points from a continuum that we call mathe-
matics. This is underlined by author’s choice not to follow chronological order in
her narrative. Her approach of going back and forth in time, in this reader’s view,
further emphasizes the ever-presence of mathematics.

This insightful and warmly written book will be a pleasure to read for anyone
who is learning, teaching, doing, or is just curious about mathematics and its
history. It also may be used as a valuable teaching and learning resource to
introduce, learn, or re-learn about the historical and mathematical topics that the
book covers. When presenting mathematical topics, the author is a knowledgeable
and objective narrator who makes sure that her readers are provided with all the
information necessary to follow the narrative.

Still, to reduce this book to only its mathematical dimension would be an act of
injustice not only towards the book but also towards its author.

Lawrence is a great storyteller and when she reflects about the personal lives of
mathematicians and the circumstances in which they lived, she talks directly to her
reader. In this way, the reader can see, feel, and understand these great individuals
at a more intimate level. These moments are welcome reminders that learning and
doing mathematics is both a personal and cultural experience that intertwines
with an individual’s everyday life and includes interactions with others who share
similar mathematical and non-mathematical interests, knowledge, history, set of
values, and so on.

The author’s general kindness towards her protagonists and her genuine love for
mathematics further distance this text from commonly impersonal mathematical
books.

The wide range of topics covered in the book, the numerous beautiful illustrations,
and the author’s ability to capture the reader’s attention by combining her personal
reflections with the historical and mathematical facts, make this book a stimulating
read.

For example, one may wonder who the “mathematician” from the book title is. Is
this the book’s author? Or perhaps this is a collective name for all of the mathe-
maticians mentioned in the book? Or, perhaps more prosaically, a mathematician
who does the last-minute holiday shopping? Or, as this reader would like to think,
that unknown mathematics student, teacher, or researcher for whom learning,
teaching, and creating mathematics is a life-long source of pride, happiness, and
joy?

Or, as another example, one may ask to whom this book should be presented to as
a gift? In other words, to which degree the knowledge presented in this text should
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be the outcome of the mathematical education of a student who is not aiming to
become a professional mathematician? Would it be too much to ask an economist
to list the five regular solids? Or to ask an engineer to know what the Ramsey
number R(3, 3) is?

More generally, what are the place and the role of mathematics in the knowledge
of an educated person who is not a professional mathematician?

Instead of further elaborating on those questions, here are Lawrence’s words that
will hopefully encourage you to read her book:

You may know a lot about mathematics already, but I hope that you
will still be able to know more after you’ve read this book. Or you may
know little or almost no mathematics, yet I am sure that you too will
be able to learn from this book where to delve deeper into mathemat-
ics, and what to pick from the vast archive of abstract thought that
mathematics has ways of neatly organizing.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
Veselin Jungic. Veselin Jungic is a 3M National Teach-
ing Fellow and a Fellow of the Canadian Mathematical
Society.
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OLYMPIAD CORNER
No. 404

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by August 15, 2022.

OC586. Prove that for any positive integers a1, a2, . . . , ak such that

1

a1
+

1

a2
+ . . .+

1

ak
> 1,

the equation õ
n

a1

û
+

õ
n

a2

û
+ . . .+

õ
n

ak

û
= n

has at most a1 · a2 · . . . · ak solutions in positive integers.

OC587. We call an arrangement of n ones and m zeros in a circle good
if it is possible to swap an adjacent zero and one in such a way that we get an
arrangement that differs from the original one by a rotation. For what natural
numbers n and m does a good arrangement exist?

OC588. Let A be a finite ring and let a, b ∈ A such that (ab− 1)b = 0. Prove
that b(ab− 1) = 0.

OC589. Consider an acute triangle ABC where AB < AC. The bisector of
the angle BAC intersects the side BC at point D. Point M is the midpoint of the
side BC. Prove that the line passing through the centers of the triangles ABC
and ADM is parallel to the line AD.

OC590. Find all real numbers c for which there exists a function f : R→ R

such that for each x, y ∈ R the following equality is satisfied:

f(f(x) + f(y)) + cxy = f(x+ y).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 août 2022.

OC586. Montrez que pour tout entiers positifs a1, a2, . . . , ak vérifiant

1

a1
+

1

a2
+ . . .+

1

ak
> 1,

l’équation õ
n

a1

û
+

õ
n

a2

û
+ . . .+

õ
n

ak

û
= n

admet au plus a1 · a2 · . . . · ak solutions par des entiers positifs.

OC587. On dit d’un arrangement circulaire de n uns et m zéros qu’il est bon
s’il est possible d’interchanger zéro et un contigus de telle sorte qu’on obtienne un
arrangement qui ne diffère de l’arrangement d’origine que par une rotation. Pour
quels nombres naturels n et m existe-t-il un bon arrangement?

OC588. Soit A un anneau fini et soit a, b ∈ A tels que (ab−1)b = 0. Montrez
que b(ab− 1) = 0.

OC589. Considérons un triangle acutangle ABC où AB < AC. La bissectrice
de l’angle BAC rencontre le côté BC en D. Soit M le point milieu du côté BC.
Montrez que la droite passant par les centres des cercles circonscrits respectifs des
triangles ABC et ADM est parallèle à la droite AD.

OC590. Trouvez tous les nombres réels c pour lesquels il existe une fonction
f : R→ R telle que pour tout x, y ∈ R l’égalité suivante est vérifiée :

f(f(x) + f(y)) + cxy = f(x+ y).
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2022: 48(1), p. 19–20.

OC561. Let 4ABC be an arbitrary triangle with area 1. The edge AB is
extended past B to a point B′ such that |BB′| = |AB|. Similarly, the edge BC is
extended past C to a point C ′ such that |CC ′| = 2|BC|; and CA is extended past
A to a point A′ such that |AA′| = 3|CA|. Find the area of 4A′B′C ′.
Originally from the 2021 Science Atlantic undergraduate problem solving contest.

We received 14 submissions of which 13 were correct and complete. We present 2
solutions.

Solution 1, by Ivko Dimitrić.

It is clear that two triangles whose bases belong to the same line and have shared
opposite vertex so that the altitudes from that vertex to the bases are equal have
the ratio of their areas equal to the ratio of their bases. Let A denote the area of
a triangle. Then

A(BCB′) = A(ABC) = 1, A(ACC ′) = 2A(ABC) = 2,

A(CB′C ′) = 2A(BB′C) = 2, A(AA′B) = 3A(ABC) = 3,

A(BA′B′) = A(AA′B) = 3, A(AC ′A′) = 3A(CC ′A) = 6.

Adding up the areas of all seven triangles we get

A(A′B′C ′) = 1 + 1 + 2 + 2 + 3 + 3 + 6 = 18.
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Solution 2, by UCLan Cyprus Problem Solving Group.

We use barycentric coordinates. Let A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1).
It is immediate to check that

B′ = (−1, 2, 0), C ′ = (0,−2, 3), A′ = (4, 0,−3).

For example, since AA′ = 3AC, then the area of ABA′ is triple the area of
ABC. Furthermore, since the triples of points A,B,C and A,B,A′ have opposite
orientation, then the third coordinate of A′ is −3. We now compute∣∣∣∣∣∣

4 0 −3
−1 2 0
0 −2 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
4 0 −3
−1 2 0
−1 0 3

∣∣∣∣∣∣ = 2

∣∣∣∣ 4 −3
−1 3

∣∣∣∣ = 18 .

Since the triangle ABC has area 1, then the triangle A′B′C ′ has area 18.

