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1. Let f : Z → Z+ be a function, and define h : Z × Z → Z+ by h(x, y) = gcd(f(x), f(y)). If
h(x, y) is a two-variable polynomial in x and y, prove that it must be constant.

Solution

Since h > 0, write h(x, y) = Pn(y)xn + · · ·+P1(y)x+P0(y) where n ≥ 0, {P0, P1, . . . , Pn} are
polynomials, and Pn 6= 0. As Pn has finitely many roots, choose a y0 > 0 with Pn(y0) 6= 0.
Then for every x, h(x, y0) = gcd(f(x), f(y0)) | f(y0), hence h(x, y0) ≤ f(y0) for all x.

But now as x → ∞, h(x, y0) → Pn(y0)x
n. Since Pn(y0) is constant, and h(x, y0) is bounded

(below by 0 and above by f(y0) ), this then implies that n ≥ 1 is impossible. Hence n = 0 so
h(x, y) = P0(y).

Thus the highest power of x that occurs is x0, i.e. h(x, y) does not depend on x. But we can
switch x and y to obtain the analogous result of h(x, y) does not depend on y either, hence
it is the constant polynomial.
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2. Alphonse and Beryl play a game involving n safes. Each safe can be opened by a unique key
and each key opens a unique safe. Beryl randomly shuffles the n keys, and after placing one
key inside each safe, she locks all of the safes with her master key. Alphonse then selects m of
the safes (where m < n), and Beryl uses her master key to open just the safes that Alphonse
selected. Alphonse collects all of the keys inside these m safes and tries to use these keys to
open up the other n −m safes. If he can open a safe with one of the m keys, he can then
use the key in that safe to try to open any of the remaining safes, repeating the process until
Alphonse successfully opens all of the safes, or cannot open any more. Let Pm(n) be the
probability that Alphonse can eventually open all n safes starting from his initial selection of
m keys.

(a) Show that P2(3) = 2
3 .

(b) Prove that P1(n) = 1
n .

(c) For all integers n ≥ 2, prove that

P2(n) =
2

n
· P1(n− 1) +

n− 2

n
· P2(n− 1).

(d) Determine a formula for P2(n).

Solution

(a) All 3 safes can be open if the key for the third safe is in one of the two opened safes.
This occurs with probability 2

3 .

(b) When we have a single key, we can open all the safes if and only if we can order the
safes as s1, s2, . . . , sn, where the key inside safe si opens safe si+1 for each i. There are
(n − 1)! assignments of keys for which this can occur. There are a total of n! ways the

keys can be assigned to the safes, so P1(n) = (n−1)!
n! = 1

n .

(c) Consider the key inside the first chosen safe. With probability 2
n it opens one of the

2 selected safes. In this case, there is a P1n− 1 chance to open the remaining safes.
With probabiltiy n−2

n the key opens one of the other n− 2 safes. In this case, there is a
P2n− 1 chance to open the remaining safes. Thus P2(n) = 2

nP1(n− 1) + n−2
n P2(n− 1).

(d) P2(n) = 2
n , which easily follows by induction from part (c).
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3. Let 1000 ≤ n = ABCD10 ≤ 9999 be a positive integer whose digits ABCD satisfy the
divisibilty condition:

1111 | (ABCD + AB× CD).

Determine the smallest possible value of n.

Solution

Define integers n = ABCD, x = AB and y = CD. Then n = 100x + y, is the number
that we want to find. The condition that n has four decimal digit positive integer means
1000 ≤ n ≤ 9999, which is equivalent 10 ≤ x ≤ 99 and 0 ≤ y ≤ 99.

Adding 100 to the the condition (3) gives the equivalent condition

100 + n+ xy = (x+ 1)(y + 100) = 100 + 1111z (1)

for some integer z.

If x = 10, then we would have 11|100 + 1111z, which is impossible. Therefore x ≥ 11 and
(x+ 1) ≥ 12. Because n > 0 and x, y ≥ 0, it follows that 1111z = n+xy > 0, and thus z > 0.

Suppose that z = 1. In this case, (x + 1)(y + 100) = 1211, and it follows that x + 1 =
1211/(y + 100) ≤ 1211/100 = 12.11. Since, x + 1 is integer, we have (x + 1) ≤ 12 and from
above, (x + 1) ≥ 12, which combined say that x + 1 = 12. But 12 does not divide 1211,
contradicting condition (1) and supposition z = 1. Therefore z ≥ 2.

Suppose that z = 2. The right hand side of condition (1) becomes 100 + 1111z = 2322. This
is even. Dividing by two gives 1161. The sum of the digits of this is 9, so it is divisible
by 3 giving 387. This is again divisible by 3, giving 129, which is a factor of 2322, namely
2322/(2 × 3 × 3). Because factor 129 is between 100 and 199, try it as a candidate y + 100.
The other factor 2 × 3 × 3 = 18 can serve as x + 1, and is in the right range. This gives a
possible solution satisfying (1) with x = 17 and y = 29 and n = 1729.

