
Official Solutions for CJMO 2022

P1. Let ABC be an acute angled triangle with circumcircle Γ. The perpendicular from A to

BC intersects Γ at D, and the perpendicular from B to AC intersects Γ at E. Prove that if

|AB| = |DE|, then ∠ACB = 60◦.

Solution. Since AB and ED are equal chords in the same circle, we either have ∠ACB =

∠ECD or ∠ACB + ∠ECD = 180◦. We compute

AA BB

CC

DD

EE

Figure 1: Illustration for Problem 1.

∠ECD =∠ECA+ ∠ACB + ∠BCD

=∠EBA+ ∠ACB + ∠BAD

=90◦ − ∠BAC + ∠ACB + 90◦ − ∠ABC

=(180◦ − ∠BAC − ∠ABC) + ∠ACB

=2∠ACB.

If ∠ACB = ∠ECD then ∠ACB = 0◦, contradiction. Thus ∠ACB+∠ECD = 180◦, whence

∠ACB = 60◦.
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P2. You have an infinite stack of T-shaped tetrominoes (composed of four squares of side

length 1), and an n × n board. You are allowed to place some tetrominoes on the board,

possibly rotated, as long as no two tetrominoes overlap and no tetrominoes extend off the

board. For which values of n can you cover the entire board?

Figure 2: T-shaped tetromino.

Solution. Let us first note that one can cover the entire board if and only if 4 | n. Indeed,
one can cover a 4× 4 board as follows:

Since for any m ∈ N, 4m × 4m board can be covered by a grid of m2 4 × 4 squares, all

multiples of four are possible.

Suppose then that 4 ∤ n, and assume first that n is odd. Each tetromino covers 4 squares,

hence if one can cover the entire board, then the final area covered must be a multiple of 4.

Since n2 is odd, this is impossible.

Finally, suppose that n = 4k+2 for some k ∈ N∪ {0}. For a contradiction, suppose that

one can cover the entire board. Colour the squares of the board with white and black paint

like a chessboard such that the bottom left corner square is white. Since n is even, there is

the same number of white and black squares. Therefore, there will be n2/2 = 8k2 + 8k + 2

white squares overall, which is an even number. Note that, since white squares do not have

a common border, each T-tetromino covers an odd number of white squares (exactly 1 or 3).

Since we need to place n2/4 = 4k2+4k+1 ≡ 1 (mod 2) tetrominoes, which is an odd number,

we will cover an odd number of white squares. This gives us the desired contradiction with

the observation that we have an even number of white squares, and thus one cannot cover

the board.
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P3. Assume that real numbers a and b satisfy

ab+
√
ab+ 1 +

√
a2 + b ·

√
b2 + a = 0.

Find, with proof, the value of

a
√
b2 + a+ b

√
a2 + b.

Solution. Let us rewrite the given equation as follows:

ab+
√
a2 + b

√
b2 + a = −

√
ab+ 1.

Squaring this gives us

a2b2 + 2ab
√
a2 + b

√
b2 + a+ (a2 + b)(b2 + a) = ab+ 1

(a2b2 + a3) + 2ab
√
a2 + b

√
b2 + a+ (a2b2 + b3) = 1(

a
√
b2 + a+ b

√
a2 + b

)2

= 1

a
√
b2 + a+ b

√
a2 + b = ±1.

Next, we show that a
√
b2 + a+ b

√
a2 + b > 0. Note that

ab = −
√
ab+ 1−

√
a2 + b ·

√
b2 + a < 0,

so a and b have opposite signs. Without loss of generality, we may assume a > 0 > b. Then

rewrite

a
√
b2 + a+ b

√
a2 + b = a(

√
b2 + a+ b)− b(a−

√
a2 + b)

and, since
√
b2 + a + b and a −

√
a2 + b are both positive, the expression above is positive.

