CMO 1996 SOLUTIONS

QUESTION 1

Solution .

If $f(x) = x^3 - x - 1 = (x - \alpha)(x - \beta)(x - \gamma)$ has roots α, β, γ standard results about roots of polynomials give $\alpha + \beta + \gamma = 0$, $\alpha\beta + \alpha\gamma + \beta\gamma = -1$, and $\alpha\beta\gamma = 1$.

Then

$$S = \frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = \frac{N}{(1-\alpha)(1-\beta)(1-\gamma)}$$

where the numerator simplifies to

$$N = 3 - (\alpha + \beta + \gamma) - (\alpha\beta + \alpha\gamma + \beta\gamma) + 3\alpha\beta\gamma$$

= 3 - (0) - (-1) + 3(1)
= 7.

The denominator is f(1) = -1 so the required sum is -7.

QUESTION 2

Solution 1.

For any t, $0 \le 4t^2 < 1 + 4t^2$, so $0 \le \frac{4t^2}{1 + 4t^2} < 1$. Thus x, y and z must be non-negative and less than 1.

Observe that if one of x y or z is 0, then x = y = z = 0.

If two of the variables are equal, say x = y, then the first equation becomes

$$\frac{4x^2}{1+4x^2} = x.$$

This has the solution x = 0, which gives x = y = z = 0 and $x = \frac{1}{2}$ which gives $x = y = z = \frac{1}{2}$.

Finally, assume that x, y and z are non-zero and distinct. Without loss of generality we may assume that either 0 < x < y < z < 1 or 0 < x < z < y < 1. The two proofs are similar, so we do only the first case.

We will need the fact that $f(t) = \frac{4t^2}{1+4t^2}$ is increasing on the interval (0,1).

To prove this, if 0 < s < t < 1 then

$$f(t) - f(s) = \frac{4t^2}{1 + 4t^2} - \frac{4s^2}{1 + 4s^2}$$
$$= \frac{4t^2 - 4s^2}{(1 + 4s^2)(1 + 4t^2)}$$
$$> 0.$$

So $0 < x < y < z \Rightarrow f(x) = y < f(y) = z < f(z) = x$, a contradiction. Hence x = y = z = 0 and $x = y = z = \frac{1}{2}$ are the only real solutions.

Solution 2.

Notice that x, y and z are non-negative. Adding the three equations gives

$$x + y + z = \frac{4z^2}{1 + 4z^2} + \frac{4x^2}{1 + 4x^2} + \frac{4y^2}{1 + 4y^2}$$

This can be rearranged to give

$$\frac{x(2x-1)^2}{1+4x^2} + \frac{y(2y-1)^2}{1+4y^2} + \frac{z(2z-1)^2}{1+4z^2} = 0.$$

Since each term is non-negative, each term must be 0, and hence each variable is either 0 or $\frac{1}{2}$. The original equations then show that x = y = z = 0 and $x = y = z = \frac{1}{2}$ are the only two solutions.

Solution 3.

Notice that x, y, and z are non-negative. Multiply both sides of the inequality

$$\frac{y}{1+4y^2} \ge 0$$

by $(2y-1)^2$, and rearrange to obtain

$$y - \frac{4y^2}{1 + 4y^2} \ge 0,$$

and hence that $y \ge z$. Similarly, $z \ge x$, and $x \ge y$. Hence, x = y = z and, as in Solution 1, the two solutions follow.

Solution 4.

As for solution 1, note that x = y = z = 0 is a solution and any other solution will have each of x, y and z positive.

The arithmetic-geometric mean inequality (or direct computation) shows that $\frac{1+4x^2}{2} \ge \sqrt{1 \cdot 4x^2} = 2x$ and hence $x \ge \frac{4x^2}{1+4x^2} = y$, with equality if and only if $1 = 4x^2$ – that is, $x = \frac{1}{2}$. Similarly, $y \ge z$ with equality if and only if $y = \frac{1}{2}$ and $z \ge x$ with equality if and only if $z = \frac{1}{2}$. Adding $x \ge y$, $y \ge z$ and $z \ge x$ gives $x+y+x \ge x+y+z$. Thus equality must occur in each inequality, so $x = y = z = \frac{1}{2}$.

QUESTION 3

Solution.

Let a_1, a_2, \ldots, a_n be a permutation of $1, 2, \ldots, n$ with properties (i) and (ii).

A crucial observation, needed in Case II (b) is the following: If a_k and a_{k+1} are consecutive integers (i.e. $a_{k+1} = a_k \pm 1$), then the terms to the right of a_{k+1} (also to the left of a_k) are either all less than both a_k and a_{k+1} or all greater than both a_k and a_{k+1} .

Since $a_1 = 1$, by (ii) a_2 is either 2 or 3.

CASE I: Suppose $a_2 = 2$. Then a_3, a_4, \ldots, a_n is a permutation of $3, 4, \ldots, n$. Thus a_2, a_3, \ldots, a_n is a permutation of $2, 3, \ldots, n$ with $a_2 = 2$ and property (ii). Clearly there are f(n-1) such permutations.