OC562. Ruby and Sapphire are celebrating Pi Day by sharing a circular pie.
Ruby has two red birthday cake candles, and Sapphire has two blue candles. Ruby
starting, they will alternately place one candle on the perimeter of the pie. (Of
course, no two candles may be in the same place!) After all the candles are placed,
each girl will get the portion of the pie that is closer to one of her candles than
to any of the others. The goal is to get strictly more pie than one’s opponent; an
equal division is a draw.

Either find a winning strategy for one player and show that it is essentially unique,
or show that the game, rationally played, is a draw.

Originally from the 2021 Science Atlantic undergraduate problem solving contest.

We received 3 solutions. We present the solution by UCLan Cyprus Problem Solv-
ing Group.

We will show that Sapphire has a winning strategy.

We will record the (anti-clockwise) angles from the first candle of Ruby (i.e. by
which angle we need to rotate the first candle of Ruby about the center of the
pie).

In her first move Sapphire places her candle diametrically opposite the candle of
Ruby, i.e. at an angle of π. Assume that the next candle of Ruby is at an angle
of ϑ. Without loss of generality 0 < ϑ < π. If Ruby places her second candle at
an angle ϑ, then it is not difficult to see that Sapphire wins if and only if her next
candle is at an angle

ϕ ∈ (ϑ, π − ϑ) ∪ (π + ϑ, 2π).

Note that the first of these two intervals might be empty (if ϑ ≥ π/2) but the
second interval is never empty.

The above strategy of Sapphire is ‘unique’. If she does not pick the angle π, then
Ruby can do so and the game will end in a draw or a win for Ruby.
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OC563. Find, with proof,
∫ π/2

0
cos31416(x)dx.

Originally from the 2021 Science Atlantic undergraduate problem solving contest.

We received 14 solutions. We present the solution by Oliver Geupel.

For m ≥ 0, let Im =
∫ π/2

0
cos2m xdx. We prove that

Im =
π

22m+1

Ç
2m

m

å
,

so that ∫ π/2

0

cos31416 x dx =
π

231417

Ç
31416

15708

å
= 0.00707 . . . .

We have I0 =
∫ π/2

0
dx = π

2 . For m > 0, integration by parts yields

Im =

∫ π/2

0

cos2m−1 x d sinx

=
[
cos2m−1 x sinx

]π/2
0

+

∫ π/2

0

(2m− 1) cos2m−2 x sin2 x dx

= (2m− 1)

∫ π/2

0

cos2m−2 x
(
1− cos2 x

)
dx

= (2m− 1) (Im−1 − Im) ,

from which we obtain the recursion

Im =
2m− 1

2m
Im−1.

It follows

Im =
(2m− 1)!!

(2m)!!
· I0

=
(2m)!

22m(m!)2
· π

2

=
π

22m+1

Ç
2m

m

å
.

The proof is complete.

Remark. A related identity with similar proof is∫ π/2

0

cos2m+1 x dx =
4m

(2m+ 1)
(

2m
m

) .
The formulas are well-known, cf. Gradshteyn, I.S., Ryzhik, I.M., Tables of Inte-
grals, Series, and Products, Seventh Edition, Elsevier, 2007, formulas 3.621.3–4.
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OC564. Define a “Fibonacci-like” sequence as follows: A1 = A2 = 1, and
An = 2An−2 +An−1 for n ≥ 3; so A3 = 2× 1 + 1 = 3, A4 = 2× 1 + 3 = 5, and so
on. Prove that for odd n,

n−1∑
i=1

Ai = An − 1

Originally from the 2021 Science Atlantic undergraduate problem solving contest.

We received 19 correct solutions. We present 2 solutions.

Solution 1, by Henry Ricardo.

For n = 3, we see that
∑2
i=1Ai = 1 + 1 = 2 = A3 − 1.

Now assume that the result holds for some odd integer N > 3. Then the next
higher odd number is N + 2 and we have

(N+2)−1∑
i=1

Ai =
N+1∑
i=1

Ai =
N−1∑
i=1

Ai +AN +AN+1 = (AN − 1) +AN +AN+1

= 2AN +AN+1 − 1

= AN+2 − 1,

and our inductive proof is complete.

Solution 2, by Ivko Dimitrić.

To solve the linear recurrence relation

An −An−1 − 2An−2, A1 = A2 = 1,

we find the roots of the characteristic equation r2 − r − 2 = 0 to be both real,
r1 = 2, r2 = −1. Then An = b 2n + c (−1)n where constants b and c are found
from the initial values for n = 1, 2 to be b = 1/3 and c = −1/3, so that

An =
1

3

[
2n + (−1)n+1

]
. (1)

Hence when n is odd, we have (−1)n+1 = 1 and An− 1 = 1
3 (2n− 2). On the other

hand, using (1) and summing geometric sequences we have

n−1∑
i=1

Ai =
1

3

(
n−1∑
i=1

2i +
n−1∑
i=1

(−1)i+1

)

=
1

3

Å
2 · 2n−1 − 1

2− 1
+

1− (−1)n+1

1− (−1)

ã
,

which reduces to 1
3 (2n − 2) when n is odd. This proves the claim.
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OC565. Given that sin(xy) = 1, find the least upper bound of sin(x) sin(y),
and show that this is never achieved.

Originally from the 2021 Science Atlantic undergraduate problem solving contest.

We received 4 correct solutions. We present the solution by UCLan Cyprus Prob-
lem Solving Group.

By continuity of cosx, given ε > 0, there is an n ∈ N such that cos( 1
n ) > 1 − ε.

Given this n, we find the largest odd natural number smaller than (4n + 1)π/2,
which leaves remainder 1 when divided by 4. Say 4k + 1 < (4n+ 1)π/2 6 4k + 5.
Then

0 6
4k + 5

4n+ 1
− π

2
<

4

4n+ 1
<

1

n
,

thus

sin

Å
4k + 5

4n+ 1

ã
= cos

Å
4k + 5

4n+ 1
− π

2

ã
> 1− ε .

Taking x =
(4n+ 1)π

2
and y =

4k + 5

4n+ 1
we have sin(xy) = sin

((
2k + 2 + 1

2

)
π
)

= 1

and

sin(x) sin(y) = sin

ÅÅ
2n+

1

2

ã
π

ã
sin

Å
4k + 5

4n+ 1

ã
= sin

Å
4k + 5

4n+ 1

ã
> 1− ε .

So the upper bound is indeed 1.

If the upper bound can be achieved, then there are odd integers r, s, t such that
x = rπ/2, y = sπ/2 and xy = tπ/2. But then π = 2t

rs , a contradiction as π is
irrational.

Copyright © Canadian Mathematical Society, 2022



342/ Two More Proofs of the Inequality −1 < cosA cosB cosC ≤
1

8

Two More Proofs of the Inequality
−1 < cosA cosB cosC ≤ 1

8

Abbas Galehpour Aghdam
Problem 1. Let A,B, and C denote the angles of a triangle ABC. Show that the
following inequality holds:

−1 < cosA cosB cosC ≤ 1

8
. (1)

In [2], Murty discussed this problem and presented four proofs for inequality. We
will also solve it by examining two different approaches.

The left-hand side of (1) follows immediately since the values of cosA, cosB and
cosC are always more than −1, then the product of cosines is also more than −1.

For the right-hand side of (1), there are three cases:

Case 1 ABC is a right triangle.

In this case, the product of the cosines of the three angles is zero since

cos 90◦ = 0. Clearly, zero is less than
1

8
, so the right-hand side of (1) is

valid.

Case 2 ABC is an obtuse triangle.

