Canadian Mathematical Olympiad
 1985

Problem 1

The lengths of the sides of a triangle are 6,8 and 10 units. Prove that there is exactly one straight line which simultaneously bisects the area and perimeter of the triangle.

PROBLEM 2
Prove or disprove that there exists an integer which is doubled when the initial digit is transferred to the end.

PROBLEM 3

Let P_{1} and P_{2} be regular polygons of 1985 sides and perimeters x and y respectively. Each side of P_{1} is tangent to a given circle of circumference c and this circle passes through each vertex of P_{2}. Prove $x+y \geq 2 c$. (You may assume that $\tan \theta \geq \theta$ for $0 \leq \theta<\frac{\pi}{2}$).

Problem 4
Prove that 2^{n-1} divides n ! if and only if $n=2^{k-1}$ for some positive integer k.
Problem 5
Let $1<x_{1}<2$ and, for $n=1,2, \ldots$, define $x_{n+1}=1+x_{n}-\frac{1}{2} x_{n}^{2}$. Prove that, for $n \geq 3,\left|x_{n}-\sqrt{2}\right|<2^{-n}$.

