THE 2002 CANADIAN MATHEMATICAL OLYMPIAD

1. Let S be a subset of $\{1,2, \ldots, 9\}$, such that the sums formed by adding each unordered pair of distinct numbers from S are all different. For example, the subset $\{1,2,3,5\}$ has this property, but $\{1,2,3,4,5\}$ does not, since the pairs $\{1,4\}$ and $\{2,3\}$ have the same sum, namely 5 .
What is the maximum number of elements that S can contain?
2. Call a positive integer n practical if every positive integer less than or equal to n can be written as the sum of distinct divisors of n.

For example, the divisors of 6 are $\mathbf{1}, \mathbf{2}, \mathbf{3}$, and $\mathbf{6}$. Since

$$
1=\mathbf{1}, \quad 2=\mathbf{2}, \quad 3=\mathbf{3}, \quad 4=\mathbf{1}+\mathbf{3}, \quad 5=\mathbf{2}+\mathbf{3}, \quad 6=\mathbf{6},
$$

we see that 6 is practical.
Prove that the product of two practical numbers is also practical.
3. Prove that for all positive real numbers a, b, and c,

$$
\frac{a^{3}}{b c}+\frac{b^{3}}{c a}+\frac{c^{3}}{a b} \geq a+b+c
$$

and determine when equality occurs.
4. Let Γ be a circle with radius r. Let A and B be distinct points on Γ such that $A B<\sqrt{3} r$. Let the circle with centre B and radius $A B$ meet Γ again at C. Let P be the point inside Γ such that triangle $A B P$ is equilateral. Finally, let the line $C P$ meet Γ again at Q.
Prove that $P Q=r$.
5. Let $N=\{0,1,2, \ldots\}$. Determine all functions $f: N \rightarrow N$ such that

$$
x f(y)+y f(x)=(x+y) f\left(x^{2}+y^{2}\right)
$$

for all x and y in N.

