
1998

SOLUTIONS

The solutions to the problems of the 1998 CMO presented below are taken from students papers.
Some minor editing has been done - unnecesary steps have been eliminated and some wording has
been changed to make the proofs clearer. But for the most part, the proofs are as submitted.

Solution to Problem 1 – David Arthur, Upper Canada College, Toronto, ON

Let a = 30k + r, where k is an integer and r is a real number between 0 and 29 inclusive.

Then
[
1
2

a

]
=

[
1
2

(30k + r)
]

= 15k +
[
r

2

]
. Similarly

[
1
3

a

]
= 10k +

[
r

3

]
and

[
1
5

a

]
= 6k +

[
r

5

]
.

Now,
[
1
2

a

]
+

[
1
3

a

]
+

[
1
5

a

]
= a, so

(
15k +

[
r

2

])
+

(
10k +

[
r

3

])
+

(
6k +

[
r

5

])
= 30k + r and

hence k = r −
[
r

2

]
−

[
r

3

]
−

[
r

5

]
.

Clearly, r has to be an integer, or r −
[
r

2

]
−

[
r

3

]
−

[
r

5

]
will not be an integer, and therefore, cannot

equal k.

On the other hand, if r is an integer, then r −
[
r

2

]
−

[
r

3

]
−

[
r

5

]
will also be an integer, giving

exactly one solution for k.

For each r(0 ≤ r ≤ 29), a = 30k + r will have a different remainder mod 30, so no two different
values of r give the same result for a.

Since there are 30 possible values for r(0, 1, 2, . . . , 29), there are then 30 solutions for a.
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Solution to Problem 2 – Jimmy Chui, Earl Haig S.S., North York, ON

Since
(

x − 1
x

)1/2

≥ 0 and
(

1 − 1
x

)1/2

≥ 0, then 0 ≤
(

x − 1
x

)1/2

+
(

1 − 1
x

)1/2

= x .

Note that x 6= 0. Else,
1
x

would not be defined so x > 0.

Squaring both sides gives,

x2 =
(

x − 1
x

)
+

(
1 − 1

x

)
+ 2

√(
x − 1

x

) (
1 − 1

x

)

x2 = x + 1 − 2
x

+ 2
√

x − 1 − 1
x

+
1
x2

.

Multiplying both sides by x and rearranging, we get

x3 − x2 − x + 2 = 2
√

x3 − x2 − x + 1

(x3 − x2 − x + 1) − 2
√

x3 − x2 − x + 1 + 1 = 0

(
√

x3 − x2 − x + 1 − 1)2 = 0√
x3 − x2 − x + 1 = 1

x3 − x2 − x + 1 = 1

x(x2 − x − 1) = 0

x2 − x − 1 = 0 since x 6= 0.

Thus x =
1 ±√

5
2

. We must check to see if these are indeed solutions.

Let α =
1 +

√
5

2
, β =

1 −√
5

2
. Note that α + β = 1, αβ = −1 and α > 0 > β.

Since β < 0, β is not a solution.

Now, if x = α, then

(
α − 1

α

)1/2

+
(

1 − 1
α

)1/2

= (α + β)1/2 + (1 + β)1/2 (since αβ −−1)

= 11/2 + (β2)1/2 (since α + β = 1 and β2 = β + 1)

= 1 − β (since β < 0)

= α (since α + β = 1).

So x = α is the unique solution to the equation.
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Solution 1 to Problem 3 – Chen He, Columbia International Collegiate, Hamilton, ON

1 +
1
3

+ . . . +
1

2n − 1
=

1
2

+
1
2

+
1
3

+
1
5

+ . . .
1

2n − 1
(1)

Since

1
3

>
1
4
,

1
5

>
1
6
, . . . ,

1
2n − 1

>
1
2n

,

(1) gives

1 +
1
3

+ . . . +
1

2n − 1
>

1
2

+
1
2

+
1
4

+
1
6

+ . . . +
1
2n

=
1
2

+
(

1
2

+
1
4

+
1
6

+ . . . +
1
2n

)
. (2)

