
2000 Canadian Mathematics Olympiad Solutions
Chair: Luis Goddyn, Simon Fraser University, goddyn@math.sfu.ca

The Year 2000 Canadian Mathematics Olympiad was written on Wednesday April 2, by 98 high
school students across Canada. A correct and well presented solution to any of the five questions
was awarded seven points. This year’s exam was a somewhat harder than usual, with the mean
score being 8.37 out of 35. The top few scores were: 30, 28, 27, 22, 20, 20, 20. The first, second and
third prizes are awarded to: Daniel Brox (Sentinel Secondary BC), David Arthur (Upper Canada
College ON), and David Pritchard (Woburn Collegiate Institute ON).

1. At 12:00 noon, Anne, Beth and Carmen begin running laps around a circular track of length
three hundred meters, all starting from the same point on the track. Each jogger maintains
a constant speed in one of the two possible directions for an indefinite period of time. Show
that if Anne’s speed is different from the other two speeds, then at some later time Anne will
be at least one hundred meters from each of the other runners. (Here, distance is measured
along the shorter of the two arcs separating two runners.)

Comment: We were surprised by the difficulty of this question, having awarded an average
grade of 1.43 out of 7. We present two solutions; only the first appeared among the graded
papers.

Solution 1: By rotating the frame of reference we may assume that Anne has speed zero, that
Beth runs at least as fast as Carmen, and that Carmen’s speed is positive. If Beth is no more
than twice as fast as Carmen, then both are at least 100 meters from Anne when Carmen has
run 100 meters. If Beth runs more that twice as fast as Carmen, then Beth runs a stretch of
more than 200 meters during the time Carmen runs between 100 and 200 meters. Some part
of this stretch lies more than 100 meters from Anne, at which time both Beth and Carmen
are at least (in fact, more than) 100 meters away from Anne.

Solution 2: By rotating the frame of reference we may assume Anne’s speed to equal zero,
and that the other two runners have non-zero speed. We may assume that Beth is running at
least as fast as Carmen. Suppose that it takes t seconds for Beth to run 200 meters. Then at
all times in the infinite set T = {t, 2t, 4t, 8t, . . .}, Beth is exactly 100 meters from Anne. At
time t, Carmen has traveled exactly d meters where 0 < d ≤ 200. Let k be the least integer
such that 2kd ≥ 100. Then k ≥ 0 and 100 ≤ 2kd ≤ 200, so at time 2kt ∈ T both Beth and
Carmen are at least 100 meters from Anne.

2. A permutation of the integers 1901, 1902, . . . , 2000 is a sequence a1, a2, . . . , a100 in which each
of those integers appears exactly once. Given such a permutation, we form the sequence of
partial sums

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . . , s100 = a1 + a2 + · · ·+ a100.

How many of these permutations will have no terms of the sequence s1, . . . , s100 divisible by
three?

Comment: This question was the easiest and most straight forward, with an average grade of
3.07.

Solution: Let {1901, 1902, . . . , 2000} = R0 ∪ R1 ∪ R2 where each integer in Ri is congruent
to i modulo 3. We note that |R0| = |R1| = 33 and |R2| = 34. Each permutation S =
(a1, a2, . . . , a100) can be uniquely specified by describing a sequence S ′ = (a′1, a

′
2, . . . , a

′
100) of



residues modulo 3 (containing exactly 33 zeros, 33 ones and 34 twos), and three permutations
(one each of R0, R1, and R2). Note that the number of permutations of Ri is exactly |Ri|! =
1 · 2 · · · |Ri|.
The condition on the partial sums of S depends only on the sequence of residues S ′. In
order to avoid a partial sum divisible by three, the subsequence formed by the 67 ones and
twos in S ′ must equal either 1, 1, 2, 1, 2, . . . , 1, 2 or 2, 2, 1, 2, 1, . . . , 2, 1. Since |R2| = |R1|+ 1,
only the second pattern is possible. The 33 zero entries in S ′ may appear anywhere among
a′1, a

′
2, . . . , a

′
100 provided that a′1 6= 0. There are

(99
33

)
= 99!

33! 66! ways to choose which entries in
S ′ equal zero. Thus there are exactly

(99
33

)
sequences S ′ whose partial sums are not divisible

by three. Therefore the total number of permutations S satisfying this requirement is exactly(
99
33

)
· 33! · 33! · 34! =

99! · 33! · 34!
66!

.

Incidently, this number equals approximately 4.4 · 10138.

3. Let A = (a1, a2, . . . , a2000) be a sequence of integers each lying in the interval [−1000, 1000].
Suppose that the entries in A sum to 1. Show that some nonempty subsequence of A sums
to zero.

Comment: This students found this question to be the most difficult, with an average grade
of 0.51, and only one perfect solution among 100 papers.

Solution: We may assume no entry of A is zero, for otherwise we are done. We sort A into
a new list B = (b1, . . . , b2000) by selecting elements from A one at a time in such a way that
b1 > 0, b2 < 0 and, for each i = 2, 3, . . . , 2000, the sign of bi is opposite to that of the partial
sum

si−1 = b1 + b2 + · · ·+ bi−1.