Therefore,

a
√
b2 + a+ b

√
a2 + b = 1,

and the proof is finished.
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P4. Let d(k) denote the number of positive integer divisors of k. For example, d(6) = 4 since

6 has 4 positive divisors, namely, 1, 2, 3, and 6. Prove that for all positive integers n,

d(1) + d(3) + d(5) + · · ·+ d(2n− 1) ≤ d(2) + d(4) + d(6) + · · ·+ d(2n).

Solution. For any integer k and set of integers S, let fS(k) be the number of multiples of

k in S. We can count the number of pairs (k, s) with k ∈ N dividing s ∈ S in two different

ways, as follows:

• For each s ∈ S, there are d(s) pairs that include s, one for each divisor of s.

• For each k ∈ N, there are fk(S) pairs that include k, one for each multiple of k.

Therefore, ∑
s∈S

d(s) =
∑
k∈N

fS(k).

Let

O = {1, 3, 5, . . . , 2n− 1} and E = {2, 4, 6, . . . , 2n}
be the set of odd and, respectively, the set of even integers between 1 and 2n. It suffices to

show that ∑
k∈N

fO(k) ≤
∑
k∈N

fE(k).

Since the elements of O only have odd divisors,∑
k∈N

fO(k) =
∑
k odd

fO(k).

For any odd k, consider the multiples of k between 1 and 2n. They form a sequence

k, 2k, 3k, . . . ,

⌊
2n

k

⌋
k

alternating between odd and even terms. There are either an equal number of odd and even

terms, or there is one more odd term than even terms. Therefore, we have the inequality

fO(k) ≤ fE(k) + 1

for all odd k. Combining this with the previous observations gives us the desired inequality:∑
k∈N

fO(k) =
∑
k odd

fO(k)

≤
∑
k odd

(fE(k) + 1)

=
∑
k odd

fE(k) + n

=
∑
k odd

fE(k) + fE(2)

≤
∑
k∈N

fE(k).
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P5: Let n ≥ 2 be an integer. Initially, the number 1 is written n times on a board. Every

minute, Vishal picks two numbers written on the board, say a and b, erases them, and writes

either a + b or min{a2, b2}. After n − 1 minutes there is one number left on the board. Let

the largest possible value for this final number be f(n). Prove that

2n/3 < f(n) ≤ 3n/3.

Solution. Clearly f(n) is a strictly increasing function, as we can form f(n− 1) with n− 1

ones, and add the final one. However, we can do better; assume Vishal generates f(n) on the

board. After n− 2 minutes, there are two numbers left, say they were formed by x ones and

y ones, where x + y = n. Clearly the numbers are at most f(x), f(y) (and can be made to

be equal to f(x), f(y)), and therefore we obtain

f(n) = max
x+y=n, 1≤x≤y≤n−1

(
max

(
f(x) + f(y), f(x)2

))
(1)

where we used the fact that f is increasing to get that min(f(x)2, f(y)2) = f(x)2 when x ≤ y.

In particular, f(n+ 1) ≥ f(n) + 1, and f(2n) ≥ f(n)2 for all positive integers n.

Upper bound:

First proof of upper bound. We use induction. We can check that f(n) = n for n ≤ 4, and

these all satisfy the bound f(n) = n ≤ 3n/3. Assume it is true for all m < n (some n ≥ 5),

and with x, y as in equation 1 we have

f(x)2 ≤ f
(⌊n

2

⌋)2

≤
(
3n/6

)2
= 3n/3,

as desired. It thus remains to show that f(x)+ f(y) ≤ 3n/3. By induction, it suffices to prove

that

3x/3 + 3y/3 ≤ 3(x+y)/3,

for 1 ≤ x ≤ y ≤ n− 1 and x+ y = n. This is equivalent to

1 + 3(y−x)/3 ≤ 3y/3.

Let w = 3(y−x)/3, and we require 3x/3w ≥ w + 1. If x ≥ 2, then this is true as w ≥ 1, and if

x = 1 then w = 3(n−2)/3 ≥ 3 and the result is still true. Thus all terms in equation 1 are at

most 3n/3, and so f(n) ≤ 3n/3, and the upper bound is proven.