Since

1
2

>
1
4

,
1
2

>
1
6

,
1
2

>
1
8

, . . . ,
1
2

>
1
2n

then

n

2
=

1
2

+
1
2

+
1
2

+ . . . +
1
2︸ ︷︷ ︸

n

>
1
2

+
1
4

+
1
6

+ . . . +
1
2n

so
1
2

>
1
n

(
1
2

+
1
4

+
1
6

+ . . . +
1
2n

)
. (3)

Then (1), (2) and (3) show

1 +
1
3

+ . . . +
1

2n − 1
>

1
n

(
1
2

+
1
4

+
1
6

+ . . . +
1
2n

)
+

(
1
2

+
1
4

+
1
6

+ . . . +
1
2n

)

=
(

1 +
1
n

) (
1
2

+
1
4

+ . . . +
1
2n

)

=
n + 1

n

(
1
2

+
1
4

+ . . . +
1
2n

)
.

Therefore
1

n + 1

(
1 +

1
3

+ . . . +
1

2n − 1

)
>

1
n

(
1
2

+
1
4

+ . . . +
1
2n

)
for all n ∈ N and n ≥ 2.
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Solution 2 to Problem 3 – Yin Lei, Vincent Massey S.S., Windsor, ON

Since n ≥ 2, n(n + 1) ≥ 0. Therefore the given inequality is equivalent to

n

(
1 +

1
3

+ . . . +
1

2n − 1

)
≥ (n + 1)

(
1
2

+
1
4

+ . . . +
1
2n

)
.

We shall use mathematical induction to prove this.

For n = 2, obviously
1
3

(
1 +

1
3

)
=

4
9

>
1
2

(
1
2

+
1
4

)
=

3
8
.

Suppose that the inequality stands for n = k, i.e.

k

(
1 +

1
3

+ . . . +
1

2k − 1

)
> (k + 1)

(
1
2

+
1
4

+ . . . +
1
2k

)
. (1)

Now we have to prove it for n = k + 1.

We know

(
1 +

1
3

+ . . . +
1

2k − 1

)
−

(
1
2

+
1
4

+ . . . +
1
2k

)

=
(

1 − 1
2

)
+

(
1
3
− 1

4

)
+

(
1
5
− 1

6

)
+ . . . +

(
1

2k − 1
− 1

2k

)

=
1

1 × 2
+

1
3 × 4

+
1

5 × 6
+ . . . +

1
(2k − 1)(2k)

.

Since

1 × 2 < 3 × 4 < 5 × 6 < . . . < (2k − 1)(2k) < (2k + 1)(2k + 2)

then

1
1 × 2

+
1

3 × 4
+ . . . +

1
(2k − 1)(2k)

>
k

(2k + 1)(2k + 2)

hence

1 +
1
3

+ . . . +
1

2k − 1
>

1
2

+
1
4

+ . . . +
1
2k

+
k

(2k + 1)(2k + 2)
. (2)

Also

k + 1
2k + 1

− k + 2
2k + 2

=
2k2 + 2k + 2k + 2 − 2k2 − 4k − k − 2

(2k + 1)(2k + 2)
= − k

(2k + 1)(2k + 2)

therefore

k + 1
2k + 1

=
k + 2
2k + 2

− k

(2k + 1)(2k + 2)
. (3)
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Adding 1, 2 and 3:

k

(
1 +

1
3

+ . . . +
1

2k − 1

)
+

(
1 +

1
3

+ . . . +
1

2k − 1

)
+

k + 1
2k + 1

> (k + 1)
(

1
2

+
1
4

+ . . . +
1
2k

)
+

(
1
2

+
1
4

+ . . . +
1
2k

)
+

k

(2k + 1)(2k + 2)
+

k + 2
2k + 2

− k

(2k + 1)(2k + 2)

Rearrange both sides to get

(k + 1)
(

1 +
1
3

+ . . . +
1

2k + 1

)
> (k + 2)

(
1
2

+
1
4

+ . . . +
1

2k + 2

)
.

