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SOLUTIONS

Most of the solutions to the problems of the 1999 CMO presented below are taken from students’
papers. Some minor editing has been done - unnecessary steps have been eliminated and some
wording has been changed to make the proofs clearer. But for the most part, the proofs are as
submitted.

Solution to Problem 1 – Adrian Chan, Upper Canada College, Toronto, ON

Rearranging the equation we get 4x2 + 51 = 40[x]. It is known that x ≥ [x] > x − 1, so

4x2 + 51 = 40[x] > 40(x − 1)
4x2 − 40x + 91 > 0

(2x − 13)(2x − 7) > 0

Hence x > 13/2 or x < 7/2. Also,

4x2 + 51 = 40[x] ≤ 40x

4x2 − 40x + 51 ≤ 0
(2x − 17)(2x − 3) ≤ 0

Hence 3/2 ≤ x ≤ 17/2. Combining these inequalities gives 3/2 ≤ x < 7/2 or 13/2 < x ≤ 17/2 .

CASE 1: 3/2 ≤ x < 7/2.

For this case, the possible values for [x] are 1, 2 and 3.

If [x] = 1 then 4x2 + 51 = 40 · 1 so 4x2 = −11, which has no real solutions.

If [x] = 2 then 4x2 + 51 = 40 · 2 so 4x2 = 29 and x =
√

29
2 . Notice that

√
16
2 <

√
29
2 <

√
36
2 so

2 < x < 3 and [x] = 2.

If [x] = 3 then 4x2 + 51 = 40 · 3 and x =
√

69/2. But
√

69
2 >

√
64
2 = 4. So, this solution is rejected.

CASE 2: 13/2 < x ≤ 17/2.

For this case, the possible values for [x] are 6, 7 and 8.

If [x] = 6 then 4x2 + 51 = 40 · 6 so x =
√

189
2 . Notice that

√
144
2 <

√
189
2 <

√
196
2 so 6 < x < 7 and

[x] = 6.

If [x] = 7 then 4x2 + 51 = 40 · 7 so x =
√

229
2 . Notice that

√
196
2 <

√
229
2 <

√
256
2 so 7 < x < 8 and

[x] = 7.

If [x] = 8 then 4x2 + 51 = 40 · 8 so x =
√

269
2 . Notice that

√
256
2 <

√
269
2 <

√
324
2 so 8 < x < 9 and

[x] = 8.

The solutions are x =
√

29
2

,

√
189
2

,

√
229
2

,

√
269
2

.

(Editor: Adrian then checks these four solutions.)
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Solution 1 to Problem 2 – Keon Choi, A.Y. Jackson S.S., North York, ON

Let D and E be the intersections of BC and extended
AC respectively with the circle.

Since CO||AB (because both the altitude and the ra-
dius are 1) 6 BCO = 60◦ and therefore 6 ECO =
180◦ − 6 ACB − 6 BC0 = 60◦.

Since a circle is always symmetric in its diameter and
line CE is reflection of line CB in CO, line segment
CE is reflection of line segment CB.

Therefore CE = CD. B

E

A

C O

D

Therefore 4CED is an isosceles.

Therefore 6 CED = 6 CDE and 6 CED + 6 CDE = 6 ACB = 60◦.

6 CED = 30◦ regardless of the position of centre 0. Since 6 CED is also the angle subtended from
the arc inside the triangle, if CED is constant, the arc length is also constant.

Editor’s Note: This proof has had no editing.
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Solution 2 to Problem 2 – Jimmy Chui, Earl Haig S.S., North York, ON

Place C at the origin, point A at
(

1√
3
, 1

)
and

point B at
(
− 1√

3
, 1

)
. Then 4ABC is equilateral

with altitude of length 1.

Let O be the center of the circle. Because the
circle has radius 1, and since it touches line AB,
the locus of O is on the line through C parallel to
AB (since C is length 1 away from AB), i.e., the
locus of O is on the x-axis.

B A

C

B’
A’

x

y

O(a,0)

Let point O be at (a, 0). Then − 1√
3
≤ a ≤ 1√

3
since we have the restriction that the circle rolls

along AB.

Now, let A′ and B′ be the intersection of the circle with CA and CB respectively. The equation
of CA is y =

√
3 x, 0 ≤ x ≤ 1√

3
, of CB is y = −√

3 x, − 1√
3
≤ x ≤ 0, and of the circle is

(x − a)2 + y2 = 1.

We solve for A′ by substituting y =
√

3 x into (x − a)2 + y2 = 1 to get x =
a ±√

4 − 3a2

4
.

Visually, we can see that solutions represent the intersection of AC extended and the circle, but
we are only concerned with the greater x-value – this is the solution that is on AC, not on AC
extended. Therefore

x =
a +

√
4 − 3a2

4
, y =

√
3

(
a +

√
4 − 3a2

4

)
.

