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1. Let S be a subset of {1, 2, . . . , 9}, such that the sums formed by adding each unordered pair of
distinct numbers from S are all different. For example, the subset {1, 2, 3, 5} has this property,
but {1, 2, 3, 4, 5} does not, since the pairs {1, 4} and {2, 3} have the same sum, namely 5.

What is the maximum number of elements that S can contain?

Solution 1
It can be checked that all the sums of pairs for the set {1, 2, 3, 5, 8} are different.

Suppose, for a contradiction, that S is a subset of {1, . . . , 9} containing 6 elements such that
all the sums of pairs are different. Now the smallest possible sum for two numbers from S is
1 + 2 = 3 and the largest possible sum is 8 + 9 = 17. That gives 15 possible sums: 3, . . . , 17.

Also there are
(

6
2

)
= 15 pairs from S. Thus, each of 3, . . . , 17 is the sum of exactly one

pair. The only pair from {1, . . . , 9} that adds to 3 is {1, 2} and to 17 is {8, 9}. Thus 1, 2, 8, 9
are in S. But then 1+9 = 2+8, giving a contradiction. It follows that the maximum number
of elements that S can contain is 5.

Solution 2.

It can be checked that all the sums of pairs for the set {1, 2, 3, 5, 8} are different.

Suppose, for a contradiction, that S is a subset of {1, . . . 9} such that all the sums of pairs
are different and that a1 < a2 < . . . < a6 are the members of S.

Since a1 + a6 6= a2 + a5, it follows that a6 − a5 6= a2 − a1. Similarly a6 − a5 6= a4 − a3 and
a4 − a3 6= a2 − a1. These three differences must be distinct positive integers, so,

(a6 − a5) + (a4 − a3) + (a2 − a1) ≥ 1 + 2 + 3 = 6 .

Similarly a3 − a2 6= a5 − a4, so

(a3 − a2) + (a5 − a4) ≥ 1 + 2 = 3 .

Adding the above 2 inequalities yields

a6 − a5 + a5 − a4 + a4 − a3 + a3 − a2 + a2 − a1 ≥ 6 + 3 = 9 ,

and hence a6 − a1 ≥ 9. This is impossible since the numbers in S are between 1 and 9.



2. Call a positive integer n practical if every positive integer less than or equal to n can be
written as the sum of distinct divisors of n.

For example, the divisors of 6 are 1, 2, 3, and 6 . Since
1=1, 2=2, 3=3, 4=1+3, 5=2+ 3, 6=6,

we see that 6 is practical.

Prove that the product of two practical numbers is also practical.

Solution
Let p and q be practical. For any k ≤ pq, we can write

k = aq + b with 0 ≤ a ≤ p, 0 ≤ b < q.

Since p and q are practical, we can write

a = c1 + . . . + cm, b = d1 + . . . + dn

where the ci’s are distinct divisors of p and the dj ’s are distinct divisors of q. Now

k = (c1 + . . . + cm)q + (d1 + . . . + dn)
= c1q + . . . + cmq + d1 + . . . + dn.

Each of ciq and dj divides pq. Since dj < q ≤ ciq for any i, j, the ciq’s and dj ’s are all distinct,
and we conclude that pq is practical.



3. Prove that for all positive real numbers a, b, and c,

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality occurs.

Each of the inequalities used in the solutions below has the property that equality holds if
and only if a = b = c. Thus equality holds for the given inequality if and only if a = b = c.

Solution 1.

Note that a4 + b4 + c4 =
(a4 + b4)

2
+

(b4 + c4)
2

+
(c4 + a4)

2
. Applying the arithmetic-geometric

mean inequality to each term, we see that the right side is greater than or equal to

a2b2 + b2c2 + c2a2.

We can rewrite this as

a2(b2 + c2)
2

+
b2(c2 + a2)

2
+

c2(a2 + b2)
2

.

Applying the arithmetic mean-geometric mean inequality again we obtain a4 + b4 + c4 ≥
a2bc + b2ca + c2ab. Dividing both sides by abc (which is positive) the result follows.

Solution 2.

Notice the inequality is homogeneous. That is, if a, b, c are replaced by ka, kb, kc, k > 0 we
get the original inequality. Thus we can assume, without loss of generality, that abc = 1.
Then

a3

bc
+

b3

ca
+

c3

ab
= abc

(
a3

bc
+

b3

ca
+

c3

ab

)

= a4 + b4 + c4.