Proving the induction.
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Solution 1 to Problem 4 – Keon Choi, A.Y. Jackson S.S., North York, ON

Suppose H is the foot of the perpendicular line from A to BC; construct equilateral 4ABG, with
C on BG. I will prove that if F is the point where AH meets BD, then 6 FCB = 70◦. (Because
that means AH, and the given lines BD and CE meet at one point and that proves the question.)
Suppose BD extended meets AG at I.

H

A

I

D

B

E

F

C G

Now BF = GF and 6 FBG = 6 FGB = 40◦ so that 6 IGF = 20◦. Also 6 IFG = 6 FBG+ 6 FGB =
80◦, so that

6 FIG = 180◦ − 6 IFG − 6 IGF

= 180◦ − 80◦ − 20◦

= 80◦.

Therefore 4GIF is an isoceles triangle, so

GI = GF = BF. (1)

But 4BGI and 4ABC are congruent, since BG = AB, 6 GBI = 6 BAC, 6 BGI = 6 ABC.

Therefore

GI = BC. (2)

From (1) and (2) we get

BC = BF.

So in 4BCF ,

6 BCF =
180◦ − 6 FBC

2
=

180◦ − 40◦

2
= 70◦.

Thus 6 FCB = 70◦ and that proves that the given lines CE and BD and the perpendicular line
AH meet at one point.
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Solution 2 to Problem 4 – Adrian Birka, Lakeshore Catholic H.S., Port Colborne, ON

First we prove the following lemma:

In 4ABC, AA′, BB′, CC ′ intersect if-f

sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
= 1,

where α1, α2, β1, β2, γ1, γ2 are as shown in the diagram just below.

(Editor: This is a known variant of Ceva’s Theorem.)

A’

B’

C’

c2

c1
β1

β2
a2

a1

γ1γ2

2b1b

α2
α1

B

A C

D

Proof: Let 6 BB′C = x, then 6 BB′A = 180◦ − x. Using the sine law in 4BB′C yields

b2

sinβ2
=

a

sinx
. (1)

Similarly using the sine law in 4BB′A yields

b1

sinβ1
=

c

sin(180◦ − x)
=

c

sinx
. (2)

Hence,

b1 : b2 =
c sinβ1

a sinβ2
(3)

(from (1),(2)). (Editor: Do you recognize this when β1 = β2?)

Similarly,

a1 : a2 =
b sin α1

c sinα2
, c1 : c2 =

a sin γ1

b sin γ2
. (4)

By Ceva’s theorem, the necessary and sufficient condition for AA′, BB′, CC ′ to intersect is:
(a1 : a2) · (b1 : b2) · (c1 : c2) = 1. Using (3), (4) on this yields:

b

c
· sinα1

sinα2
· a

b
· sin γ1

sin γ2
· c

a
· sin β1

sin β2
= 1
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so

sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
= 1. (5)

This is just what we needed to show, therefore the lemma is proved.

Now, in our original question, give 6 BAC = 40◦, 6 ABC = 60◦. It follows that 6 ACB = 80◦.

Since 6 CBD = 40◦, 6 ABD = 6 ABC − 6 DBC = 20◦. Similarly, 6 ECA = 20◦.
B

K

A C

F
E

D

Now let us show that 6 FAD = 10◦. Suppose otherwise. Let F ′ be such that F, F ′ are in the same
side of AC and 6 DAF ′ = 10◦. Then 6 BAF ′ = 6 BAC − 6 DAF ′ = 30◦.

Thus

sin 6 ABD

sin 6 DBC
· sin 6 BCE

sin 6 ECA
· sin 6 CAF ′

sin 6 F ′AB
=

sin 20◦

sin 40◦
· sin 70◦

sin 10◦
· sin 10◦

sin 30◦

=
sin 20◦

2 sin 20◦ cos 20◦
· cos 20◦

sin 30◦

=
1

2 sin 30◦
= 1.

By the lemma above, AF ′ passes through CE∩BD = F . Therefore AF ′ = AF , and 6 FAD = 10◦,
contrary to assumption. Thus 6 FAD must be 10◦. Now let AF ∩ BC = K. Since 6 KAC =
10◦, 6 KCA = 80◦, it follows that 6 AKC = 90◦. Therefore AK⊥BC ⇒ AF⊥BC as needed.
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Solution to Problem 5 – Adrian Chan, Upper Canada College, Toronto, ON

Let us first prove by induction that
a2

n + a2
n+1

an · an+1 + 1
= m2 for all n ≥ 0.

