
Official Solutions for CMO 2022

P1. Assume that real numbers a and b satisfy

ab+
√
ab+ 1 +

√
a2 + b ·

√
b2 + a = 0.

Find, with proof, the value of

a
√
b2 + a+ b

√
a2 + b.

Solution. Let us rewrite the given equation as follows:

ab+
√
a2 + b

√
b2 + a = −

√
ab+ 1.

Squaring this gives us

a2b2 + 2ab
√
a2 + b

√
b2 + a+ (a2 + b)(b2 + a) = ab+ 1

(a2b2 + a3) + 2ab
√
a2 + b

√
b2 + a+ (a2b2 + b3) = 1(

a
√
b2 + a+ b

√
a2 + b

)2

= 1

a
√
b2 + a+ b

√
a2 + b = ±1.

Next, we show that a
√
b2 + a+ b

√
a2 + b > 0. Note that

ab = −
√
ab+ 1−

√
a2 + b ·

√
b2 + a < 0,

so a and b have opposite signs. Without loss of generality, we may assume a > 0 > b. Then

rewrite

a
√
b2 + a+ b

√
a2 + b = a(

√
b2 + a+ b)− b(a−

√
a2 + b)

and, since
√
b2 + a + b and a −

√
a2 + b are both positive, the expression above is positive.

Therefore,

a
√
b2 + a+ b

√
a2 + b = 1,

and the proof is finished.

Copyright © 2022, Canadian Mathematical Society. All rights reserved. Page 1



P2. Let d(k) denote the number of positive integer divisors of k. For example, d(6) = 4 since

6 has 4 positive divisors, namely, 1, 2, 3, and 6. Prove that for all positive integers n,

d(1) + d(3) + d(5) + · · ·+ d(2n− 1) ≤ d(2) + d(4) + d(6) + · · ·+ d(2n).

Solution. For any integer k and set of integers S, let fS(k) be the number of multiples of

k in S. We can count the number of pairs (k, s) with k ∈ N dividing s ∈ S in two different

ways, as follows:

• For each s ∈ S, there are d(s) pairs that include s, one for each divisor of s.

• For each k ∈ N, there are fk(S) pairs that include k, one for each multiple of k.

Therefore, ∑
s∈S

d(s) =
∑
k∈N

fS(k).

Let

O = {1, 3, 5, . . . , 2n− 1} and E = {2, 4, 6, . . . , 2n}
be the set of odd and, respectively, the set of even integers between 1 and 2n. It suffices to

show that ∑
k∈N

fO(k) ≤
∑
k∈N

fE(k).

Since the elements of O only have odd divisors,∑
k∈N

fO(k) =
∑
k odd

fO(k).

For any odd k, consider the multiples of k between 1 and 2n. They form a sequence

k, 2k, 3k, . . . ,

⌊
2n

k

⌋
k

alternating between odd and even terms. There are either an equal number of odd and even

terms, or there is one more odd term than even terms. Therefore, we have the inequality

fO(k) ≤ fE(k) + 1

for all odd k. Combining this with the previous observations gives us the desired inequality:∑
k∈N

fO(k) =
∑
k odd

fO(k)

≤
∑
k odd

(fE(k) + 1)

=
∑
k odd

fE(k) + n

=
∑
k odd

fE(k) + fE(2)

≤
∑
k∈N

fE(k).
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P3: Let n ≥ 2 be an integer. Initially, the number 1 is written n times on a board. Every

minute, Vishal picks two numbers written on the board, say a and b, erases them, and writes

either a + b or min{a2, b2}. After n − 1 minutes there is one number left on the board. Let

the largest possible value for this final number be f(n). Prove that

2n/3 < f(n) ≤ 3n/3.

Solution. Clearly f(n) is a strictly increasing function, as we can form f(n− 1) with n− 1

ones, and add the final one. However, we can do better; assume Vishal generates f(n) on the

board. After n− 2 minutes, there are two numbers left, say they were formed by x ones and

y ones, where x + y = n. Clearly the numbers are at most f(x), f(y) (and can be made to

be equal to f(x), f(y)), and therefore we obtain

f(n) = max
x+y=n, 1≤x≤y≤n−1

(
max

(
f(x) + f(y), f(x)2

))
(1)

where we used the fact that f is increasing to get that min(f(x)2, f(y)2) = f(x)2 when x ≤ y.

