Canadian Junior Mathematical Olympiad 2021

Official Solutions

A full list of our competition sponsors and partners is available online at https://cms.math.ca/competitions/competition-sponsors/

Note: Each problem starts on a new page.

Problem No. 1.

Let C_1 and C_2 be two concentric circles with C_1 inside C_2 . Let P_1 and P_2 be two points on C_1 that are not diametrically opposite. Extend the segment P_1P_2 past P_2 until it meets the circle C_2 in C_2 . The tangent to C_2 at C_2 and the tangent to C_1 at C_2 at C_2 and the tangent to C_2 at the point C_2 at the point C_2 at the point C_2 which meets C_2 at the point C_2 . Show that C_2 which meets C_2 at the point C_2 which meets C_2 which meets C_2 at the point C_2 which meets C_2 at the point C_2 which meets C_2 which meets C_2 at the point C_2 which meets C_2 at the point C_2 which meets C_2 which

Solution. We will show that the angles $\angle Q_2P_1X$ and $\angle Q_1P_1X$ are congruent. Note that, if O denotes the centre of both circles, the points P_1, X, Q_2 and Q_1 lie on the circle of diameter XO since XP_1 is tangent to the circle thus $\angle OP_1X = \pi/2$, and similar for the other tangents XP_2, XQ_1, XQ_2 . On the other hand, $m(\angle Q_2P_1X)$ is half the measure of the arc XQ_2 and $m(\angle Q_1P_1X)$ is half the measure of the arc XQ_1 , and these two arcs are equal because $|XQ_2| = |XQ_1|$.

A competition of the Canadian Mathematical Society and supported by the Actuarial Profession.

Problem No. 2.

How many ways are there to permute the first n positive integers such that in the permutation, for each value of $k \le n$, the first k elements of the permutation have distinct remainder mod k?

Solution. We show by induction that the first k elements of the permutation must be k consecutive integers from $1, \ldots, n$. It is trivially true that for k = n all remainders $\mod n$ are distinct and we induct downwards to show that, with the above condition, it is true for all k < n that first k elements have distinct remainders $\mod k$. Note that in any k consecutive integers, the only two with the same remainder $\mod (k-1)$ are the smallest and largest integers, so one of these two must be the k-th integer of the permutation. This completes the induction, and thus at every step taking away the k-th entry of the permutation, there are 2 choices to eliminate an integer (the largest or the smallest) and obtain a new permutation where the first k-1 entries have distinct remainders $\mod (k-1)$, so the answer is 2^{n-1} .

Problem No. 3.

Let ABCD be a trapezoid with AB parallel to CD, |AB| > |CD|, and equal edges |AD| = |BC|. Let I be the center of the circle tangent to lines AB, AC and BD, where A and I are on opposite sides of BD. Let I be the center of the circle tangent to lines CD, AC and BD, where D and D are on opposite sides of D. Prove that |IC| = |D|.

Solution. Let $\{P\} = AC \cap BD$ and let $\angle APB = 180 - 2a$. Since ABCD is an isosceles trapezoid, APB is an isosceles triangle. Therefore $\angle PBA = a$, which implies that $\angle PBI = 90^{\circ} - a/2$ since I lies on the external bisector of $\angle PBA$. Since I lies on the bisector of $\angle CPB$, it follows that $\angle BPI = a$ and hence that IPB is isosceles with |IP| = |PB|. Similarly JPC is isosceles with |JP| = |PC|. So, in the triangles CPI and BPJ we have $PI \equiv PB$ and $PJ \equiv CP$. Since I and J both lie on the internal bisector of $\angle BPC$, it follows that triangles CPI and BPJ are congruent. Therefore |IC| = |JB|.

Problem No. 4.

Let $n \ge 2$ be some fixed positive integer and suppose that a_1, a_2, \ldots, a_n are positive real numbers satisfying $a_1 + a_2 + \cdots + a_n = 2^n - 1$.