Proof:

Base Case (n = 0) :
a2

0 + a2
1

a0 · a1 + 1
=

0 + m2

0 + 1
= m2.

Now, let us assume that it is true for n = k, k ≥ 0. Then,

a2
k + a2

k+1

ak · ak+1 + 1
= m2

a2
k + a2

k+1 = m2 · ak · ak+1 + m2

a2
k+1 + m4a2

k+1 − 2m2 · ak · ak+1 + a2
k = m2 + m4a2

k+1 − m2 · ak · ak+1

a2
k+1 + (m2ak+1 − ak)2 = m2 + m2ak+1(m2ak+1 − ak)

a2
k+1 + a2

k+2 = m2 + m2 · ak+1 · ak+2 .

So
a2

k+1 + a2
k+2

ak+1 · ak+2 + 1
= m2,

proving the induction. Hence (an, an+1) is a solution to
a2 + b2

ab + 1
= m2 for all n ≥ 0.

Now, consider the equation
a2 + b2

ab + 1
= m2 and suppose (a, b) = (x, y) is a solution with 0 ≤ x ≤ y.

Then

x2 + y2

xy + 1
= m2. (1)

If x = 0 then it is easily seen that y = m, so (x, y) = (a0, a1). Since we are given x ≥ 0, suppose
now that x > 0.

Let us show that y ≤ m2x.

Proof by contradiction: Assume that y > m2x. Then y = m2x + k where k ≥ 1.

Substituting into (1) we get

x2 + (m2x + k)2

(x)(m2x + k) + 1
= m2

x2 + m4x2 + 2m2xk + k2 = m4x2 + m2kx + m2

(x2 + k2) + m2(kx − 1) = 0.

Now, m2(kx − 1) ≥ 0 since kx ≥ 1 and x2 + k2 ≥ x2 + 1 ≥ 1 so (x2 + k2) + m2(kx − 1) 6= 0.

Thus we have a contradiction, so y ≤ m2x if x > 0.
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Now substitute y = m2x − x1, where 0 ≤ x1 < m2x, into (1).

We have

x2 + (m2x − x1)2

x(m2x − x1) + 1
= m2

x2 + m4x2 − 2m2x · x1 + x2
1 = m4x2 − m2x · x1 + m2

x2 + x2
1 = m2(x · x1 + 1)

x2 + x2
1

x · x1 + 1
= m2. (2)

If x1 = 0, then x2 = m2. Hence x = m and (x1, x) = (0, m) = (a0, a1). But y = m2x − x1 = a2, so
(x, y) = (a1, a2). Thus suppose x1 > 0.

Let us now show that x1 < x.

Proof by contradiction: Assume x1 ≥ x.

Then m2x − y ≥ x since y = m2x − x1, and

(
x2 + y2

xy + 1

)
x − y ≥ x since

(x, y) is a solution to
a2 + b2

ab + 1
= m2.

So x3 + xy2 ≥ x2y + xy2 + x + y, hence x3 ≥ x2y + x + y which is a contradiction since y ≥ x > 0.

With the same proof that y ≤ m2x, we have x ≤ m2x1. So the substitution x = m2x1 − x2 with
x2 ≥ 0 is valid.

Substituting x = m2x1 − x2 into (2) gives
x2

1 + x2
2

x1 · x2 + 1
= m2.

If x2 6= 0, then we continue with the substitution xi = m2
xi+1

−xi+2 (*) until we get
x2

j + x2
j+1

xj · xj+1 + 1
= m2

and xj+1 = 0. (The sequence xi is decreasing, nonnegative and integer.)

So, if xj+1 = 0, then x2
j = m2 so xj = m and (xj+1, xj) = (0, m) = (a0, a1).

Then (xj , xj−1) = (a1, a2) since xj−1 = m2xj − xj+1 (from (*)).

Continuing, we have (x1, x) = (an−1, an) for some n. Then (x, y) = (an, an+1).