In any obtuse triangle, the product of the cosines is negative since one of the

angles is an obtuse angle. Clearly, every negative number is less than
1

8
.

Case 3 ABC is an acute triangle.

For this case, we present two solutions to the right-hand side of (1).

B C

A

D

F

E

H

Figure 1: Altitudes of ∆ABC are concurrent at orthocenter H of ∆DEF
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Method 1

Let AD,BE,CF be the altitudes of ∆ABC, concurrent at orthocenter H ·∆DEF
is the orthic triangle of ∆ABC and we denote its side lengths by EF = a′, DF =
b′, and DE = c′ (Figure 1).

As illustrated in Figure 2, circumscribe ∆ABC, let O be the center of the cir-
cumcircle of ∆ABC and its radius be R. We extend HD, HE, HF to meet the
circumcircle of ∆ABC at A′, B′, and C ′ respectively.

∆A′B′C ′ is named the expanded orthic of ∆ABC; both triangles have the same
circumcircle with center O and radius R.

B′

C′

A′

O

R

B C

A

D

F

E

H

Figure 2: circumscribe ∆ABC

To prove cosA cosB cosC ≤ 1

8
, we first show that:

area[∆A′B′C ′]

area[∆ABC]
= 8 cosA cosB cosC (2)

To show this, we need the following three theorems that have been proven by Bill
Pang in [1], that any one can refer to.

Theorem 1. The ltitudes of an acute triangle bisect the angles of its orthic tri-
angle. Thus (as in Figure 1), AD,BE and CF are the angle bisectors of ∆DEF .

Theorem 2. The expanded orthic and the orthic triangle are homothetic with
center of dilation H and factor of dilation = 2, thus:

area[∆A′B′C ′]

area[∆DEF ]
= 4
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Theorem 3. The areas of ∆A′B′C ′ and ∆ABC can be determined in terms of
a′, b′, c′ that are the side lengths of ∆DEF :

area[∆A′B′C ′] =
»

(a′ + b′ + c′)(a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′)

area[∆ABC] =
a′b′c′(a′ + b′ + c′)√

(a′ + b′ + c′)(a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′)

Note. Theorems 2 and 3 are valid in any triangle, but Theorem 1 is only valid in
acute triangles.

We also need the following four results that are given here as exercises for the
readers.

Exercise 1. In any acute triangle, the angles of the orthic triangle are the sup-
plements of twice the angles of the original triangle. Thus (as in Figure 1), we
have:

∠D = 180◦ − 2∠A, ∠E = 180◦ − 2∠B and ∠F = 180◦ − 2∠C.

Exercise 2. Let R and R′ denote the circumradii of the original triangle and its

orthic triangle respectively. Prove that R′ =
R

2
.

Exercise 3. In Figure 2, prove that:

area[∆DEF ] =
1

2
R2 sin 2A sin 2B sin 2C.

Exercise 4. In any triangle with side lengths a, b and c, the following inequality
is valid:

abc ≥ (a+ b− c)(a+ c− b)(b+ c− a)

Now, we are ready to show equality (2). With the help of Theorem 2 and Exercise
3, we can write:

area[∆A′B′C ′] = 4 area[∆DEF ] = 2R2 sin 2A sin 2B sin 2C (3)

Also, we have the following well-known relation:

area[∆ABC] = 2R2 sinA sinB sinC (4)

By dividing (3) by (4), we get:

area[∆A′B′C ′]

area[∆ABC]
=

2R2 sin 2A sin 2B sin 2C

2R2 sinA sinB sinC

=
(2 sinA cosA)(2 sinB cosB)(2 sinC cosC)

sinA sinB sinC
= 8 cosA cosB cosC.
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Now, we need only establish that: area[∆A′B′C ′] ≤ area[∆ABC]. For this, we
use Exercise 4. For a′, b′ and c′ (the side lengths of ∆DEF ), we can say:

a′b′c′ ≥ (a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′).

Multiplying by (a′ + b′ + c′) yields:

a′b′c′(a′ + b′ + c′) ≥ (a′ + b′ + c′)(a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′).

Clearly, (a′ + b′ + c′) is positive. Moreover, based on the well-known triangle
inequality, the other three terms on the right-hand side are also more than zero,
hence we can write:

a′b′c′(a′ + b′ + c′) ≥
(»

(a′ + b′ + c′)(a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′)
)2

.

Dividing both sides by
√

(a′ + b′ + c′)(a′ + b′ − c′)(a′ + c′ − b′)(b′ + c′ − a′) and
using Theorem (3), gives us the fact that area[∆A′B′C ′] ≤ area[∆ABC], so
8 cosA cosB cosC ≤ 1, or

cosA cosB cosC ≤ 1

8
.

Method 2

We first present an inequality and leave its proof as an exercise to the readers.

Exercise 5. In any triangle ABC with side lengths a, b and c, the following in-
equality holds:Å

b

c
+
c

b

ã
cosA+

(a
c

+
c

a

)
cosB +

Å
a

b
+
b

a

ã
cosC = 3 (5)

For any positive number n, we have n+
1

n
≥ 2, so we can write:

b

c
+
c

b
≥ 2; (6)

a

c
+
c

a
≥ 2; (7)

a

b
+
b

a
≥ 2; (8)

(6) × cosA+ (7) × cosB+ (8) × cosC yields:Å
b

c
+
c

b

ã
cosA+

(a
c

+
c

a

)
cosB +

Å
a

b
+
b

a

ã
cosC ≥ 2(cosA+ cosB + cosC).

(9)
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(5) and (9) give us:

(cosA+ cosB + cosC) ≤ 3

2
. (10)

Since ABC is an acute triangle, thus cosA, cosB, cosC are positive. The AM-GM
inequality gives us:

cosA+ cosB + cosC

3
≥ 3
√

cosA cosB cosC,

or:

(cosA+ cosB + cosC)3 ≥ 27 cosA cosB cosC. (11)

(10) and (11) yield:

27 cosA cosB cosC ≤
Å

3

2

ã3

=
27

8
,

or:

cosA cosB cosC ≤ 1

8
.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by August 15, 2022.

4751. Proposed by Michel Bataille.

Let m,n be integers such that 0 ≤ m ≤ n. Evaluate in closed form

n∑
k=0

(−1)k
Ç

2n− 2k

n− k

åÇ
2n−m− k

k

å
.

4752. Proposed by George Stoica.

Let
∞∑
n=1

xn =∞ for xn > 0, n = 1, 2, . . . Prove that
∞∑
n=1

x
1+ ε

n
n =∞ for any ε > 0.

4753. Proposed by Luu Dong.

Let ABCD be a quadrilateral for which AD is not parallel to BC. Fix a point
E on AB different from A,B, and let F be a variable point on the line CD.
Denote the projections of C and D on the line EF by M and N , respectively. If
P is the intersection of the lines through M perpendicular to AD and through N
perpendicular to BC, prove that the circumcenter of triangle MNP lies on a fixed
circle as F moves along CD.

4754. Proposed by Mihaela Berindeanu.

If triangle ABC has circumradius R =
√

2 and its angles satisfy

2 sinA+ 3 cosB cosC = 4,

determine its area.

4755. Proposed by Nguyen Tien Lam.

Let x, y, z be positive integers such that gcd(x, y, z) = 1 and

xy

z
+
yz

x
+
zx

y

is an integer. Prove that xyz is a perfect square.

Copyright © Canadian Mathematical Society, 2022

https://publications.cms.math.ca/cruxbox/


348/ Problems

4756. Proposed by Daniel Sitaru, modified by the Editorial Board.

Evaluate

lim
n→∞

1

nn+1

nn∑
k=2

logn k.