In particular, f(n+ 1) ≥ f(n) + 1, and f(2n) ≥ f(n)2 for all positive integers n.

Upper bound:

First proof of upper bound. We use induction. We can check that f(n) = n for n ≤ 4, and

these all satisfy the bound f(n) = n ≤ 3n/3. Assume it is true for all m < n (some n ≥ 5),

and with x, y as in equation ?? we have

f(x)2 ≤ f
(⌊n

2

⌋)2

≤
(
3n/6

)2
= 3n/3,

as desired. It thus remains to show that f(x)+ f(y) ≤ 3n/3. By induction, it suffices to prove

that

3x/3 + 3y/3 ≤ 3(x+y)/3,

for 1 ≤ x ≤ y ≤ n− 1 and x+ y = n. This is equivalent to

1 + 3(y−x)/3 ≤ 3y/3.

Let w = 3(y−x)/3, and we require 3x/3w ≥ w + 1. If x ≥ 2, then this is true as w ≥ 1, and if

x = 1 then w = 3(n−2)/3 ≥ 3 and the result is still true. Thus all terms in equation ?? are at

most 3n/3, and so f(n) ≤ 3n/3, and the upper bound is proven.

Second proof of upper bound. Consider a second game with the same rules but in which Vishal

can replace a and b by either a+ b or ab. Let g(n) be the largest possible value for this new

game. Then f(n) ≤ g(n) because min{a2, b2} ≤ ab.
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We can check g(n) = n for n ≤ 4, so g(n) ≤ 3n/3 for these values. If x and y are both

bigger than 1, then g(x) + g(y) ≤ g(x)g(y). Therefore, for n > 4, we have that

g(n) = max

{
g(n− 1) + 1, max

1≤x≤n−1
g(x)g(n− x)

}
Now proceed similarly to the first proof. Assume n > 4 and g(m) ≤ 3m/3 for all m < n. If

1 ≤ x ≤ n− 1, then g(x)g(n− x) ≤ 3x/3 3(n−x)/3 = 3n/3. And g(n− 1) + 1 ≤ 3(n−1)/3 + 1,

which is shown to be less than 3n/3 in the first proof. It follows that f(n) ≤ g(n) ≤ 3n/3.

Lower bound:

First proof of lower bound. We begin with a lemma.

Lemma 1. Let m be a nonnegative integer. Then

f(2m) ≥ 22
m−1

and f(3 · 2m) ≥ 32
m

.

Proof. We prove the lemma by induction. One can check that f(n) = n for n ≤ 3, which

proves the lemma for m = 0. For a general m > 0, we get

f(2m) ≥ f(2m−1)2 ≥
(
22

m−2
)2

= 22
m−1

f(3 · 2m) ≥ f(3 · 2m−1)2 ≥
(
32

m−1
)2

= 32
m

,

by induction, as required.

(This lemma can also be proved more constructively. Briefly, if n = 2m, then partition the 1’s

on the board into 2m−1 pairs, and then add each pair to get 2m−1 2’s (2 = 22
0
); then multiply

pairs of 2’s to get 2m−2 4’s (4 = 22
1
); then multiply pairs of 4’s to get 2m−3 16’s (16 = 22

2
);

and so on, until there are 2 (= 21) copies of 22
m−2

, which then gets replaced with a22
m−1

).

The process is similar for n = 3 · 2m, except that the first step is to partition the 1’s into 2m

groups of 3, and then use addition within each group to get 2m 3’s on the board.)

Now assume 2x ≤ n < 3 · 2x−1 for some integer x. Then we have

f(n) ≥ f(2x) ≥ 22
x−1

> 2n/3,

as required. If no such x exists, then there exists an integer x such that 3 · 2x−1 ≤ n < 2x+1.

In this case, we have

f(n) ≥ f(3 · 2x−1) ≥ 32
x−1

> 22
x+1/3 > 2n/3

where the second last inequality is equivalent to 2x−1 log(3) ≥ 2x+1

3
log(2), and by dividing

out 2x and clearing the denominator this is equivalent to 3 log(3) ≥ 4 log 2, which is true as

33 = 27 > 16 = 24.
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Second proof of lower bound. We shall prove the stronger result f(n) ≥ 2(n+1)/3 for n ≥ 2

by induction. One can check that f(n) = n for n = 2, 3, 4, which proves the result for these

values. Assume that n ≥ 5 and that f(k) ≥ 2(k+1)/3 for all k = 2, 3, . . . , n− 1. Then

f(n) ≥ f (⌊n/2⌋)2

≥
(
2(⌊n/2⌋+1)/3

)2
since

⌊
n
2

⌋
≥ 2

= 2(2⌊n/2⌋+2)/3

≥ 2(n+1)/3 since
⌊
n
2

⌋
≥ n−1

2
.

