Canadian Junior Mathematical Olympiad 2021

Official Solutions

A full list of our competition sponsors and partners is available online at https://cms.math.ca/competitions/competition-sponsors/

Note: Each problem starts on a new page.

Problem No. 1.

Let \mathcal{C}_{1} and \mathcal{C}_{2} be two concentric circles with \mathcal{C}_{1} inside \mathcal{C}_{2}. Let P_{1} and P_{2} be two points on \mathcal{C}_{1} that are not diametrically opposite. Extend the segment $P_{1} P_{2}$ past P_{2} until it meets the circle \mathcal{C}_{2} in Q_{2}. The tangent to \mathcal{C}_{2} at Q_{2} and the tangent to \mathcal{C}_{1} at P_{1} meet in a point X. Draw from X the second tangent to \mathcal{C}_{2} which meets \mathcal{C}_{2} at the point Q_{1}. Show that $P_{1} X$ bisects angle $Q_{1} P_{1} Q_{2}$.

Solution. We will show that the angles $\angle Q_{2} P_{1} X$ and $\angle Q_{1} P_{1} X$ are congruent. Note that, if O denotes the centre of both circles, the points P_{1}, X, Q_{2} and Q_{1} lie on the circle of diameter $X O$ since $X P_{1}$ is tangent to the circle thus $\angle O P_{1} X=\pi / 2$, and similar for the other tangents $X P_{2}, X Q_{1}, X Q_{2}$. On the other hand, $m\left(\angle Q_{2} P_{1} X\right)$ is half the measure of the arc $X Q_{2}$ and $m\left(\angle Q_{1} P_{1} X\right)$ is half the measure of the arc $X Q_{1}$, and these two arcs are equal because $\left|X Q_{2}\right|=\left|X Q_{1}\right|$.

Expertise. Insight. Solutions.

Problem No. 2.

How many ways are there to permute the first n positive integers such that in the permutation, for each value of $k \leq n$, the first k elements of the permutation have distinct remainder $\bmod k$?

Solution. We show by induction that the first k elements of the permutation must be k consecutive integers from $1, \ldots, n$. It is trivially true that for $k=n$ all remainders $\bmod n$ are distinct and we induct downwards to show that, with the above condition, it is true for all $k<n$ that first k elements have distinct remainders $\bmod k$. Note that in any k consecutive integers, the only two with the same remainder $\bmod (k-1)$ are the smallest and largest integers, so one of these two must be the k-th integer of the permutation. This completes the induction, and thus at every step taking away the k-th entry of the permutation, there are 2 choices to eliminate an integer (the largest or the smallest) and obtain a new permutation where the first $k-1$ entries have distinct remainders $\bmod (k-1)$, so the answer is 2^{n-1}.

Problem No. 3.

Let $A B C D$ be a trapezoid with $A B$ parallel to $C D,|A B|>|C D|$, and equal edges $|A D|=|B C|$. Let I be the center of the circle tangent to lines $A B, A C$ and $B D$, where A and I are on opposite sides of $B D$. Let J be the center of the circle tangent to lines $C D, A C$ and $B D$, where D and J are on opposite sides of $A C$. Prove that $|I C|=|J B|$.

Solution. Let $\{P\}=A C \cap B D$ and let $\angle A P B=180-2 a$. Since $A B C D$ is an isosceles trapezoid, $A P B$ is an isosceles triangle. Therefore $\angle P B A=a$, which implies that $\angle P B I=90^{\circ}-a / 2$ since I lies on the external bisector of $\angle P B A$. Since I lies on the bisector of $\angle C P B$, it follows that $\angle B P I=a$ and hence that $I P B$ is isosceles with $|I P|=|P B|$. Similarly $J P C$ is isosceles with $|J P|=|P C|$. So, in the triangles $C P I$ and $B P J$ we have $P I \equiv P B$ and $P J \equiv C P$. Since I and J both lie on the internal bisector of $\angle B P C$, it follows that triangles $C P I$ and $B P J$ are congruent. Therefore $|I C|=|J B|$.

Problem No. 4.

Let $n \geq 2$ be some fixed positive integer and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers satisfying $a_{1}+a_{2}+\cdots+a_{n}=2^{n}-1$.

Find the minimum possible value of

$$
\frac{a_{1}}{1}+\frac{a_{2}}{1+a_{1}}+\frac{a_{3}}{1+a_{1}+a_{2}}+\cdots+\frac{a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}} .
$$

Solution. We claim the the minimum possible value of this expression is n. Observe that by AM-GM, we have that

$$
\begin{aligned}
\frac{a_{1}}{1}+ & \frac{a_{2}}{1+a_{1}}+\cdots+\frac{a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}} \\
& =\frac{1+a_{1}}{1}+\frac{1+a_{1}+a_{2}}{1+a_{1}}+\cdots+\frac{1+a_{1}+a_{2}+\cdots+a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}}-n \\
& \geq n \cdot \sqrt[n]{\frac{1+a_{1}}{1} \cdot \frac{1+a_{1}+a_{2}}{1+a_{1}} \cdots \frac{1+a_{1}+a_{2}+\cdots+a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}}}-n \\
& =n \cdot \sqrt[n]{1+a_{1}+a_{2}+\cdots+a_{n}}-n \\
& =2 n-n=n .
\end{aligned}
$$

Furthermore, equality is achieved when $a_{k}=2^{k-1}$ for each $1 \leq k \leq n$.