4757. Proposed by J. Chris Fisher.

Recall that the line PQ is antiparallel to BC with respect to ∠BAC if P ∈ AC,
Q ∈ AB, and ∠PQA = ∠BCA. (Equivalently, if ∆APQ is oppositely similar
to ∆ABC; equivalently, if the points B,C, P,Q are concyclic.) Given a triangle
ABC with points Ai ∈ BC, Bi ∈ CA, and Ci ∈ AB, i = 1, 2, arranged so that

B1C1, B2C2 are both antiparallel to BC with respect to ∠BAC;

C1A1, C2A2 are both antiparallel to CA with respect to ∠CBA; and

A1B2 is antiparallel to AB with respect to ∠ACB,

prove that A2B1 is antiparallel to AB (with respect to ∠ACB).

4758. Proposed by Florentin Visescu.

Show that

arctan
a

b+ c
+ arctan

b

c+ a
+ arctan

c

a+ b
≥ arctan

11

2
.

for all positive a, b, c.

4759. Proposed by Boris C̆olaković.

For all positive real numbers a, b, c, x, y, z, prove that

y + z

x
· b+ c

a
+
z + x

y
· c+ a

b
+
x+ y

z
· a+ b

c
≥ 8

Å
x

y + z
+

y

x+ z
+

z

x+ y

ã
.
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4760. Proposed by Goran Conar.

Let ai ∈
〈
0, 1

2

〉
, i ∈ {1, 2, . . . , n} be real numbers such that

∑n
i=1 ai = 1. Prove

that

n

…
n− 1

n+ 1
≤

n∑
i=1

 
1− ai
1 + ai

< (n+ 1)

…
n− 1

n+ 1
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 août 2022.

4751. Soumis par Michel Bataille.

Soit m et n des entiers vérifiant 0 ≤ m ≤ n. Évaluez, sous forme close, l’expression
suivante :

n∑
k=0

(−1)k
Ç

2n− 2k

n− k

åÇ
2n−m− k

k

å
.

4752. Soumis par George Stoica.

Soit
∞∑
n=1

xn =∞ où xn > 0 pour n = 1, 2, . . .. Montrez que
∞∑
n=1

x
1+ ε

n
n = ∞ pour

tout ε > 0.

4753. Soumis par Luu Dong.

Soit ABCD un quadrilatère pour lequel AD n’est pas parallèle à BC. Fixons un
point E sur AB distinct de A et B. Soit F un point variable sur la droite CD.
Désignons les projections de C et D sur la droit EF par M et N respectivement.
Si P désigne l’intersection de la droite perpendiculaire à AD passant par M avec
la droite perpendiculaire à BC passant par N , montrez que – lorsque F parcours
CD – le centre du cercle circonscrit au triangle MNP est situé sur un cercle fixe.
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4754. Soumis par Mihaela Berindeanu.

Soit ABC un triangle dont le cercle circonscrit a un rayon R =
√

2 et dont les
angles satisfont

2 sinA+ 3 cosB cosC = 4.

Trouvez l’aire de ce triangle.

4755. Soumis par Nguyen Tien Lam.

Soit x, y et z des entiers positifs vérifiant PGCD(x, y, z) = 1 et pour lesquels

xy

z
+
yz

x
+
zx

y

est un entier. Montrez que xyz est un carré parfait.

4756. Soumis par Daniel Sitaru, modifié par le comité de rédaction.

Évaluez

lim
n→∞

1

nn+1

nn∑
k=2

logn k.

4757. Soumis par J. Chris Fisher.

Rappelons que la droite PQ est dite anti-parallèle à BC par rapport à ∠BAC
si P ∈ AC, Q ∈ AB et ∠PQA = ∠BCA. (De façon équivalente, si ∆APQ est
inversement similaire à ∆ABC; ou encore, si les pointsB,C, P,Q sont cocycliques.)
Étant donné un triangle ABC et des points Ai ∈ BC, Bi ∈ CA et Ci ∈ AB,
i = 1, 2, disposés de sorte que

B1C1, B2C2 sont toutes deux anti-parallèles à BC par rapport à ∠BAC;

C1A1, C2A2 sont toutes deux anti-parallèles à CA par rapport à ∠CBA; et

A1B2 est anti-parallèle à AB par rapport à ∠ACB,

montrez que A2B1 est anti-parallèle à AB (par rapport à ∠ACB).
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4758. Soumis par Florentin Visescu.

Montrez que

arctan
a

b+ c
+ arctan

b

c+ a
+ arctan

c

a+ b
≥ arctan

11

2
.

pour tout nombres réels positifs a, b et c.

4759. Soumis par Boris C̆olaković.

Montrez que

y + z

x
· b+ c

a
+
z + x

y
· c+ a

b
+
x+ y

z
· a+ b

c
≥ 8

Å
x

y + z
+

y

x+ z
+

z

x+ y

ã
.

pour tout nombres réels positifs a, b, c, x, y et z.

4760. Soumis par Goran Conar.

Soit ai ∈
〈
0, 1

2

〉
, i ∈ {1, 2, . . . , n} des nombres réels vérifiant

∑n
i=1 ai = 1. Montrez

que

n

…
n− 1

n+ 1
≤

n∑
i=1

 
1− ai
1 + ai

< (n+ 1)

…
n− 1

n+ 1
.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 48(6), p. 41–44.

4701. Proposed by Michel Bataille.

Let AD,BE,CF be the internal angle bisectors of ∆ABC (with D on BC, E on
CA, F on AB). Let the perpendicular to BC through D intersect the perpendic-
ular bisector of AD at A′ and let B′, C ′ be similarly constructed. Prove that the
lines AA′, BB′, CC ′ are concurrent and that

AA′ ·BB′ · CC ′ ≤
Å

3R

4

ã3

,

where R is the circumradius of ∆ABC.

There were 5 solutions and 1 incomplete submission. We present two solutions.

Solution 1, by the proposer.

Let O and R be the centre and radius of the circumcircle of ABC. Suppose that
AD produced meets the circumcircle again at U . Since BU and CU subtend equal
angles at A, BU = CU and OU right bisects BC. Hence DA′‖UO. Since triangles
ADA′ and AUO are isosceles and AU is a transversal of DA′ and UO,

∠DAA′ = ∠ADA′ = ∠AUO = ∠UAO = ∠DAO.

Thus O lies on AA′. Similarly, O lies on BB′ and CC ′. (The triangles ADA′ and
AUO are related by a homothey with centre A.)

Since ∠AUB = ∠ACB = ∠ACD and ∠BAU = ∠DAC, then triangles AUB and
ACD are similar. Hence

AU : b = AU : AC = AB : AD = c : AD

and AU ·AD = bc.

Triangles DAA′ and UAO are similar, so AA′ : R = AA′ : AO = AD : AU . There-
fore AA′ = R(AD2/bc). Likewise BB′ = R(BE2/ac) and CC ′ = R(CF 2/ab).

Applying the Law of Cosines to triangles ABD and ACD, using BD = ac(b+c)−1,
CD = ab(b+ c)−1 and eliminating the cosines of the angles at D, we find that

AD2 =
bc(b+ c+ a)(b+ c− a)

(b+ c)2
=

4bcs(s− a)

(b+ c)2
≤ s(s− a).
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Also BE2 ≤ s(s− b) and CF 2 ≤ s(s− c). Since abc = 4R
√
s(s− a)(s− b)(s− c),

AA′ ·BB′ · CC ′ = R3

Å
AD ·BE · CF

abc

ã2

≤ Rs2

16
.

