Canadian Mathematical Olympiad
 1986

Problem 1

In the diagram line segments $A B$ and $C D$ are of length 1 while angles $A B C$ and $C B D$ are 90° and 30° respectively. Find $A C$.

PROBLEM 2
A Mathlon is a competition in which there are M athletic events. Such a competition was held in which only A, B, and C participated. In each event p_{1} points were awarded for first place, p_{2} for second and p_{3} for third, where $p_{1}>p_{2}>p_{3}>0$ and p_{1}, p_{2}, p_{3} are integers. The final score for A was 22 , for B was 9 and for C was also 9. B won the 100 metres. What is the value of M and who was second in the high jump?

PROBLEM 3
A chord $S T$ of constant length slides around a semicircle with diameter $A B . M$ is the mid-point of $S T$ and P is the foot of the perpendicular from S to $A B$. Prove that angle $S P M$ is constant for all positions of $S T$.

Problem 4

For positive integers n and k, define $F(n, k)=\sum_{r=1}^{n} r^{2 k-1}$. Prove that $F(n, 1)$ divides $F(n, k)$.

Problem 5
Let $u_{1}, u_{2}, u_{3}, \ldots$ be a sequence of integers satisfying the recurrence relation $u_{n+2}=$ $u_{n+1}^{2}-u_{n}$. Suppose $u_{1}=39$ and $u_{2}=45$. Prove that 1986 divides infinitely many terms of the sequence.