CASE II: Suppose $a_2 = 3$.

- (a) Suppose $a_3 = 2$. Then a_4, a_5, \ldots, a_n is a permutation of $4, 5, \ldots, n$ with $a_4 = 4$ and property (ii). There are f(n-3) such permutations.
- (b) Suppose $a_3 \ge 4$. If a_{k+1} is the first even number in the permutation then, because of (ii), a_1, a_2, \ldots, a_k must be $1, 3, 5, \ldots, 2k - 1$ (in that order). Then a_{k+1} is either 2k or 2k - 2, so that a_k and a_{k+1} are consecutive integers. Applying the crucial observation made above, we deduce that a_{k+2}, \ldots, a_n are all either greater than or smaller than a_k and a_{k+1} . But 2 must be to the right of a_{k+1} . Hence a_{k+2}, \ldots, a_n are the even integers less than a_{k+1} . The only possibility then, is

$$1, 3, 5, \ldots, a_{k-1}, a_k, \ldots, 6, 4, 2.$$

Cases I and II show that

$$f(n) = f(n-1) + f(n-3) + 1, \ n \ge 4.$$
(*)

Calculating the first few values of f(n) directly gives

$$f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 4, f(5) = 6.$$

Calculating a few more f(n)'s using (*) and mod 3 arithmetic, f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 1, f(5) = 0, f(6) = 0, f(7) = 2, f(8) = 0, f(9) = 1, f(10) = 1, f(11) = 2. Since f(1) = f(9), f(2) = f(10) and $f(3) = f(11) \mod 3$, (*) shows that $f(a) = f(a \mod 8)$, mod 3, $a \ge 1$.

Hence $f(1996) \equiv f(4) \equiv 1 \pmod{3}$ so 3 does not divide f(1996).

Solution 1.

Let BE = BD with E on BC, so that AD = EC:

By a standard theorem, $\frac{AB}{CB} = \frac{AD}{DC}$; so in

 $\triangle CED$ and $\triangle CAB$ we have a common angle and

$$\frac{CE}{CD} = \frac{AD}{CD} = \frac{AB}{CB} = \frac{CA}{CB}.$$

Thus $\triangle CED \sim \triangle CAB$, so that $\angle CDE = \angle DCE = \angle ABC = 2x$. Hence $\angle BDE = \angle BED = 4x$, whence $9x = 180^{\circ}$ so $x = 20^{\circ}$. Thus $\angle A = 180^{\circ} - 4x = 100^{\circ}$.

Solution 2.

Apply the law of sines to $\triangle ABD$ and $\triangle BDC$ to get

$$\frac{AD}{BD} = \frac{\sin x}{\sin 4x}$$
 and $1 + \frac{AD}{BD} = \frac{BC}{BD} = \frac{\sin 3x}{\sin 2x}$

Now massage the resulting trigonometric equation with standard identities to get

$$\sin 2x \left(\sin 4x + \sin x\right) = \sin 2x \left(\sin 5x + \sin x\right).$$

Since $0 < 2x < 90^{\circ}$, we get

$$5x - 90^\circ = 90^\circ - 4x$$
,

so that $\angle A = 100^{\circ}$.

QUESTION 5

Solution.

Let

$$f(n) = n - \sum_{k=1}^{m} [r_k n]$$

= $n \sum_{k=1}^{m} r_k - \sum_{k=1}^{m} [r_k n]$
= $\sum_{k=1}^{m} \{r_k n - [r_k n]\}.$

Now $0 \le x - [x] < 1$, and if c is an integer, (c+x) - [c+x] = x - [x]. Hence $0 \le f(n) < \sum_{k=1}^{m} 1 = m$. Because f(n) is an integer, $0 \le f(n) \le m - 1$.

To show that f(n) can achieve these bounds for n > 0, we assume that $r_k = \frac{a_k}{b_k}$ where a_k, b_k are integers; $a_k < b_k$.

Then, if $n = b_1 b_2 \dots b_m$, $(r_k n) - [r_k n] = 0$, $k = 1, 2, \dots, m$ and thus f(n) = 0. Letting $n = b_1 b_2 \dots b_n - 1$, then

$$r_k n = r_k (b_1 b_2 \dots b_m - 1)$$

= $r_k \{ (b_1 b_2 \dots b_m - b_k) + b_k - 1) \}$
= integer + $r_k (b_k - 1)$.

This gives

$$r_k n - [r_k n] = r_k (b_k - 1) - [r_k (b_k - 1)]$$
$$= \frac{a_k}{b_k} (b_k - 1) - \left[\frac{a_k}{b_k} (b_k - 1)\right]$$
$$= \left(a_k - \frac{a_k}{b_k}\right) - \left[a_k - \frac{a_k}{b_k}\right]$$
$$= \left(a_k - \frac{a_k}{b_k}\right) - (a_k - 1)$$
$$= 1 - \frac{a_k}{b_k} = 1 - r_k.$$

Hence

$$f(n) = \sum_{k=1}^{m} (1 - r_k) = m - 1.$$