Canadian Mathematical Olympiad
 1973

Problem 1

(i) Solve the simultaneous inequalities, $x<\frac{1}{4 x}$ and $x<0$; i.e., find a single inequality equivalent to the two given simultaneous inequalities.
(ii) What is the greatest integer which satisfies both inequalities $4 x+13<0$ and $x^{2}+3 x>16 ?$
(iii) Give a rational number between $11 / 24$ and $6 / 13$.
(iv) Express 100000 as a product of two integers neither of which is an integral multiple of 10 .
(v) Without the use of logarithm tables evaluate

$$
\frac{1}{\log _{2} 36}+\frac{1}{\log _{3} 36}
$$

PROBLEM 2

Find all the real numbers which satisfy the equation $|x+3|-|x-1|=x+1$. (Note: $|a|=a$ if $a \geq 0 ;|a|=-a$ if $a<0$.)

PROBLEM 3
Prove that if p and $p+2$ are both prime integers greater than 3 , then 6 is a factor of $p+1$.

PROBLEM 4

The figure shows a (convex) polygon with nine vertices. The six diagonals which have been drawn dissect the polygon into the seven triangles: $P_{0} P_{1} P_{3}, \quad P_{0} P_{3} P_{6}, \quad P_{0} P_{6} P_{7}, \quad P_{0} P_{7} P_{8}, \quad P_{1} P_{2} P_{3}$, $P_{3} P_{4} P_{6}, P_{4} P_{5} P_{6}$. In how many ways can these triangles be labelled with the names $\triangle_{1}, \triangle_{2}, \triangle_{3}$, $\triangle_{4}, \triangle_{5}, \triangle_{6}, \triangle_{7}$ so that P_{i} is a vertex of triangle \triangle_{i} for $i=1,2,3,4,5,6,7$? Justify your answer.

Problem 5

For every positive integer n, let

$$
h(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

For example, $h(1)=1, h(2)=1+\frac{1}{2}, h(3)=1+\frac{1}{2}+\frac{1}{3}$. Prove that for $n=2,3,4, \ldots$

$$
n+h(1)+h(2)+h(3)+\cdots+h(n-1)=n h(n) .
$$

PROBLEM 6
If A and B are fixed points on a given circle not collinear with centre O of the circle, and if $X Y$ is a variable diameter, find the locus of P (the intersection of the line through A and X and the line through B and Y).

PROBLEM 7

Observe that

$$
\frac{1}{1}=\frac{1}{2}+\frac{1}{2} ; \quad \frac{1}{2}=\frac{1}{3}+\frac{1}{6} ; \quad \frac{1}{3}=\frac{1}{4}+\frac{1}{12} ; \quad \frac{1}{4}=\frac{1}{5}+\frac{1}{20} .
$$

State a general law suggested by these examples, and prove it.
Prove that for any integer n greater than 1 there exist positive integers i and j such that

$$
\frac{1}{n}=\frac{1}{i(i+1)}+\frac{1}{(i+1)(i+2)}+\frac{1}{(i+2)(i+3)}+\cdots+\frac{1}{j(j+1)}
$$