Problem No. 5.

A function f from the positive integers to the positive integers is called Canadian if it satisfies

$$
\operatorname{gcd}(f(f(x)), f(x+y))=\operatorname{gcd}(x, y)
$$

for all pairs of positive integers x and y.
Find all positive integers m such that $f(m)=m$ for all Canadian functions f.

Solution. Define an $m \in \mathbb{N}$ to be good if $f(m)=m$ for all such f. It will be shown that m is good if and only if m has two or more distinct prime divisors. Let $P(x, y)$ denote the assertion

$$
\operatorname{gcd}(f(f(x)), f(x+y))=\operatorname{gcd}(x, y)
$$

for a pair $x, y \in \mathbb{N}$. Let x be a positive integer with two or more distinct prime divisors and let p^{k} be largest power of one of these prime divisors such that $p^{k} \mid x$. If $x=p^{k} \cdot q$, then p^{k} and q are relatively prime and $x>p^{k}, q>1$. By $P(q, x-q)$,

$$
\operatorname{gcd}(f(f(q)), f(x-q+q))=\operatorname{gcd}(f(f(q)), f(x))=\operatorname{gcd}(q, x-q)=q
$$

which implies that $q \mid f(x)$. By $P\left(p^{k}, x-p^{k}\right)$,

$$
\operatorname{gcd}\left(f\left(f\left(p^{k}\right)\right), f\left(x-p^{k}+p^{k}\right)\right)=\operatorname{gcd}\left(f\left(f\left(p^{k}\right)\right), f(x)\right)=\operatorname{gcd}\left(p^{k}, x-p^{k}\right)=p^{k}
$$

which implies that $p^{k} \mid f(x)$. Since p^{k} and q are relatively prime, $x=p^{k} \cdot q$ divides $f(x)$, which implies that $f(x) \geq x$. Now assume for contradiction that $f(x)>x$. Let $y=f(x)-x>0$ and note that, by $P(x, y)$, it follows that

$$
f(f(x))=\operatorname{gcd}(f(f(x)), f(x+f(x)-x))=\operatorname{gcd}(x, f(x)-x)=\operatorname{gcd}(x, f(x))
$$

Therefore $f(f(x)) \mid x$ and $f(f(x)) \mid f(x)$. By $P(x, x)$, it follows that

$$
\operatorname{gcd}(f(f(x)), f(2 x))=\operatorname{gcd}(x, x)=x .
$$

This implies that $x \mid f(f(x))$, which when combined with the above result, yields that $f(f(x))=x$. Since $x \mid f(x)$ and x is divisible by at least two distinct prime numbers, $f(x)$ is also divisible by at least two distinct prime numbers. As shown previously, this implies that $f(x) \mid f(f(x))=x$, which is a contradiction since $f(x)>x$. Therefore $f(x)=x$ for all positive integers x with two or more distinct prime divisors.
Now it will be shown that all $m \in \mathbb{N}$ such that either m has one prime divisor or $m=1$ are not good. In either case, let $m=p^{k}$ where $k \geq 0$ and p is a prime number and consider the function satisfying that $f\left(p^{k}\right)=p^{k+1}, f\left(p^{k+1}\right)=p^{k}$ and $f(x)=x$ for all $x \neq p^{k}, p^{k+1}$. Note that this function also satisfies that $f(f(x))=x$ for all positive integers x. If $x+y \neq p^{k}, p^{k+1}$, then $P(x, y)$ holds by the Euclidean
algorithm since $f\left(f((x))=x\right.$ and $f(x+y)=x+y$. If $x+y=p^{k+1}$, then $P(x, y)$ is equivalent to $\operatorname{gcd}\left(x, p^{k}\right)=\operatorname{gcd}\left(x, p^{k+1}-x\right)=\operatorname{gcd}\left(x, p^{k+1}\right)$ for all $x<p^{k+1}$ which holds since the greatest power of p that can divide x is p^{k}. If $x+y=p^{k}$, then $P(x, y)$ is equivalent to $\operatorname{gcd}\left(x, p^{k+1}\right)=\operatorname{gcd}\left(x, p^{k}-x\right)=\operatorname{gcd}\left(x, p^{k}\right)$ for all $x<p^{k}$ which holds as shown above. Note that if $m=1$ then this case cannot occur. Since this function satisfies $P(x, y), m$ is good if and only if m has two or more distinct prime divisors.

