Canadian Mathematical Olympiad

1982

Problem 1

In the diagram, $O B_{i}$ is parallel and equal in length to $A_{i} A_{i+1}$ for $i=1,2,3$ and $4\left(A_{5}=A_{1}\right)$. Show that the area of $B_{1} B_{2} B_{3} B_{4}$ is twice that of $A_{1} A_{2} A_{3} A_{4}$.

PROBLEM 2
If a, b and c are the roots of the equation $x^{3}-x^{2}-x-1=0$,
(i) show that a, b and c are distinct:
(ii) show that

$$
\frac{a^{1982}-b^{1982}}{a-b}+\frac{b^{1982}-c^{1982}}{b-c}+\frac{c^{1982}-a^{1982}}{c-a}
$$

is an integer.

PROBLEM 3

Let R^{n} be the n-dimensional Euclidean space. Determine the smallest number $g(n)$ of points of a set in R^{n} such that every point in R^{n} is at irrational distance from at least one point in that set.

Problem 4

Let p be a permutation of the set $S_{n}=\{1,2, \ldots, n\}$. An element $j \in S_{n}$ is called a fixed point of p if $p(j)=j$. Let f_{n} be the number of permutations having no fixed points, and g_{n} be the number with exactly one fixed point. Show that $\left|f_{n}-g_{n}\right|=1$.

PROBLEM 5
The altitudes of a tetrahedron $A B C D$ are extended externally to points A^{\prime}, B^{\prime}, C^{\prime} and D^{\prime} respectively, where $A A^{\prime}=k / h_{a}, B B^{\prime}=k / h_{b}, C C^{\prime}=k / h_{c}$ and $D D^{\prime}=$
k / h_{d}. Here, k is a constant and h_{a} denotes the length of the altitude of $A B C D$ from vertex A, etc. Prove that the centroid of the tetrahedron $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ coincides with the centroid of $A B C D$.