Likewise we solve for B′, but we take the lesser x-value to get

x =
a −√

4 − 3a2

4
, y = −

√
3

(
a +

√
4 − 3a2

4

)
.

Let us find the length of A′B′:

|A′B′|2 =

(
a +

√
4 − 3a2

4
− a −√

4 − 3a2

4

)2

+

((√
3

a +
√

4 − 3a2

4

)
−

(
−

√
3

a −√
4 − 3a2

4

))2

=
4 − 3a2

4
+ 3

a2

4

= 1

which is independent of a.

Consider the points 0, A′ and B′. 40A′B′ is an equilateral triangle (because A′B′ = 0A′ = 0B′ = 1).

Therefore 6 A′0B′ = π
3 and arc A′B′ = π

3 , a constant.
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Solution to Problem 3 – Masoud Kamgarpour, Carson S.S., North Vancouver, BC

Note that n = 1 is a solution. For n > 1 write n in the form n = Pα1
1 Pα2

2 ...Pαm
m where the Pi’s,

1 ≤ i ≤ m, are distinct prime numbers and αi > 0. Since d(n) is an integer, n is a perfect square,
so αi = 2βi for integers βi > 0.

Using the formula for the number of divisors of n,

d(n) = (2β1 + 1)(2β2 + 1) . . . (2βm + 1)

which is an odd number. Now because d(n) is odd, (d(n))2 is odd, therefore n is odd as well, so
Pi ≥ 3, 1 ≤ i ≤ m. We get

Pα1
1 · Pα2

2 . . . Pαm
m = [(α1 + 1)(α2 + 1) . . . (αm + 1)]2

or using αi = 2βi

P β1
1 P β2

2 . . . P βm
m = (2β1 + 1)(2β2 + 1) . . . (2βm + 1).

Now we prove a lemma:

Lemma: P t ≥ 2t + 1 for positive integers t and P ≥ 3, with equality only when P=3 and t=1.

Proof: We use mathematical induction on t. The statement is true for t = 1 because P ≥ 3. Now
suppose P k ≥ 2k + 1, k ≥ 1; then we have

P k+1 = P k · P ≥ P k(1 + 2) > P k + 2 ≥ (2k + 1) + 2 = 2(k + 1) + 1

Thus P t ≥ 2t + 1 and equality occurs only when P = 3 and t = 1.

Let’s say n has a prime factor Pk > 3; then (by the lemma) P βk
k > 2βk+1 and we have P β1

1 . . . P βm
m >

(2β1 + 1) . . . (2βm + 1), a contradiction.

Therefore, the only prime factor of n is P = 3 and we have 3α = 2α + 1. By the lemma α = 1.

The only positive integer solutions are 1 and 9.

Solution 1 to Problem 4 – David Nicholson, Fenelon Falls S.S., Fenelon Falls, ON

Without loss of generality let a1 < a2 < a3 . . . < a8.

Assume that there is no such integer k. Let’s just look at the seven differences di = ai+1−ai. Then
amongst the di there can be at most two 1s, two 2s, and two 3s, which totals to 12.

Now 16 = 17 − 1 ≥ a8 − a1 = d1 + d2 + . . . + d7 so the seven differences must be 1,1,2,2,3,3,4.

Now let’s think of arranging the differences 1,1,2,2,3,3,4. Note that the sum of consecutive differ-
ences is another difference. (Eg d1 + d2 = a3 − a1, d1 + d2 + d3 = a4 − a1)

We can’t place the two 1s side by side because that will give us another difference of 2. The 1s
can’t be beside a 2 because then we have three 3s. They can’t both be beside a 3 because then we
have three 4s! So we must have either 1, 4,−,−,−, 3, 1 or 1, 4, 1, 3,−,−,− (or their reflections).

In either case we have a 3,1 giving a difference of 4 so we can’t put the 2s beside each other. Also we
can’t have 2,3,2 because then (with the 1,4) we will have three 5s. So all cases give a contradiction.

Therefore there will always be three differences equal.

A set of seven numbers satisfying the criteria are {1, 2, 4, 7, 11, 16, 17}. (Editor: There are many
such sets)
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Solution 2 to Problem 4 – The CMO committee

Consider all the consecutive differences (ie, di above) as well as the differences bi = ai+2 − ai, i =
1 . . . 6. Then the sum of these thirteen differences is 2·(a8−a1)+(a7−a2) ≤ 2(17−1)+(16−2) = 46.
Now if no difference occurs more than twice, the smallest the sum of the thirteen differences can
be is 2 · (1 + 2 + 3 + 4 + 5 + 6) + 7 = 49, giving a contradiction.