The result follows by induction.

Remark 1. One can show that f satisfies the recurrence f(n) = n for n = 1, 2, f(2n) = f(n)2

for n ≥ 2, and f(2n + 1) = f(2n) + 1 for n ≥ 1. The upper bound in the problem is tight

(equality holds for n = 3 · 2x), but the lower bound is not.
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P4. Let n be a positive integer. A set of n distinct lines divides the plane into various

(possibly unbounded) regions. The set of lines is called “nice” if no three lines intersect at a

single point. A “colouring” is an assignment of two colours to each region such that the first

colour is from the set {A1, A2}, and the second colour is from the set {B1, B2, B3}. Given a

nice set of lines, we call it “colourable” if there exists a colouring such that

1. no colour is assigned to two regions that share an edge;

2. for each i ∈ {1, 2} and j ∈ {1, 2, 3} there is at least one region that is assigned with

both Ai and Bj.

Determine all n such that every nice configuration of n lines is colourable.

Solution. The answer is n ≥ 5. If n ≤ 4, consider n parallel lines. There are 6 total colour

combinations required, and only n+ 1 ≤ 5 total regions, hence the colouring is not possible.

Now, assume n ≥ 5. Rotate the picture so that no line is horizontal, and orient each line

so that the “forward” direction increases the y−value. In this way, each line divides the plane

into a right and left hand side (with respect to this forward direction). Every region of the

plane is on the right hand side of k lines and on the left hand side of n − k lines for some

0 ≤ k ≤ n. Furthermore, there is a region for every k: let w be large enough so that w is

greater than the y−value of any intersection point of two lines. Consider the horizontal line

y = w: a point very far on the left of this line is left of every single line, and as we cross over

all lines in the problem, we hit all values of k.

Finally, take a region that is on the right hand side of k lines. Colour it A1 if k is odd, and

A2 if it is even. Similarly, colour it Bi if k ≡ i (mod 3). By the previous paragraph, there are

regions for at least k = 0, 1, . . . , 5, whence there is a region coloured Ai and Bj for all (i, j).

Furthermore, two regions that share an edge will be on the right hand side of k and k + 1

lines for some k. By construction, the Ai and Bi colours of the regions must differ, hence we

have proven that the set of lines is colourable.
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P5. Let ABCDE be a convex pentagon such that the five vertices lie on a circle and the

five sides are tangent to another circle inside the pentagon. There are
(
5
3

)
= 10 triangles

which can be formed by choosing 3 of the 5 vertices. For each of these 10 triangles, mark its

incenter. Prove that these 10 incenters lie on two concentric circles.

Solution. Let I be the incenter of pentagon ABCDE. Let IA denote the incenter of triangle

EAB and Ia the incenter DAC. Define IB, Ib, IC , Ic, ID, Id, IE, Ie similarly.

We will first show that IAIBICIDIE are concyclic. Let ωA be the circle with center at

the midpoint of arc DE and passing through D and E. Define ωB, ωC , ωD, ωE similarly. It

is well-known that the incenter of a triangle lies on such circles, in particular, IA lies on ωC

and ωD. So the radical axis of ωC , ωD is the line AIA. But this is just the angle bisector of

∠EAB, which I also lies on. So I is in fact the radical center of ωA, ωB, ωC , ωD, ωE! Inverting

about I swaps IA and A and since ABCDE are concyclic, IAIBICIDIE are concyclic as well.

Let O be the center of the circle IAIBICIDIE. We will now show that OIa = OId which

finishes the problem as we can consider the cyclic versions of this equation to find that

OIa = OId = OIb = OIe = OIc. Recall a well-known lemma: For any cyclic quadrilateral

WXY Z, the incenters of XY Z, Y ZW , ZWX, WXY form a rectangle. Applying this lemma

on ABCD, we see that IB, IC , Ia, Id form a rectangle in that order. Then the perpendicular

bisector of IBIC is exactly the perpendicular bisector of IaId. Thus, O is equidistant to Ia
and Id and we are done.
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