Find the minimum possible value of

$$\frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}}.$$

Solution. We claim the the minimum possible value of this expression is n. Observe that by AM-GM, we have that

$$\frac{a_1}{1} + \frac{a_2}{1+a_1} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}}$$

$$= \frac{1+a_1}{1} + \frac{1+a_1+a_2}{1+a_1} + \dots + \frac{1+a_1+a_2+\dots+a_n}{1+a_1+a_2+\dots+a_{n-1}} - n$$

$$\geq n \cdot \sqrt[n]{\frac{1+a_1}{1} \cdot \frac{1+a_1+a_2}{1+a_1} \cdot \dots \cdot \frac{1+a_1+a_2+\dots+a_n}{1+a_1+a_2+\dots+a_{n-1}}} - n$$

$$= n \cdot \sqrt[n]{1+a_1+a_2+\dots+a_n} - n$$

$$= 2n - n = n.$$

Furthermore, equality is achieved when $a_k = 2^{k-1}$ for each $1 \le k \le n$.

Problem No. 5.

A function f from the positive integers to the positive integers is called Canadian if it satisfies

$$\gcd\left(f(f(x)), f(x+y)\right) = \gcd\left(x, y\right)$$

for all pairs of positive integers x and y.

Find all positive integers m such that f(m) = m for all Canadian functions f.

Solution. Define an $m \in \mathbb{N}$ to be *good* if f(m) = m for all such f. It will be shown that m is good if and only if m has two or more distinct prime divisors. Let P(x,y) denote the assertion

$$\gcd(f(f(x)), f(x+y)) = \gcd(x, y)$$

for a pair $x, y \in \mathbb{N}$. Let x be a positive integer with two or more distinct prime divisors and let p^k be largest power of one of these prime divisors such that $p^k \mid x$. If $x = p^k \cdot q$, then p^k and q are relatively prime and $x > p^k, q > 1$. By P(q, x - q),

$$\gcd(f(f(q)), f(x-q+q)) = \gcd(f(f(q)), f(x)) = \gcd(q, x-q) = q$$

which implies that $q \mid f(x)$. By $P(p^k, x - p^k)$,

$$\gcd(f(f(p^k)), f(x - p^k + p^k)) = \gcd(f(f(p^k)), f(x)) = \gcd(p^k, x - p^k) = p^k$$

which implies that $p^k | f(x)$. Since p^k and q are relatively prime, $x = p^k \cdot q$ divides f(x), which implies that $f(x) \ge x$. Now assume for contradiction that f(x) > x. Let y = f(x) - x > 0 and note that, by P(x, y), it follows that

$$f(f(x)) = \gcd(f(f(x)), f(x + f(x) - x)) = \gcd(x, f(x) - x) = \gcd(x, f(x)).$$

Therefore f(f(x)) | x and f(f(x)) | f(x). By P(x, x), it follows that

$$\gcd(f(f(x)), f(2x)) = \gcd(x, x) = x.$$

This implies that $x \mid f(f(x))$, which when combined with the above result, yields that f(f(x)) = x. Since $x \mid f(x)$ and x is divisible by at least two distinct prime numbers, f(x) is also divisible by at least two distinct prime numbers. As shown previously, this implies that $f(x) \mid f(f(x)) = x$, which is a contradiction since f(x) > x. Therefore f(x) = x for all positive integers x with two or more distinct prime divisors.

Now it will be shown that all $m \in \mathbb{N}$ such that either m has one prime divisor or m = 1 are not good. In either case, let $m = p^k$ where $k \ge 0$ and p is a prime number and consider the function satisfying that $f(p^k) = p^{k+1}$, $f(p^{k+1}) = p^k$ and f(x) = x for all $x \ne p^k$, p^{k+1} . Note that this function also satisfies that f(f(x)) = x for all positive integers x. If $x + y \ne p^k$, p^{k+1} , then P(x, y) holds by the Euclidean

algorithm since f(f((x)) = x and f(x + y) = x + y. If $x + y = p^{k+1}$, then P(x, y) is equivalent to $\gcd(x, p^k) = \gcd(x, p^{k+1} - x) = \gcd(x, p^{k+1})$ for all $x < p^{k+1}$ which holds since the greatest power of p that can divide x is p^k . If $x + y = p^k$, then P(x, y) is equivalent to $\gcd(x, p^{k+1}) = \gcd(x, p^k - x) = \gcd(x, p^k)$ for all $x < p^k$ which holds as shown above. Note that if m = 1 then this case cannot occur. Since this function satisfies P(x, y), m is good if and only if m has two or more distinct prime divisors.