2020 CMO Qualifying Repêchage

A competition of the Canadian Mathematical Society and supported by the Actuarial Profession.

SOCIETY OF ACTUARIES

A full list of our competition sponsors and partners is available online at https://cms.math.ca/Competitions/Sponsors/

Official Problem Set

1. Show that for all integers $a \geq 1,\lfloor\sqrt{a}+\sqrt{a+1}+\sqrt{a+2}\rfloor=\lfloor\sqrt{9 a+8}\rfloor$.
2. Given a set S, of integers, an optimal partition of S into sets T, U is a partition which minimizes the value $|t-u|$, where t and u are the sum of the elements of T and U respectively.

Let P be a set of distinct positive integers such that the sum of the elements of P is $2 k$ for a positive integer k, and no subset of P sums to k.

Either show that there exists such a P with at least 2020 different optimal partitions, or show that such a P does not exist.
3. Let N be a positive integer and $A=a_{1}, a_{2}, \ldots, a_{N}$ be a sequence of real numbers. Define the sequence $f(A)$ to be

$$
f(A)=\left(\frac{a_{1}+a_{2}}{2}, \frac{a_{2}+a_{3}}{2}, \cdots, \frac{a_{N-1}+a_{N}}{2}, \frac{a_{N}+a_{1}}{2}\right)
$$

and for k a positive integer define $f^{k}(A)$ to be f applied to A consecutively k times (i.e. $f(f(\cdots f(A))))$

Find all sequences $A=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ of integers such that $f^{k}(A)$ contains only integers for all k.
4. Determine all graphs G with the following two properties:

- G contains at least one Hamilton path.
- For any pair of vertices, $u, v \in G$, if there is a Hamilton path from u to v then the edge $u v$ is in the graph G.

2020 CMO Qualifying Repêchage

5. We define the following sequences:

- Sequence A has $a_{n}=n$.
- Sequence B has $b_{n}=a_{n}$ when $a_{n} \not \equiv 0(\bmod 3)$ and $b_{n}=0$ otherwise.
- Sequence C has $c_{n}=\sum_{i=1}^{n} b_{i}$.
- Sequence D has $d_{n}=c_{n}$ when $c_{n} \not \equiv 0(\bmod 3)$ and $d_{n}=0$ otherwise.
- Sequence E has $e_{n}=\sum_{i=1}^{n} d_{i}$.

Prove that the terms of sequence E are exactly the perfect cubes.
6. In convex pentagon $A B C D E, A C$ is parallel to $D E, A B$ is perpendicular to $A E$, and $B C$ is perpendicular to $C D$. If H is the orthocentre of triangle $A B C$ and M is the midpoint of segment $D E$, prove that $A D, C E$ and $H M$ are concurrent.
7. Let a, b, c be positive real numbers with $a b+b c+a c=a b c$. Prove that

$$
\frac{b c}{a^{a+1}}+\frac{a c}{b^{b+1}}+\frac{a b}{c^{c+1}} \geq \frac{1}{3}
$$

8. Find all pairs (a, b) of positive rational numbers such that $\sqrt[b]{a}=a b$.