Second proof of upper bound. Consider a second game with the same rules but in which Vishal

can replace a and b by either a+ b or ab. Let g(n) be the largest possible value for this new

game. Then f(n) ≤ g(n) because min{a2, b2} ≤ ab.
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We can check g(n) = n for n ≤ 4, so g(n) ≤ 3n/3 for these values. If x and y are both

bigger than 1, then g(x) + g(y) ≤ g(x)g(y). Therefore, for n > 4, we have that

g(n) = max

{
g(n− 1) + 1, max

1≤x≤n−1
g(x)g(n− x)

}
Now proceed similarly to the first proof. Assume n > 4 and g(m) ≤ 3m/3 for all m < n. If

1 ≤ x ≤ n− 1, then g(x)g(n− x) ≤ 3x/3 3(n−x)/3 = 3n/3. And g(n− 1) + 1 ≤ 3(n−1)/3 + 1,

which is shown to be less than 3n/3 in the first proof. It follows that f(n) ≤ g(n) ≤ 3n/3.

Lower bound:

First proof of lower bound. We begin with a lemma.

Lemma 1. Let m be a nonnegative integer. Then

f(2m) ≥ 22
m−1

and f(3 · 2m) ≥ 32
m

.

Proof. We prove the lemma by induction. One can check that f(n) = n for n ≤ 3, which

proves the lemma for m = 0. For a general m > 0, we get

f(2m) ≥ f(2m−1)2 ≥
(
22

m−2
)2

= 22
m−1

f(3 · 2m) ≥ f(3 · 2m−1)2 ≥
(
32

m−1
)2

= 32
m

,

by induction, as required.

(This lemma can also be proved more constructively. Briefly, if n = 2m, then partition the 1’s

on the board into 2m−1 pairs, and then add each pair to get 2m−1 2’s (2 = 22
0
); then multiply

pairs of 2’s to get 2m−2 4’s (4 = 22
1
); then multiply pairs of 4’s to get 2m−3 16’s (16 = 22

2
);

and so on, until there are 2 (= 21) copies of 22
m−2

, which then gets replaced with a22
m−1

).

The process is similar for n = 3 · 2m, except that the first step is to partition the 1’s into 2m

groups of 3, and then use addition within each group to get 2m 3’s on the board.)

Now assume 2x ≤ n < 3 · 2x−1 for some integer x. Then we have

f(n) ≥ f(2x) ≥ 22
x−1

> 2n/3,

as required. If no such x exists, then there exists an integer x such that 3 · 2x−1 ≤ n < 2x+1.

In this case, we have

f(n) ≥ f(3 · 2x−1) ≥ 32
x−1

> 22
x+1/3 > 2n/3

where the second last inequality is equivalent to 2x−1 log(3) ≥ 2x+1

3
log(2), and by dividing

out 2x and clearing the denominator this is equivalent to 3 log(3) ≥ 4 log 2, which is true as

33 = 27 > 16 = 24.
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Second proof of lower bound. We shall prove the stronger result f(n) ≥ 2(n+1)/3 for n ≥ 2

by induction. One can check that f(n) = n for n = 2, 3, 4, which proves the result for these

values. Assume that n ≥ 5 and that f(k) ≥ 2(k+1)/3 for all k = 2, 3, . . . , n− 1. Then

f(n) ≥ f (⌊n/2⌋)2

≥
(
2(⌊n/2⌋+1)/3

)2
since

⌊
n
2

⌋
≥ 2

= 2(2⌊n/2⌋+2)/3

≥ 2(n+1)/3 since
⌊
n
2

⌋
≥ n−1

2
.

The result follows by induction.

Remark 1. One can show that f satisfies the recurrence f(n) = n for n = 1, 2, f(2n) = f(n)2

for n ≥ 2, and f(2n + 1) = f(2n) + 1 for n ≥ 1. The upper bound in the problem is tight

(equality holds for n = 3 · 2x), but the lower bound is not.
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