The 2021 Canadian Junior Mathematical Olympiad A competition of the Canadian Mathematical Society and supported by the Actuarial Profession. A full list of our competition sponsors and partners is available online at https://cms.math.ca/competitions/competition-sponsors/ ## Official Problem Set - 1. Let C_1 and C_2 be two concentric circles with C_1 inside C_2 . Let P_1 and P_2 be two points on C_1 that are not diametrically opposite. Extend the segment P_1P_2 past P_2 until it meets the circle C_2 in Q_2 . The tangent to C_2 at Q_2 and the tangent to C_1 at P_1 meet in a point X. Draw from X the second tangent to C_2 which meets C_2 at the point C_1 . Show that C_1 bisects angle C_1 be two points C_2 which meets C_2 at the point C_1 . - 2. How many ways are there to permute the first n positive integers such that in the permutation, for each value of $k \leq n$, the first k elements of the permutation have distinct remainder mod k? - 3. Let ABCD be a trapezoid with AB parallel to CD, |AB| > |CD|, and equal edges |AD| = |BC|. Let I be the center of the circle tangent to lines AB, AC and BD, where A and I are on opposite sides of BD. Let J be the center of the circle tangent to lines CD, AC and BD, where D and J are on opposite sides of AC. Prove that |IC| = |JB|. - 4. Let $n \geq 2$ be some fixed positive integer and suppose that a_1, a_2, \ldots, a_n are positive real numbers satisfying $a_1 + a_2 + \cdots + a_n = 2^n 1$. Find the minimum possible value of $$\frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}}.$$ ## The 2021 Canadian Junior Mathematical Olympiad 5. A function f from the positive integers to the positive integers is called Canadian if it satisfies $$\gcd\left(f(f(x)), f(x+y)\right) = \gcd\left(x, y\right)$$ for all pairs of positive integers x and y. Find all positive integers m such that f(m) = m for all Canadian functions f. ## Important! Please do not discuss this problem set online for at least 24 hours.