Suppose henceforth that a smaller solution n < 1729 to condition (1) existed. Suppose that
x > 17. Then n > 1729, a contradiction. Suppose x = 17. Then z ≥ 2 gives 100 + 1111z ≥
2322, which gives y ≥ 29, and n ≥ 1729, a contradiction. Therefore, x < 17.

Consequently, (x + 1) ≤ 17 subsituted into (1) gives 100 + 1111z = (x + 1)(y + 100) ≤
17× 199 = 3383. It follows that z ≤ 3283/1111 < 3. Therefore z = 2, since z ≥ 2 was proved
above.

Consequently, 100 + 1111z = 2322, whose prime factorization, started above, completes to:

2322 = 2× 3× 3× 3× 43. (2)

The number x+1 belongs to the set {12, 13, 14, 15, 16, 17} because the bounds 12 ≤ (x+1) ≤
17 established above. Each number in this set is divisible either by 4 or by a prime strictly
between 3 and 43, so it cannot divide 2322, a contradiction.
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4. In 4ABC, the interior sides of which are mirrors, a laser is placed at point A1 on side BC.
A laser beam exits the point A1, hits side AC at point B1, and then reflects off the side.
(Because this is a laser beam, every time it hits a side, the angle of incidence is equal to the
angle of reflection). It then hits side AB at point C1, then side BC at point A2, then side
AC again at point B2, then side AB again at point C2, then side BC again at point A3, and
finally, side AC again at point B3.

(a) Prove that ∠B3A3C = ∠B1A1C.

(b) Prove that such a laser exists if and only if all the angles in 4ABC are less than 90◦.

Solution

(a) Let a = ∠A, b = ∠B, c = ∠C,α = ∠B1A1C.

∠AB1C1 = α (1)
∠AC1B1 = π − a− α (2)
∠BC1A2 = π − a− α
∠BA2C1 = a+ α− b (3)
∠CA2B2 = a+ α− b
∠CB2A2 = π − c− a+ b− α (4)
∠AB2C3 = π − c− a+ b− α
∠AC3B2 = c− b+ α (5)
∠BC3A3 = c− b+ α
∠BA3C3 = π − c− α (6)
∠CA3B3 = π − c− α
∠CB3A3 = α

(b) We observe that if the angle of incidence of the laser with the side is greater than π
2 that

the laser will bounce back to the side it came from. Thus, for such a laser to exist, we
must have all of the angles on the right side of the above being less than π

2 .

Taking lines (1) and (4), we have that π − c − a + b < π, which gives b < c + a. We
similarly get c < a + b from (2) and (5), and a < b + c from (3) and (6), This tells us
that all angles of 4ABC are less than 90◦.

To see that when all angles are less than 90◦ such a laser must exist, we take 3 copies
of 4ABC as shown in the figure below. We choose a point X on side AC and label Y,
the same point in the last copy of the triangle. Then the line between these two points
defines 3 line segments inside 4ABC which will give us a laser.
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5. Let f(x) = x4 + 2x3 − x− 1.

(a) Prove that f(x) cannot be written a the product of two non-constant polynomials with
integer coefficients.

(b) Find the exact values of the 4 roots of f(x).

Solution

(a) If f(x) was reducible, then it factors either as a product of a linear and a cubic, or
two quadratics. But for the linear and cubic case, this implies that it has a root, so we
use the rational roots test and check that f(±1) 6= 0 so this is impossible. Hence let
f(x) = (x2 + ax+ b)(x2 + cx+ d) where a, b, c, d are integers. Then:

x4 + 2x3 − x− 1 = x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd a+ c = 2;
b+ d+ ac = 0; ad+ bc = −1; bd = −1

From bd = −1 we get b = 1,d = −1 or b = −1,d = 1. In either case b + d = 0, hence
0 = b+ d+ ac = ac so a = 0 or c = 0. But a+ c = 2, so a = 0,c = 2 or a = 2,c = 0. But
then 2 | a, c so 2 | ad+ bc = −1, contradiction. Thus f(x) is irriducible as claimed.

(b) Note that f(x − 1) = x4 − 2x3 + x − 1, hence f(x) = f(−x − 1), and so f(x − 1/2) =

f(−x− 1/2). This encourages us to look at g(x) = f(x− 1/2) = x4 − 3

2
x2 − 9

16
; this is

obviously a quadratic in x2! The roots of g(x) satisfy x2 =
3/2±

√
(−3/2)2 + 4(9/16)

2

=
3± 3

√
2

4
. Hence g(x) has roots ±

√
3± 3

√
2

4
, and using 0 = g(x) = f(x− 1/2) we see

that the 4 roots of f(x) are
1

2
±
√

3± 3
√

2

4
.
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6. Given a triangle A,B,C, X is on side AB, Y is on side AC, and P and Q are on side BC
such that AX = AY , BX = BP and CY = CQ. Let XP and Y Q intersect at T . Prove that
AT passes through the midpoint of PQ.

Solution

Let AT intersect BC at M . Let R, S be on sides AB,AC, respectively such that MR||XP and
MS||Y Q. Then since BX = BP , BR = BM . Therefore, XR = PT . Similarly, Y S = QT .
We need to show that PT = QT . It suffices to show that XR = Y S.

