Canadian Mathematical Olympiad 1983

PROBLEM 1

Find all positive integers w, x, y and z which satisfy $w!=x!+y!+z!$.
PROBLEM 2
For each real number r let T_{r} be the transformation of the plane that takes the point (x, y) into the point $\left(2^{r} x, r 2^{r} x+2^{r} y\right)$. Let F be the family of all such transformations i.e. $F=\left\{T_{r}: r\right.$ a real number $\}$. Find all curves $y=f(x)$ whose graphs remain unchanged by every transformation in F.

Problem 3

The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?

Problem 4

Prove that for every prime number p, there are infinitely many positive integers n such that p divides $2^{n}-n$.

PROBLEM 5
The geometric mean (G.M.) of a k positive numbers $a_{1}, a_{2}, \ldots, a_{k}$ is defined to be the (positive) k-th root of their product. For example, the G.M. of $3,4,18$ is 6 . Show that the G.M. of a set S of n positive numbers is equal to the G.M. of the G.M.'s of all non-empty subsets of S.