Solution 1 to Problem 5 – The CMO committee

Let f(x, y, z) = x2y + y2z + z2x. We wish to determine where f is maximal. Since f is cyclic,
without loss of generality we may assume that x ≥ y, z. Since

f(x, y, z) − f(x, z, y) = x2y + y2z + z2x − x2z − z2y − y2x

= (y − z)(x − y)(x − z),

we may also assume y ≥ z. Then

f(x + z, y, 0) − f(x, y, z) = (x + z)2y − x2y − y2z − z2x

= z2y + yz(x − y) + xz(y − z) ≥ 0,

so we may now assume z = 0. The rest follows from the arithmetic-geometric mean inequality:

f(x, y, 0) =
2x2y

2
≤ 1

2

(
x + x + 2y

3

)3

=
4
27

Equality occurs when x = 2y, hence at (x, y, z) = (2
3 , 1

3 , 0). (As well as (0, 2
3 , 1

3) and (1
3 , 0, 2

3).

Solution 2 to Problem 5 – The CMO committee

With f as above, and x ≥ y, z

f

(
x +

z

2
, y +

z

2
, 0

)
− f(x, y, z) = yz(x − y) +

xz

2
(x − z) +

z2y

4
+

z3

8

so we may assume that z = 0. The rest follows as for solution 1.
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GRADERS’ REPORT

Each question was worth a maximum of 7 marks. Every solution on every paper was graded by two
different markers. If the two marks differed by more than one point, the solution was reconsidered
until the difference resolved. If the two marks differed by one point, the average was used in
computing the total score.

The various grades assigned to each solution are displayed below, as a percentage.

MARKS #1 #2 #3 #4 #5

0 7.6 45.6 18.4 38.6 51.3
1 13.9 15.8 43.0 0.0 32.3
2 12.0 12.7 15.2 41.8 13.9
3 5.7 2.5 5.1 7.6 2.5
4 4.4 1.3 8.9 4.4 0.0
5 8.9 2.5 3.2 5.7 1.3
6 8.9 0.0 1.3 1.9 0.0
7 39.9 20.9 6.3 1.3 0.0

PROBLEM 1 The aim of the question was to give the competitors an encouraging start (it was
not a give away!). Over half of the students had good scores of 5, 6 or 7.

The general approach was to find bounds for x and then to find the exact value for x by substituting
in the resulting possible values of [x]. Depending on how the bounds were determined, this meant
checking 6 - 10 different cases.

Points were lost for not adequately verifying the bounds on x. For example, 2 points were deducted
for assuming, without proof, that 4x2 + 51 > 40[x] for x ≥ 9.

PROBLEM 2 Many competitors saw that the key here is to prove that the angle subtended by
the arc at its centre is constant, namely π/3. In all, 16 students managed a complete proof. Most
attempted an analytic solution – indeed, the problem is nearly routine if one chooses coordinates
wisely and later on notes that two such x-coordinates are roots of the same quadratic. A few
students used trigonometry, namely the law of sines on a couple of useful triangles. Two students
found essentially the same synthetic solution, which is very elegant.

PROBLEM 3 Most competitors determined by direct calculation that n = 1 and n = 9 are
solutions. The difficulty was to show that these are the only solutions, which boils down to proving
that pk ≥ 2k + 1 for all primes p > 2 and all k > 0 with equality only for k = 1 and p = 3. This
can be done by induction or by calculus. Only 5 students obtained perfect marks.

PROBLEM 4

Many students found a specific set of seven integers such that the equation did not have three
different solutions. This earned two points. (One student found such a set with maximum value
14. A maximum value of 13 is not possible.)
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Only eight competitors received high marks on the question (5, 6, or 7), and only one student scored
a perfect 7. All of the successful solvers considered differences of consecutive integers, showing that
they must be 1, 1, 2, 2, 3, 3, and 4, and then showed that every ordering of these differences led
to at least three repetitions of the same value. Most competitors recognized that the 1s could not
be together, nor could they be beside a 2. They then proceed by considering all such possible
arrangements, which often resulted in close to a dozen cases (depending on how the the cases were
handled.) David Nicholson was the most efficient at pruning the cases. (See Solution 1 to Problem
4.) Most students failed to consider one or two (easily dismissed) cases, hence lost 1 or 2 points.

A number of the contestants attempted to solve the problem by examining the odd-even character
of the set of eight integers, counting how many of the differences were odd or even, and using the
pigeon-hole principle. Although this approach looked promising, no one was able to handle the
case that 3 of the integers were of one parity, and 5 were of the other parity.

PROBLEM 5 No students received full marks for this problem. One student received 5 marks
for a proof that had minor errors. This proof was by Calculus. The committee was aware that
the problem could be solved using Calculus but (erroneously) thought it unlikely high school
students would attempt such a solution. Many students received 1 point for “guessing” that(

2
3 , 1

3 , 0
)

,
(
0, 2

3 , 1
3

)
and

(
1
3 , 0 , 2

3

)
are where equality occurred. Some students received

a further point for verifying the inequality on the boundary of the region.
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