(We can assume that each si−i 6= 0 for otherwise we are done.) At each step of the selection
process a candidate for bi is guaranteed to exist, since the condition a1 + a2 + · · ·+ a2000 = 1
implies that the sum of unselected entries in A is either zero or has sign opposite to si−1.

From the way they were defined, each of s1, s2, . . . , s2000 is one of the 1999 nonzero integers
in the interval [−999, 1000]. By the Pigeon Hole Principle, sj = sk for some j, k satisfying
1 ≤ j < k ≤ 2000. Thus bj+1 + bj+2 + · · ·+ bk = 0 and we are done.

4. Let ABCD be a convex quadrilateral with

\CBD = 2\ADB,
\ABD = 2\CDB

and AB = CB.

Prove that AD = CD.

Comment: There are several different solutions to this, including some using purely trigono-
metric arguments (involving the law of sines and standard angle sum formulas). We present
here two prettier geometric arguments (with diagrams). The first solution is perhaps the more
attractive of the two. Average grade: 1.84 out of 7.

Solution 1 (from contestant Keon Choi): Extend DB to a point P on the circle through A
and C centered at B. Then \CPD = 1

2\CBD = \ADB and \APD = 1
2\ABD = \CDB,
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so APCD is a parallelogram. Now PD bisects AC so BD is an angle bisector of isosceles
triangle ABC. We have

\ADB =
1
2
\CBD =

1
2
\ABD = \CDB

so DB is the angle bisector of \ADC. As DB bisects the base of triangle ADC, this triangle
must be isosceles and AD = CD.

Solution 2: Let the bisector of \ABD meet AD at E. Let the bisector of \CBD meet CD
at F . Then \FBD = \BDE and \EBD = \BDF , which imply BE ‖ FD and BF ‖ ED.
Thus BEDF is a parallelogram whence

BD intersects EF at its midpoint M . (1)

On the other hand since BE is an angle bisector, we have AB
BD = AE

ED . Similarly we have
CB
BD = CF

FD . By assumption AB = CB so AE
ED = CF

FD which implies EF ‖ AC. Thus 4DEF
and 4DAC are similar, which implies by (1) that BD intersects AC at its midpoint N . Since
4ABC is isosceles, this implies AC ⊥ BD. Thus 4NAD and 4NCD are right triangles
with equal legs and hence are congruent. Thus AD = CD.
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5. Suppose that the real numbers a1, a2, . . . , a100 satisfy

a1 ≥ a2 ≥ · · · ≥ a100 ≥ 0

a1 + a2 ≤ 100

a3 + a4 + · · ·+ a100 ≤ 100.

Determine the maximum possible value of a2
1 +a2

2 + · · ·+a2
100, and find all possible sequences

a1, a2, . . . , a100 which achieve this maximum.

Comment: All of the correct solutions involved a sequence of adjustments to the variables,
each of which increase a2

1 +a2
2 + · · ·+a2

100 while satisfying the constraints, eventually arriving
at the two optimal sequences: 100, 0, 0, . . . , 0 and 50, 50, 50, 50, 0, 0, . . . , 0. We present here a
sharper proof, which might be arrived at after guessing that the optimal value is 1002. Average
grade: 1.52 out of 7.
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Solution: We have a1 + a2 + · · ·+ a100 ≤ 200, so

a2
1 + a2

2 + · · ·+ a2
100 ≤ (100− a2)2 + a2

2 + a2
3 + · · ·+ a2

100

= 1002 − 200a2 + 2a2
2 + a2

3 + · · ·+ a2
100

≤ 1002 − (a1 + a2 + · · ·+ a100)a2 + 2a2
2 + a2

3 + · · ·+ a2
100

= 1002 + (a2
2 − a1a2) + (a2

3 − a3a2) + (a2
4 − a4a2) + · · ·+ (a2

100 − a100a2)
= 1002 + (a2 − a1)a2 + (a3 − a2)a3 + (a4 − a2)a4 + · · ·+ (a100 − a2)a100

Since a1 ≥ a2 ≥ · · · ≥ a100 ≥ 0, none of the terms (ai−aj)ai is positive. Thus a2
1 +a2

2 + · · ·+
a2

100 ≤ 10, 000 with equality holding if and only if

a1 = 100− a2 and a1 + a2 + · · ·+ a100 = 200

and each of the products

(a2 − a1)a2, (a3 − a2)a3, (a4 − a2)a4, · · · , (a100− a2)a100

equals zero. Since a1 ≥ a2 ≥ a3 ≥ · · · ≥ a100 ≥ 0, the last condition holds if and only if for
some i ≥ 1 we have a1 = a2 = · · · = ai and ai+1 = · · · = a100 = 0. If i = 1, then we get the
solution 100, 0, 0, . . . , 0. If i ≥ 2, then from a1 + a2 = 100, we get that i = 4 and the second
optimal solution 50, 50, 50, 50, 0, 0, . . . , 0.
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