From the concavity of the sine function,

2s = a+ b+ c = 2R(sinA+ sinB + sinC) ≤ 6R sin(A+B+C
3 ) = 3

√
3R.

Therefore s2 ≤ 27R2/4 and AA′ · BB′ · CC ′ ≤ 27R3/64, as desired. Equality
occurs if and only if the triangle is equilateral.

Solution 2, by UCLan Cyprus Problem Solving Group.

Let α, β, γ be the angles at A, B, C. Then ∠ADC = (α/2) + β and

∠BAA′ = ∠BAD + ∠DAA′ = (α/2) + ∠ADA′

= (α/2) + ∠ADC − 90◦ = α+ β − 90◦ = 90◦ − γ.

On the other hand, ∠AOB = 2γ and ∠BAO = ∠ABO = 90◦ − γ. Therefore
∠BAA′ = ∠BAO and so O lies on the line AA′. Similarly, O lies on BB′ and
CC ′.

We have that

AA′ =
AD

2 cos∠ADA′
=

AD

2 sin∠ADB
=

AD2

2c sinβ

=
R ·AD2

bc
= R

Å
1− a2

(b+ c)2

ã2

,

where we have used the Law of Sines on triangle ADB to replace sin∠ADB and
the fact that b = 2R sinβ. There are similar expressions for BB′ and CC ′.

Let x = a/(b+ c), y = b/(c+ a), z = c/(a+ b). Since

6 + 2(x+ y + z) = 2(a+ b+ c)

Å
1

b+ c
+

1

c+ a
+

1

a+ b

ã
= ((b+ c) + (c+ a) + (a+ b))

Å
1

b+ c
+

1

c+ a
+

1

a+ b

ã
≥ 9,

x+ y + z ≥ 3/2 and

x2 + y2 + z2 ≥ 1
3 (x+ y + z)2 ≥ 3

4 .

Finally, using the arithmetic-geometric means inequality, we obtain that

AA′ ·BB′ · CC ′ = R3(1− x2)(1− y2)(1− z2) ≤ R3

33
[3− (x2 + y2 + z2)]3

≤ R3

33

Å
9

4

ã3

=

Å
3R

4

ã3

.
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Equality holds if and only if the triangle is equilateral.

Comments by the editor. If AA′ is produced to meet BC at A′′, BB′ to meet AC
at B′′ and CC ′ to meet AB at C ′′, Walther Janous used the trigonometric form
of the converse of Ceva’s Theorem to show that AA′′, BB′′ and CC ′′ met at a
common point. Marie Nicole Gras and he, independently, obtained the equation

AA′ ·BB′ · CC ′ = R3

Å
4sr

s2 + 2Rr + r2

ã2

.

Some solutions involved a significant amount of trigonometric manipulation. For
example, C.R. Pranesachar started with AD = (2bc cos α2 )/(b+ c), whereupon

AA′ =
AD

2 cos(β − γ)/2
=

4Rbc cos2 α/2

(b+ c)2
.

Along with similar expressions for BB′ and CC ′, we are led to

AA′ ·BB′ · CC ′ =
64R3a2b2c2(cos α2 cos β2 cos γ2 )2

(b+ c)2(c+ a)2(a+ b)2
.

The cosine product is dominated by 3
√

3/8 and we have 4ab ≤ (a + b)2 and the
like to obtain the desired upper bound.

4702. Proposed by S. Chandrasekhar.

Let p be a prime which is congruent to 3 (mod 4). Let S denote the set of square
elements in the field of integers modulo p. Then show that∏

a < b
a, b ∈ S

(a+ b) = ±1 (mod p).

We received 8 submissions and 6 of them were complete and correct. We present
two solutions. The first solution is based on elementary number theory, and the
second solution requires some basic knowledge of finite fields.

First, observe that it suffices to show that

P :=
∏
a6=b
a,b∈S

(a+ b) ≡ 1 (mod p) .

Solution 1, by the majority of solvers, slightly modified by the editor.

Let S∗ = S \ {0}. Since p ≡ 3 (mod 4) and (−1)(p−1)/2 ≡ −1 (mod p), we have
−1 /∈ S. It follows that for a 6= 0, we have a ∈ S if and only if −a /∈ S.

For a ∈ S, we define

Pa :=
∏

b∈S\{a}

(a+ b) .
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Note that if a ∈ S∗, then as b runs over S \ {a}, ba−1 also runs over S \ {1}. Thus
if a ∈ S∗, then

Pa =
∏

b∈S\{a}

(a+ b) ≡ a(p−1)/2
∏

b∈S\{a}

(1 + ba−1) ≡
∏

c∈S\{1}

(1 + c) (mod p) .

This shows that Pa ≡ P1 (mod p) for each a ∈ S∗.
To compute P0, we apply Wilson’s theorem to obtain

−1 ≡ (p− 1)! ≡
∏
a∈S∗

a
∏
a∈S∗

(−a) ≡ (−1)(p−1)/2P 2
0 ≡ −P 2

0 .

It follows that P0 ≡ ±1 (mod p). However, since P0 =
∏
a∈S∗ a ∈ S, we must

have P0 ≡ 1 (mod p).

To compute P1, recall that we have the polynomial identity∏
a/∈S

(x− a) ≡ x(p−1)/2 + 1 (mod p) .

It follows that ∏
a∈S∗

(x+ a) ≡
∏
a/∈S

(x− a) ≡ x(p−1)/2 + 1 (mod p) .

In particular,

2P1 ≡
∏
a∈S

(1 + a) ≡ 1(p−1)/2 + 1 ≡ 2 (mod p) ,

and thus P1 ≡ 1 (mod p). We conclude that

P ≡ P0P
(p−1)/2
1 ≡ 1 (mod p) .

Solution 2, by Marie-Nicole Gras, slightly modified by the editor.

Let Fp be the field with p elements, and Fp2 be the field with p2 elements. Since
p ≡ 3 (mod 4), −1 is not a square in F∗p. Thus, x2 +1 is an irreducible polynomial
over Fp and Fp[x]/(x2 + 1) ∼= Fp2 . Let i ∈ Fp2 such that i2 = −1; then we
can identify Fp × Fp with Fp2 by identifying (u, v) with u + iv, where u, v ∈ Fp.
Consider the norm map N : F∗p2 → F∗p with respect to this quadratic extension

Fp2/Fp:

N(u+ iv) = u2 + v2, ∀(u, v) 6= (0, 0).

Note that N is a homomorphism of multiplicative groups and N is surjective. It

follows that ker(N) = p2−1
p−1 = p + 1. Thus, for each w ∈ F∗p, there are exactly

p + 1 solutions to the equation u2 + v2 = N(u + iv) = w, where u, v ∈ Fp such
that (u, v) 6= (0, 0).
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If p ≡ 7 (mod 8), then 2 is a square in F∗p. If w is a square in F∗p, then w = 2u2

for some u ∈ Fp, so the number of solutions to a+ b = w, where a, b ∈ S such that
a 6= b is

p+ 1− 8

4
+ 2 =

p+ 1

4
.

(Each solution w = a+ b corresponds to 4 solutions to w = u2 + v2 in the generic
case, but we need to consider the special case that a = b or ab = 0.) If w is a
non-square in F∗p, then the number of solutions to a+ b = w, where a, b ∈ S such

that a 6= b is also p+1
4 . Consequently, Wilson’s theorem implies that

P =
∏
a,b∈S
a 6=b

(a+ b) =
∏
w∈F∗p

w(p+1)/4 = [(p− 1)!](p+1)/4 = (−1)(p+1)/4 = 1.