Hence
a2 + b2

ab + 1
= m2 has solutions (a, b) if and only if (a, b) = (an, an+1) for some n.
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GRADERS’ REPORT

Each question was worth a maximum of 7 marks. Every solution on every paper was graded by two
different markers. If the two marks differed by more than one point, the solution was reconsidered
until the difference resolved. If the two marks differed by one point, the average was used in
computing the total score.

The various grades assigned each solution are displayed below, as a percentage.

MARKS #1 #2 #3 #4 #5

0 7.6 9.8 40.2 31.0 73.9
1 14.1 27.7 7.1 27.7 9.2
2 10.9 16.8 16.8 21.7 12.0
3 6.5 16.3 3.8 1.6 1.1
4 3.3 2.2 1.6 2.2 0.5
5 6.0 14.1 4.3 3.8 0.0
6 16.3 6.0 7.1 2.2 1.1
7 35.3 7.1 19.0 9.8 2.2

PROBLEM 1

This question was well done. 47 students received 6 or 7 and only 6 students received no marks.
Many students came up with a proof similar to David Arthur’s proof. Another common approach
was to find bounds for a (either 0 ≤ a < 60 or 0 ≤ a < 90) and to then check which of these a
satisfy the equation.

PROBLEM 2

Although most students attempted this problem, there were only 6 perfect solutions. A further 6
solutions earned a mark of 6/7 and 13 solutions earned a mark of 5/7.

The most common approach was to square both sides of the equation, rearrange the terms to isolate
the radical, and to then square both sides again. This resulted in the polynomial x6 − 2x5 − x4 +
2x3 + x2 = 0. Many students were unable to factor this polynomial, and so earned only 2 or 3
points.

The polynomial has three distinct roots: 0,
1 +

√
5

2
, and

1 −√
5

2
. Most students recognized that

0 is extraneous. One point was deducted for not finding that
1 −√

5
2

is extraneous, and a further

point was deducted for not checking that
1 +

√
5

2
is a solution. (It’s not obvious that the equation

has any solutions.) Failing to check for extraneous roots is considered to be a major error. The
graders should, perhaps, have deducted more points for this mistake.

The solution included here avoids the 6th degree polynomial, thus avoiding the difficult factoring.
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However, the solutions must still be checked.

PROBLEM 3

There were 17 perfect solutions and eleven more contestants earned either 5 or 6 points.

The most elegant solution uses two simple observations: that 1 =
1
2

+
1
2

and that
1
2

is greater than

the average of
1
2

,
1
4

, . . . ,
1
2n

. A telescope argument also works, adding the first and last terms
from each side, and so on. The key to a successful proof by induction is to be careful with algebra
and to avoid the temptation to use inequalities. For example, many students used the induction
hypothesis to deduce that

1
n + 2

(
1 +

1
3

+ . . . +
1

2n + 1

)
>

n + 1
(n + 2)n

(
1 +

1
2

+ . . . +
1
2n

)
+

1
(n + 2)(2n + 1)

then used
n + 1

(n + 2)n
>

1
n + 1

, which is too sloppy for a successful induction proof.

PROBLEM 4

Many contestants attempted this question, though few got beyond labeling the most apparent
angles. Nine students successfully completed the problem, while another six made a significant
attempt.

Most of these efforts employed trigonometry or coordinates to set up a trigonometric equation for
an unknown angle. This yields to an assault by identities. Adrian Birka produced a very clean
solution of this nature.

Only Keon Choi managed to complete a (very pretty) synthetic solution. One other contestant
made significant progress with the same idea.

PROBLEM 5

Many students were successful in finding the expression for the terms of the sequence {an} by a
variety of methods: producing an explicit formula, by means of a generating function and as a
sum of binomial coefficients involving parameter m. Unfortunately this does not help solving the
problem. Nevertheless seventeen contestants were able to prove by induction that the terms of the
sequence satisfy the required relation.

To prove the ”only if” part one should employ the method of descent which technically is the same
calculation as in the direct part of the problem. Three students succeeded in this, but only two
obtained a complete solution by showing that the sequence constructed by descent is decreasing
and must have m and 0 as the last two terms.
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