So we need prove that a4 + b4 + c4 ≥ a + b + c.

By the Power Mean Inequality,

a4 + b4 + c4

3
≥

(
a + b + c

3

)4

,

so a4 + b4 + c4 ≥ (a + b + c) · (a + b + c)3

27
.

By the arithmetic mean-geometric mean inequality,
a + b + c

3
≥ 3

√
abc = 1, so a + b + c ≥ 3.

Hence, a4 + b4 + c4 ≥ (a + b + c) · (a + b + c)3

27
≥ (a + b + c)

33

27
= a + b + c.

Solution 3.

Rather than using the Power-Mean inequality to prove a4 + b4 + c4 ≥ a + b + c in Proof 2,
the Cauchy-Schwartz-Bunjakovsky inequality can be used twice:

(a4 + b4 + c4)(12 + 12 + 12) ≥ (a2 + b2 + c2)2

(a2 + b2 + c2)(12 + 12 + 12) ≥ (a + b + c)2

So
a4 + b4 + c4

3
≥ (a2 + b2 + c2)2

9
≥ (a + b + c)4

81
. Continue as in Proof 2.



4. Let Γ be a circle with radius r. Let A and B be distinct points on Γ such that AB <
√

3r.
Let the circle with centre B and radius AB meet Γ again at C. Let P be the point inside
Γ such that triangle ABP is equilateral. Finally, let CP meet Γ again at Q. Prove that
PQ = r.

B

C

O

A

PQ

Γ

Solution 1.

Let the center of Γ be O, the radius r. Since BP = BC, let θ = ]BPC = ]BCP .

Quadrilateral QABC is cyclic, so ]BAQ = 180◦ − θ and hence ]PAQ = 120◦ − θ.

Also ]APQ = 180◦ − ]APB − ]BPC = 120◦ − θ, so PQ = AQ and ]AQP = 2θ − 60◦.

Again because quadrilateral QABC is cyclic, ]ABC = 180◦ − ]AQC = 240◦ − 2θ .

Triangles OAB and OCB are congruent, since OA = OB = OC = r and AB = BC.

Thus ]ABO = ]CBO =
1
2

]ABC = 120◦ − θ.

We have now shown that in triangles AQP and AOB, ]PAQ = ]BAO = ]APQ = ]ABO.
Also AP = AB, so 4AQP ∼= 4AOB. Hence QP = OB = r.

Solution 2.

Let the center of Γ be O, the radius r. Since A, P and C lie on a circle centered at B,
60◦ = ]ABP = 2]ACP , so ]ACP = ]ACQ = 30◦.

Since Q, A, and C lie on Γ, ]QOA = 2]QCA = 60◦.

So QA = r since if a chord of a circle subtends an angle of 60◦ at the center, its length is the
radius of the circle.

Now BP = BC, so ]BPC = ]BCP = ]ACB + 30◦.

Thus ]APQ = 180◦ − ]APB − ]BPC = 90◦ − ]ACB.

Since Q, A, B and C lie on Γ and AB = BC, ]AQP = ]AQC = ]AQB+]BQC = 2]ACB.
Finally, ]QAP = 180 − ]AQP − ]APQ = 90 − ]ACB.

So ]PAQ = ]APQ hence PQ = AQ = r.



5. Let N = {0, 1, 2, . . .}. Determine all functions f : N → N such that

xf(y) + yf(x) = (x + y)f(x2 + y2)

for all x and y in N.

Solution 1.

We claim that f is a constant function. Suppose, for a contradiction, that there exist x and
y with f(x) < f(y); choose x, y such that f(y) − f(x) > 0 is minimal. Then

f(x) =
xf(x) + yf(x)

x + y
<

xf(y) + yf(x)
x + y

<
xf(y) + yf(y)

x + y
= f(y)

so f(x) < f(x2 + y2) < f(y) and 0 < f(x2 + y2) − f(x) < f(y) − f(x), contradicting the
choice of x and y. Thus, f is a constant function. Since f(0) is in N, the constant must be
from N.

Also, for any c in N, xc + yc = (x + y)c for all x and y, so f(x) = c, c ∈ N are the solutions
to the equation.

Solution 2.

We claim f is a constant function. Define g(x) = f(x) − f(0). Then g(0) = 0, g(x) ≥ −f(0)
and

xg(y) + yg(x) = (x + y)g(x2 + y2)

for all x, y in N.