If p ≡ 3 (mod 8), then 2 is not a square in F∗p. We can perform a similar compu-
tation to show that for any w ∈ F∗p, the number of solutions to a+ b = w, where

a, b ∈ S such that a 6= b is p+1
4 + 1 if w is a square, and is p+1

4 − 1 if w is a
non-square. We can then use a similar argument to get the desired conclusion.

4703. Proposed by Jiahao Chen.

Given a triangle ABC with circumcenter O, denote by DEF the triangle formed
by the tangents to the circumcircle at A,B,C with A on EF , B on FD, and
C on DE. If D′, E′, F ′ are the reflections of D,E, F in the lines BC,CA,AB,
respectively, prove that D′E′||OB if and only if D′F ′||OC.

All 9 submissions that we received were correct; we feature a composite of the
solutions from Ivko Dimitrić, who used complex numbers, and Marie-Nicole Gras,
who used Cartesian coordinates.
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We assume that ∆ABC is inscribed in the unit circle centered at the origin of the
complex plane; points are denoted by capital letters while the complex numbers
that represent them are named by the corresponding lower-case letters. We further
assume that the real axis is the perpendicular bisector of the chord BC, so that
b̄ = c = 1

b and, of course, ā = 1
a . Line DF through B consists of points Z for

which BZ ⊥ OB, i.e.Å
z − b
b

ã
+
z − b
b

= 0 ⇐⇒ z̄

b̄
− 1 +

z

b
− 1 = 0.

Then an equation of line DF and similarly obtained equations of ED and FE
(recalling that c = b̄) are

bz̄ + b̄ z = 2, b̄ z̄ + b z = 2, a z̄ + ā z = 2 (1)

Solving the systems of three pairs of equations from this set of three, we get the
intersection points D,E, F of the tangents as follows:

d =
2bb̄

b+ b̄
, e =

2ab̄

b̄+ a
, f =

2ab

a+ b
. (2)

Additionally, we compute

d̄ = d =
2

b+ b̄
, ē =

2

b̄+ a
, f̄ =

2

a+ b
. (3)

Since triangles DCB,FBA,EAC are isosceles, the segments such as DD′ and
BC intersect at the common midpoints, so d + d′ = b + b̄, and similarly e + e′ =
b̄+ a, f + f ′ = a+ b; thus,

d′ = b+ b̄− d e′ = b̄+ a− e, f ′ = a+ b− f. (4)

The relation D′E′ ‖ OB means (by virtue of (4)) that

e′ − d′
b

=
a+ d− e

b
− 1 is real. (5)

This is equivalent to
(
a+d−e

b

)
= a+d−e

b ,

⇐⇒ b

a
+ b

Å
2

b+ b̄
− 2

b̄+ a

ã
=
a

b
+

1

b

Å
2bb̄

b+ b̄
− 2ab̄

b̄+ a

ã
⇐⇒ 2(b2 + b̄2)(a− b)

b(b+ b̄)(b̄+ a)
=

(a+ b)(a− b)
ab

⇐⇒ (a+ b)(b+ b̄)(b̄+ a) = 2a(b2 + b̄2)

⇐⇒ a2(b+ b̄) − a(b− b̄)2 + bb̄(b+ b̄) = 0. (6)

To conclude, we note that the relation D′F ′ ‖ OC means that

f ′ − d′
b̄

=
a+ d− f

b̄
− 1 is real,
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and that criterion can be obtained from (5) by interchanging the roles of b and b̄.
Because (5) is equivalent to an equation, namely (6), that is symmetric in b and
b̄, we conclude that D′E′ ‖ OB if and only if D′F ′ ‖ OC, as desired.

Further Remarks. It is interesting to note that equation (6) provides information
concerning the existence of triangles for which D′E′ ‖ OB. Denoting the argument
of b by β (which we have assumed to equal 1

2∠COB), we have 2 cosβ = b+ b̄ and
2i sinβ = b− b̄, whence equation (6) implies that a is a zero of the equation

x2 +
2 sin2 β

cosβ
x+ 1 = 0.

Because this is a monic polynomial with real coefficients, a is a zero if and only if
ā is also, and (denoting the argument of a by α so that cosα = a+ā

2 ) we conclude
that D′E′ ‖ OB if and only if

cosα = − sin2 β

cosβ
.

If follows that our triangle exists for any b for which −1 ≤ sin2 β
cos β ≤ 1.

Editor’s comments. As part of his solution, Oliver Geupel provided an explicit
example of our triangle: With the notation of the featured solution, take ABC to
be the isosceles triangle with a = 1 whose altitude is the golden section, namely
1+
√

5
2 ; that is, b satisfies 2 cosβ = b + b̄ = 1 −

√
5. C.R. Pranesachar submitted

the only coordinate free solution; he observed that the parallelism of D′E′ and
OB in a triangle with angles A,B, and C is equivalent to three further equivalent
statements:

• cosA sinB sinC = 1
2 ;

• cos 2A− cos 2B − cos 2C = 1;

• tanA = ∆
R2 , where ∆ and R are the area and circumradius of ∆ABC.

4704. Proposed by Daniel Sitaru.

For a, b, c, d ∈ [0, 1), prove that

1

1− a6
+

1

1− b6 +
1

1− c6 +
1

1− d2
≥ 2

1− (abc)2
+

2

1− abcd .

We received 13 submissions, all of which were correct. We present two solutions.

Solution 1, by Mohamed Amine Ben Ajiba, enhanced slightly by the editor.

By the AM-GM inequality, we have for all x, y ∈ [0, 1) that

1

1− x2
+

1

1− y2
≥ 2√

(1− x2)(1 + y2)
=

2√
(1− xy)2 − (x− y)2

≥ 2

1− xy
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with equality when x = y. Using this inequality, we have

1

1− a6
+

1

1− b6 ≥
2

1− (ab)3
(1)

1

1− c6 +
1

1− (abc)2
≥ 2

1− abc4 (2)

1

1− d2
+

1

1− (abc)2
≥ 2

1− abcd (3)

2

Å
1

1− (ab)3
+

1

1− abc4
ã
≥ 4

1− (abc)2
(4)

Adding (1)-(4), we get:

1

1− a6
+

1

1− b6 +
1

1− c6 +
1

1− d6
+

2

1− (abc)2
+

2

1− (ab)3
+

2

1− abc4

≥ 2

1− (ab)3
+

2

1− abc4 +
2

1− abcd +
4

1− (abc)2
,

which simplifies to

1

1− a6
+

1

1− b6 +
1

1− c6 +
1

1− d6
≥ 2

1− (abc)2
+

2

1− abcd ,

completing the proof. Equality holds if and only if a = b = c = λ, d = λ3 for some
λ ∈ [0, 1).

Solution 2, by Marian Dincă.

Using the AM-GM inequality repeatedly, we obtain

1

1− a6
+

1

1− b6 +
1

1− c6 ≥
3

…
1

1− a6
· 1

1− b6 ·
1

1− c6 =
3

3
√

(1− a6)(1− b6)(1− c6)
(5)

and

3

»
(1− a6)(1− b6)(1− c6) ≤ (1− a6) + (1− b6) + (1− c6)

3
= 1− a6 + b6 + c6

3

≤ 1− 3
√
a6b6c6 = 1− (abc)2. (6)

From (5) and (6), we have

1

1− a6
+

1

1− b6 +
1

1− c6 ≥
3

1− (abc)2
=

2

1− (abc)2
+

1

1− (abc)2
. (7)
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Next,

1

1− (abc)2
+

1

1− d2
≥ 2

 
1

1− (abc)2
· 1

1− d2

=
2√

1− (abc)2(1− d2)
≥ 2

1−(abc)2+1−d2
2

=
2

1− (abc)2+d2

2

≥ 2

1−
√

(abc)2d2
=

2

1− abcd . (8)

Finally, from (7) and (8), the conclusion follows.