Since RM ||XT and SM ||Y T , AR
AX = AM

AT = AS
AY . Since AX = AY , AR = AS. Therefore,

RX = SY , as desired.
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7. A bug is standing at each of the vertices of a regular hexagon ABCDEF . At the same time
each bug picks one of the vertices of the hexagon, which it is not currently in, and immediately
starts moving towards that vertex. Each bug travels in a straight line from the vertex it was
in originally to the vertex it picked. All bugs travel at the same speed and are of negligible
size. Once a bug arrives at a vertex it picked, it stays there. In how many ways can the bugs
move to the vertices so that no two bugs are ever in the same spot at the same time?

Solution

Label the vertices 0, 1, 2, 3, 4, 5 in order around the hexagon and let bi be the bug starting at
vertex i. We have the following restrictions on the bugs:

1. We cannot have two bugs travel to the same vertex, since they will be at the same point
at the end.

2. If bi goes to vertex i+ 3 then for j 6= i bug bj does not go to vertex j + 3.

3. If bug bi goes to vertex bi+2 then bug bi+1 cannot go to vertex bi−1.

4. If bug bi goes to vertex bi−2 then bug bi−3 cannot go to vertex bi−1.

The first restriction tells us that the movement of the bugs must be a permutation of the
vertices 0, 1, 2, 3, 4, 5. The last 3 restrictions tell us which permutations will have bugs meeting
at interior points of the hexagon and dictate which permutations are valid.

In the below figure, we show the permutations which will work.

A There are 2 permutations that look like this. There are 2 choices for the direction of the
cycle.

B There are 12 permutations that look like this. There are 3 choices for which pair of
3-cycles are used, and 2 choices for the direction of each cycle.

C There are 6 permutations that look like this. There are 3 rotations of the cycle, and 2
choices for the direction.

D There are 2 permutations that look like this. There are 2 choices for the direction of one
cycle, and the other cycle must have the same direction.

E There are 12 permutations that look like this. There are 2 choices for the direction of
the cycle and 6 rotations of the cycle.

F There are 12 permutations that look like this. There are 2 choices for the direction of
the cycle and 6 rotations of the cycle.

G There are 12 permutations that look like this. There are 2 choices for the direction of
the cycle and 6 rotations of the cycle.

This gives a total of 2 + 12 + 6 + 2 + 12 + 12 + 12 = 56 ways.
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8. For any given non-negative integer m, let f(m) be the number of 1’s in the base 2 represen-
tation of m. Let n be a positive integer. Prove that the integer

2n−1∑
m=0

(
(−1)f(m) · 2m

)
contains at least n! positive divisors.

Solution

Note that every integer from 0 to 2n − 1 (inclusively) can be written uniquely as the sum of
the elements of a subset of {20, 21, . . . , 2n−1}. By the definition of f(m), the summation in
the problem statement is equal to

(−1)n · (220 − 1)(22
1 − 1)(22

2 − 1) · · · (22n−1 − 1).

Note that for each k ∈ {0, 1, 2, . . . , n− 1},

22
k − 1 = (22

1 − 1)(22
1

+ 1)(22
2

+ 1) · · · (22k−1
+ 1) = (22

0
+ 1)(22

1
+ 1)(22

2
+ 1) · · · (22k−1

+ 1).

Therefore,

(−1)n · (220 − 1)(22
1 − 1)(22

2 − 1) · · · (22n−1 − 1)

= (−1)n(22
0

+ 1)n−1(22
1

+ 1)n−2 · · · (22n−2
+ 1)2(22

n−1
+ 1).

It suffices to show that this term has at least n! positive divisors. To show this, it suffices to
show that these n− 1 factors are pairwise relatively prime. This is because then (−1)n(22

0
+

1)n−1(22
1
+1)n−2 · · · (22n−2

+1)2(22
n−1

+1) has a factor of the form pn−1
1 pn−2

2 . . . p2n−1pn where
p1, . . . , pn are pairwise distinct primes. This factor has n(n− 1)(n− 2) . . . 3 · 2 = n! positive
divisors, which will imply that (−1)n(22

0
+ 1)n−1(22

1
+ 1)n−2 · · · (22n−2

+ 1)2(22
n−1

+ 1) has
n! positive divisors. This will complete the problem.

It suffices to show that for all pairs of non-negative integers a, b satisfying a 6= b, we have
gcd(22

a
+ 1, 22

b
+ 1) = 1. Without loss of generality, suppose a < b. Note that (22

0
+ 1)(22

1
+

1) · · · (22b−1
+ 1) = 20 + 21 + . . . + 22

b−1 = 22
b − 1 = (22

b
+ 1) − 2. Then suppose gcd(22

a
+

1, 22
b
+1) > 1. Let p be a prime number that divides both 22

a
+1 and 22

b
+1. Then p divides

2. Hence, p = 2. This is impossible since 22
a

+ 1 is odd. Therefore, gcd(22
a

+ 1, 22
b

+ 1) = 1.
This solves the problem.
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