Letting y = 0 shows g(x2) = 0 (in particular, g(1) = g(4) = 0), and letting x = y = 1 shows
g(2) = 0. Also, if x, y and z in N satisfy x2 + y2 = z2, then

g(y) = −y

x
g(x). (∗)

Letting x = 4 and y = 3, (∗) shows that g(3) = 0.

For any even number x = 2n > 4, let y = n2 − 1. Then y > x and x2 + y2 = (n2 + 1)2. For
any odd number x = 2n+1 > 3, let y = 2(n+1)n. Then y > x and x2 +y2 = ((n+1)2 +n2)2.
Thus for every x > 4 there is y > x such that (∗) is satisfied.

Suppose for a contradiction, that there is x > 4 with g(x) > 0. Then we can construct a
sequence x = x0 < x1 < x2 < . . . where g(xi+1) = −xi+1

xi
g(xi). It follows that |g(xi+1)| >

|g(xi)| and the signs of g(xi) alternate. Since g(x) is always an integer, |g(xi+1)| ≥ |g(xi)|+1.
Thus for some sufficiently large value of i, g(xi) < −f(0), a contradiction.

As for Proof 1, we now conclude that the functions that satisfy the given functional equation
are f(x) = c, c ∈ N.

Solution 3. Suppose that W is the set of nonnegative integers and that f : W → W satisfies:

xf(y) + yf(x) = (x + y)f(x2 + y2). (∗)

We will show that f is a constant function.

Let f(0) = k, and set S = {x | f(x) = k}.
Letting y = 0 in (∗) shows that f(x2) = k ∀ x > 0, and so

x2 ∈ S ∀ x > 0 (1)



In particular, 1 ∈ S.

Suppose x2 + y2 = z2. Then yf(x) + xf(y) = (x + y)f(z2) = (x + y)k. Thus,

x ∈ S iff y ∈ S. (2)

whenever x2 + y2 is a perfect square.

For a contradiction, let n be the smallest non-negative integer such that f(2n) 6= k. By (l) n

must be odd, so
n − 1

2
is an integer. Now

n − 1
2

< n so f(2
n−1

2 ) = k. Letting x = y = 2
n−1

2

in (∗) shows f(2n) = k, a contradiction. Thus every power of 2 is an element of S.

For each integer n ≥ 2 define p(n) to be the largest prime such that p(n) | n.

Claim: For any integer n > 1 that is not a power of 2, there exists a sequence of integers
x1, x2, . . . , xr such that the following conditions hold:

a) x1 = n.

b) x2
i + x2

i+1 is a perfect square for each i = 1, 2, 3, . . . , r − 1.

c) p(x1) ≥ p(x2) ≥ . . . ≥ p(xr) = 2.

Proof: Since n is not a power of 2, p(n) = p(x1) ≥ 3. Let p(x1) = 2m + 1, so n = x1 =
b(2m + 1)a, for some a and b, where p(b) < 2m + 1.

Case 1: a = 1. Since (2m+1, 2m2+2m, 2m2+2m+1) is a Pythagorean Triple, if x2 = b(2m2+
2m), then x2

1 + x2
2 = b2(2m2 + 2m + 1)2 is a perfect square. Furthermore, x2 = 2bm(m + 1),

and so p(x2) < 2m + 1 = p(x1).

Case 2: a > 1. If n = x1 = (2m + 1)a · b, let x2 = (2m + 1)a−1 · b · (2m2 + 2m), x3 =
(2m+1)a−2 · b · (2m2 +2m)2, . . ., xa+1 = (2m+1)0 · b · (2m2 +2m)a = b · 2ama(m+1)a. Note
that for 1 ≤ i ≤ a, x2

i +x2
i+1 is a perfect square and also note that p(xa+1) < 2m+1 = p(x1).

If xa+1 is not a power of 2, we extend the sequence xi using the same procedure described
above. We keep doing this until p(xr) = 2, for some integer r.

By (2), xi ∈ S iff xi+1 ∈ S for i = 1, 2, 3, . . . , r − 1. Thus, n = x1 ∈ S iff xr ∈ S. But xr is
a power of 2 because p(xr) = 2, and we earlier proved that powers of 2 are in S. Therefore,
n ∈ S , proving the claim.

We have proven that every integer n ≥ 1 is an element of S, and so we have proven that
f(n) = k = f(0), for each n ≥ 1. Therefore, f is constant, Q.E.D.