4705. Proposed by Nguyen Viet Hung.

Find the following limit

lim
n→∞

1
3
√
n2

n∑
k=1

1
3
√
k
.

We received 33 submissions, of which 30 were correct and complete. We present
two solutions.

Solution 1, by the UCLan Cyprus Problem Solving Group.

Since f(x) = 1
3
√
x

is strictly decreasing in (0, 1], then for each k = 1, 2, . . . , n − 1

we have
1

n
f

Å
k + 1

n

ã
<

∫ k+1
n

k
n

f(x) dx <
1

n
f

Å
k

n

ã
.

Thus
1

3
√
n2

1
3
√
k + 1

<
3

2

ÇÅ
k + 1

n

ã2/3

−
Å
k

n

ã2/3
å
<

1
3
√
n2

1
3
√
k
.

Summing from k = 1 to n − 1 and noting that the middle sum is telescopic, we
have:

1
3
√
n2

n∑
k=2

1
3
√
k
<

3

2

Ç
1−
Å

1

n

ã2/3
å
<

1
3
√
n2

n−1∑
k=1

1
3
√
k
.

Hence,

3

2

Ç
1−
Å

1

n

ã2/3
å

+
1

n
<

1
3
√
n2

n∑
k=1

1
3
√
k
<

3

2

Ç
1−
Å

1

n

ã2/3
å

+
1

3
√
n2

.

Thus,

lim
n→∞

1
3
√
n2

n∑
k=1

1
3
√
k

=
3

2
.
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Solution 2, by Marie-Nicole Gras.

By the integral test, if f is a function defined on [1,∞), continuous, monotone
decreasing in this interval, then for all integers n ≥ 1,∫ n+1

1

f(x)dx ≤
n∑
k=1

f(k) ≤ f(1) +

∫ n

1

f(x)dx.

We apply this test with f(x) = x
−1
3 ; since∫

x
−1
3 dx =

x
2
3

2
3

=
3

2
x

2
3 ,

we obtain
3

2

(
(n+ 1)

2
3 − 1

)
≤

n∑
k=1

1
3
√
k
≤ 1 +

3

2

(
n

2
3 − 1

)
.

Since

lim
n→∞

Å
n+ 1

n

ã 2
3

= 1,

we deduce

lim
n→∞

1
3
√
n2

n∑
k=1

1
3
√
k

=
3

2
·

Editor’s comment. Using Bernoulli’s inequality, Vivek Mehra generalized the result
by proving that for −1 < t < 0,

lim
n→∞

1

n1+t

n∑
k=1

kt =
1

1 + t
.

4706. Proposed by Thanos Kalogerakis.

In the figure below, find the midpoint of segment PR using the straightedge alone
and prove that your construction works.
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We received 6 correct submissions. We present the solutions provided by UCLan
Cyprus Problem Solving Group.

Let X be the other point of intersection of AP with (c1), Y the other point of
intersection of AR with (c2), Z the other point of intersection of BP with (c1),
and W the other point of intersection of BR with (c2).

Let U be the point of intersection of PY andRX, and V be the point of intersection
of PW and RZ. We claim that UV intersects PR at its midpoint.

It is enough to show that PURV is a parallelogram. We have

∠V PA = ∠WPA = ∠WBA = ∠RBA = ∠RXA.

So V P is parallel to RU . Similarly V R is parallel to PU so the result follows.

Note: On the triangle BZW , the points P and R are internal points of the seg-
ments BZ and BW . Then PW and RZ must have a point of intersection. I.e. V
is well-defined. Similarly U is also well-defined.

4707. Proposed by Michel Bataille.

Let n be an integer with n ≥ 2. Prove that

n−1∑
k=1

csc2

Å
kπ

n

ã
=
n2 − 1

3
and

n−1∑
k=1

csc4

Å
kπ

n

ã
=
n4 + 10n2 − 11

45
.

There were 14 correct solutions submitted by 13 solvers. Half of the solutions used
the method of the solution below. The remainder relied on the use of analysis or
recourse to more obscure results from the trigonometric literature.
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The sums are readily checked for n = 2, 3, 4. Let n ≥ 5. Then cot(kπ/n) (1 ≤ k ≤
n− 1) are the roots of the polynomial

f(z) =

Ç
n

1

å
zn−1 −

Ç
n

3

å
zn−3 +

Ç
n

5

å
zn−5 + · · · .

One way to see this is to note thatÅ
cot θ + i

cot θ − i

ãn
=

Ç
eiθ

e−iθ

ån
= e2niθ,

where the right side takes the value 1 for 0 < θ < π when θ = kπ/n (1 ≤ k ≤ n−1).
Thus the cotangents are the roots of the polynomial (z + i)n − (z − i)n = 2if(z).

Alternatively, by de Moivre’s theorem,

sinnθ =

bn/2c∑
k=0

(−1)k
Ç

n

2k + 1

å
cosn−2k−1 θ sin2k+1 θ,

whence

sinnθ

sinn θ
=

bn/2c∑
k=0

(−1)k
Ç

n

2k + 1

å
cotn−2k−1 θ.

For 0 < θ < π, the left side vanishes if and only if θ = kπ/n and we again obtain
the same polynomial with the cotangent roots.

When 1 ≤ k ≤ 4, the symmetric functions of degree k of the roots are given by

σ1 = σ3 = 0, σ2 =
−(n− 1)(n− 2)

6
, σ4 =

(n− 1)(n− 2)(n− 3)(n− 4)

120
.

The sum pk of the kth powers of the roots are given by

p1 = 0, p2 = σ2
1 − 2σ2 =

(n− 1)(n− 2)

3
, p3 = σ1p2 − σ2p1 + 3σ3 = 0,

p4 = σ1p3 − σ2p2 + σ3p1 − 4σ4 =
(n− 1)(n− 2)(n2 + 3n− 13)

45

=
n4 − 20n2 + 45n− 26

45
.

Since csc2 θ = 1 + cot2 θ and csc4 θ = 1 + 2 cot2 θ + cot4 θ,

n−1∑
k=1

csc2

Å
kπ

n

ã
= (n− 1) +

(n− 1)(n− 2)

3
=
n2 − 1

3
,

Copyright © Canadian Mathematical Society, 2022



364/ Solutions

and

n−1∑
k=1

csc4

Å
kπ

n

ã
= (n− 1) +

2(n− 1)(n− 2)

3
+

(n− 1)(n− 2)(n2 + 3n− 13)

45

=
n4 + 10n2 − 11

45
.

Comment from the editor. Paolo Perfetti pursued a strategy that was straightfor-
ward conceptually but forbidding computationally. With zk = exp(2kπi/n), he
derived

∑n−1
k=1 csc2(kπ/n) = 4A− 4B, where

A =
n−1∑
k=1

(1− zk)−1, B =
n−1∑
k=1

(1− zk)−2.

Since
n−1∑
k=1

1

z − zk
=
P ′(z)

P (z)
− 1

z − z0
,

where P (z) = zn − 1 =
∏n−1
k=0(z − zk), the sum A can be found, with the aid of

l’Hôpital’s Rule, to be 1
2 (n− 1). Since

n−1∑
k=1

(z − zk)−2 = −
(
n−1∑
k=1

(z − zk)−1

)′
,

a similar process leads to B = −(n2/12) + (n/2)− (5/12).

Note that the sum
∑n−1
k=1 csc4(kπ/n) can be expressed as a linear combination of∑

(1 − zk)−2,
∑

(1 − zk)−3 and
∑

(1 − zk)−4 and can be determined in a similar
way invoking higher order derivatives of

∑
(z − zk)−1.

4708. Proposed by Conar Goran.

Let α, β, γ be angles of an arbitrary triangle. Prove that the following inequality
holds

cotα+ cotβ + cot γ

3
≤ cot

Ç
3

1
α + 1

β + 1
γ

å
.

When does the equality occur?

We received 6 solutions, all of which were correct. We present the solution by
Mohamed Amine Ben Ajiba.

Let s = 1
α + 1

β + 1
γ , and define f(x) = x cotx for x ∈ (0, π). Using cosx ≤ 1 and

sinx ≤ x, we have

f ′(x) = (cosx sinx− x) csc2 x ≤ (sinx− x) csc2 x ≤ 0
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for all x ∈ (0, π). Thus f is decreasing on (0, π) and f(x) ≤ limx→0+ f(x) = 1 for
all x ∈ (0, π). Also

f ′′(x) = −2 (1− f(x)) csc2 x ≤ 0

for all x ∈ (0, π), so f is concave on (0, π), and by Jensen’s inequality, since
1
sα + 1

sβ + 1
sγ = 1, we have

1

sα
· f(α) +

1

sβ
· f(β) +

1

sγ
· f(γ) ≤ f

Å
3

s

ã
.

This is equivalent to

cotα+ cotβ + cot γ

3
≤ cot

Ç
3

1
α + 1

β + 1
γ

å
,

as desired. Equality holds if and only if α = β = γ, i.e, the triangle is equilateral.

4709. Proposed by Ion Patrascu.

Let ABC be an acute triangle and O the center of its circumcircle. We denote
by D,E and F the intersections of the lines AO and BC, BO and CA, CO and
AB, respectively. If BD cosA = CE cosB = AF cosC, prove that ABC is an
equilateral triangle.

All but one of the fourteen submissions were correct; we feature a typical solution
and a generalization.

Solution 1, by Mohamed Amine Ben Ajiba.

We denote by A,B,C the angles ∠BAC,∠CBA,∠ACB, respectively. The Law
of Sines applied to triangle ABD gives us BD = AB sin∠BAD

sin∠ADB , where

∠BAD =
π − ∠AOB

2
=
π

2
−C and ∠ADB = π−B−∠BAD =

π

2
−(B−C).

Thus,

BD = AB
cosC

cos(B − C)
.

Similarly, we have

CE = BC
cosA

cos(C −A)
.

It follows that

BD

CE
=
AB

BC
· cosC cos(C −A)

cosA cos(B − C)
=

sinC

sinA
· cosC cos(C −A)

cosA cos(B − C)
.
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But we are given that BD
CE = cosB

cosA ; consequently,

cosB

cosA
=

sin 2C cos(C −A)

2 sinA cosA cos(B − C)
⇔ sin 2C cos(C −A)

2 sinA(cosB) cos(B − C)
= 1

⇔ sin 2C[(2 sinB) cos(C −A)]

(sin 2B)[2 sinA cos(B − C)]
= 1

⇔ sin 2C[sin(B + C −A) + sin(B − C +A)]

sin 2B[sin(A+B − C) + sin(A−B + C)]
= 1

⇔ sin 2C(sin 2A+ sin 2C)

sin 2B(sin 2C + sin 2B)
= 1 (1)

Without loss of generality we assume that the triangle has been labeled so that B
is less than or equal to the other two angles; let

x = sin 2A, y = sin 2B, z = sin 2C.

Note that x, z ≥ y > 0. The necessary and sufficient condition in (1) now reads
BD
CE = cosB

cosA if and only if z(x+z)
y(z+y) = 1, or

z2 − y2 = z(y − x).

But because y = min{x, y, z}, we must have z2 − y2 ≥ z(y − x). We conclude,
therefore, that x = y = z, which means that sin 2A = sin 2B = sin 2C. Of course,
sin 2A = sin 2B implies only that A = B or A = π

2 −B; however, the latter is ruled
out because that would imply that C be a right angle, contrary to our assumption
that all angles are acute. Thus, we are left with A = B; similarly, we have A = C,
and we conclude that ∆ABC is equilateral, as desired.

Solution 2, by Vivek Mehra.

If R is the circumradius of the given triangle, the lengths of the perpendiculars from
O to its sides are R cosA,R cosB, and R cosC. Consequently, from BD cosA =
CE cosB = AF cosC follows [OBD] = [OCE] = [OAF ] (where square brackets
denote areas). This suggests the following generalization:

Theorem. For an arbitrary point P in the interior of ∆ABC we denote by D,E,
and F the intersections of the lines AP and BC, BP and CA, CP and AB,
respectively. If [PBD] = [PCE] = [PAF ] then P is the centroid of ∆ABC.

Note that the desired result follows immediately from the theorem: the centroid of
a triangle coincides with the circumcenter if and only if the triangle is equilateral.

Proof of the theorem. We use Barycentric coordinates. Set

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), and P = (p, q, r)

with p, q, r > 0 and p+ q + r = 1. We thus have

D =

Å
0,

q

q + r
,

r

q + r

ã
, E =

Å
p

p+ r
, 0,

r

p+ r

ã
, F =

Å
p

p+ q
,

q

p+ q
, 0

ã
.
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Our goal is to prove that p = q = r, which makes P =
(

1
3 ,

1
3 ,

1
3

)
the centroid. To

that end we compute

[PBD]

[ABC]
=

∣∣∣∣∣∣
p 0 0
q 1 q

q+r

r 0 r
q+r

∣∣∣∣∣∣ =
pr

q + r
;

similarly,
[PCE]

[ABC]
=

pq

p+ r
and

[PAF ]

[ABC]
=

qr

p+ q
.

Therefore, from [PBD] = [PCE] = [PAF ] and p+ q + r = 1 we have

q(1− p) = r(1− q) = p(1− r).

Suppose that P had been chosen so that p ≥ q, r; then either p > q or 1−r > 1−p
would contradict the equation p(1−r) = q(1−p), so we would necessarily conclude
that p = q = r. We likewise find a contradiction with either q or r assumed
greatest. We conclude that p = q = r, as claimed.

4710?. Proposed by Omar Sonebi, modified by the Editorial Board.

Show that there exist 2021 consecutive natural numbers none of which is the sum
of a perfect square and a perfect cube.

We received 8 solutions, out of which we present the one by Oliver Geupel.

We prove the following generalisation: For every natural number n, there exist n
consecutive natural numbers in the set A =

{
1, 2, 3, . . . , 64n6

}
none of which is

the sum of a perfect square and a perfect cube. In fact, the perfect squares in A
are the 8n3 numbers

12, 22, 32, . . . ,
(
8n3
)2
,

whereas the perfect cubes in A are the 4n2 numbers

13, 23, 33, . . . ,
(
4n2
)3
.

Hence, the subset B of members of A that can be written as the sum of a perfect
square and a perfect cube has not more than 8n3 · 4n2 = 32n5 elements.

Decompose the set A into 64n5 disjoint intervals of length n. By the Pigeonhole
Principle, one of the intervals is disjoint to B. Hence the result.
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