BONUS PROBLEMS

These problems appear as a bonus. Their solutions will not be considered for publication.

Let $ABCD$ be a cyclic quadrilateral. Let P be a point on the arc BC and let L and Q be the feet of perpendiculars dropped from P on the sides AD and BC, respectively. Let M and N be the feet of perpendiculars dropped from P on the lines AB and DC, respectively. Prove that

$$
\frac{AM}{MB} \cdot \frac{BQ}{QC} \cdot \frac{CN}{ND} \cdot \frac{DL}{LA} = 1.
$$

Find the real numbers x, y, z and t such that

$$
xt - yz = -1 \quad \text{and} \quad x^2 + y^2 + z^2 + t^2 - xz - yt = \sqrt{3}.
$$

Let a, b and c be positive real numbers such that $ab + bc + ca = 3$. Prove the inequality

$$
\frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2} \leq 1.
$$

Let ABC be a triangle with no angle exceeding 120° with $BC = a, AC = b$ and $AB = c$. Let T be its Fermat-Torricelli point, that is the point such that the total distance from the three vertices of ABC to T is minimum possible. Prove that

$$(b + c)|TA| + (c + a)|TB| + (a + b)|TC| \geq \sqrt{3}(|TA| + |TB| + |TC|)^2 - 4\text{Area}(ABC).$$

Let n be an integer such that $n \geq 4$. Consider real numbers $a_k, 1 \leq k \leq n$ such that $2 \geq a_1 \geq 1 \geq a_2 \geq \cdots \geq a_{n-1} \geq a_n$ and $\sum_{k=1}^{n} a_k = n$. Prove that

a) $\sum_{k=1}^{n} a_k^2 \leq n + 2$.

b) $\sum_{1 \leq i < j \leq n} a_i a_j \geq \frac{(n-2)(n+1)}{2}$.
Let ABC be a triangle such that $\angle BAC \geq \frac{2\pi}{3}$. Prove that
\[
\frac{r}{R} \leq \frac{2\sqrt{3} - 3}{2},
\]
where r is the inradius and R is the circumradius of ABC.

Let a, b, c and d be real numbers such that $2 \geq a \geq 1 \geq b \geq c \geq d \geq 0$ and $a + b + c + d = 4$. Prove that
\[
\frac{2}{a^3 + b^3 + c^3 + d^3} + \frac{9}{ab + bc + cd + da + ac + bd} \leq 2.
\]

Let $ABCD$ be a rectangle with center O. Let M and P be two points in the plane (not necessarily distinct) such that O lies on the line MP and $OM = 3 \cdot OP$. Prove that
\[
MA + MB + MC + MD \geq PA + PB + PC + PD.
\]

Let $a, b, c \geq 1$ and $0 \leq d, e, f \leq 1$ such that $a + b + c + d + e + f = 6$. Prove that
\[
6 \leq a^2 + b^2 + c^2 + d^2 + e^2 + f^2 \leq 18.
\]

Let ABC be a nonobtuse triangle with smallest angle A. Prove that
\[
\cos (B - C) \geq \cos B + \cos C
\]
and determine when equality holds.

Prove that if a, b, c and d are non-negative real numbers such that $a + b + c + d = 4$, then
\[
ab + bc + cd + da + ac + bd \geq 3\sqrt{(a^2 + b^2 + c^2 + d^2)abcd}.
\]

Let x, y and z be positive real numbers such that $xyz = 512$. Prove that
\[
\frac{1}{\sqrt{1 + x}} + \frac{1}{\sqrt{1 + y}} + \frac{1}{\sqrt{1 + z}} \geq 1.
\]
B13. Proposed by Leonard Giugiuc.

Let n be an integer with $n \geq 4$. Prove or disprove that for any positive real numbers a_i, $i = 1, 2, \ldots, n$ that sum up to 1, we have:

$$\sqrt{(1-a_1^2)(1-a_2^2)\cdots(1-a_n^2)} \geq (n^n-1)a_1a_2\cdots a_n.$$

B14. Proposed by Leonard Giugiuc.

Let k be a real number with $k > \frac{7+3\sqrt{5}}{2}$. Prove or disprove that for any non-negative real numbers x, y, z no two of which are zero, we have:

$$\sqrt{\frac{x}{ky+z}} + \sqrt{\frac{y}{kz+x}} + \sqrt{\frac{z}{kx+y}} \geq \frac{3}{\sqrt{k+1}}.$$

B15. Proposed by Leonard Giugiuc.

Let a, b and c be real numbers such that $a \geq b \geq c \geq 0$ and $a + b + c = 3$.

a) Show that $2 \leq ab + bc + ca \leq 3$.

b) Prove that $a^3 + b^3 + c^3 + \frac{45}{a^2+b^2+c^2} \leq 18$ and study the equality cases.

B16. Proposed by Dao Thanh Oai and Leonard Giugiuc.

Let $ABCD$ be a cyclic quadrilateral. Prove that the following two statements are equivalent:

a) $AC \geq BD$,

b) $AB \cdot AD + CB \cdot CD \geq BA \cdot BC + DA \cdot DC$.

B17. Proposed by Dao Thanh Oai and Leonard Giugiuc.

Let $ABCD$ be a cyclic quadrilateral. Prove that

$$AB + AC + AD + BC + BD + CD \leq 4R(\sqrt{2}+1),$$

where R is the circumradius of $ABCD$.

B18. Proposed by Leonard Giugiuc and Dorin Marghidanu.

Let $n \geq 2$ be a natural number, and a_k be real numbers such that $0 < a_k < 2$ for all $k = 1, 2, \ldots, n$ with $\prod_{k=1}^n a_k = 1$. Prove that

$$\sum_{k=1}^n \frac{1}{\sqrt{1+a_k}} \leq \frac{n}{\sqrt{2}}.$$

Prove further that the condition $a_k < 2$ can be dropped when $n = 2$ or $n = 3$.

Copyright © Canadian Mathematical Society, 2020
Find the maximum value \(k \) such that
\[
a^2 + b^2 + c^2 + k(ab + bc + ca) \geq 3 + k(a + b + c)
\]
for any positive numbers \(a, b \) and \(c \) such that \(abc = 1 \).

B20*. Proposed by Leonard Giugiuc.
Let \(x, y \in (0, 3/2) \) be real numbers that satisfy \((x - 2)(y - 2) = 1\). Prove or disprove that
\[
x^3 + y^3 \geq 2.
\]

Consider an arbitrary triangle \(ABC \) with medians \(m_a, m_b, m_c \), circumradius \(R \),
inradius \(r \) and exradii \(r_a, r_b, r_c \). Show that
\[
m_a + m_b + m_c \leq \sqrt{16R^2 + 4rR + 9r^2} \leq r_a + r_b + r_c.
\]

Let \(a, b, c, d, e, f \) be non-negative real numbers such that \(a + b + c + d + e + f = 4 \). If \(a \geq b \geq c \geq 1 \geq d \geq e \geq f \geq 0 \), prove that
\[
a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + 180abcdef \leq 10.
\]

Given a triangle \(ABC \), let the tangent to its circumcircle at \(A \) intersect the line \(BC \) at \(D \), and let the circle through \(A \) that is tangent to \(BC \) at \(D \) intersect the circumcircle again at \(E \). Prove that
\[
\frac{EB}{EC} = \left(\frac{AB}{AC}\right)^3.
\]

Let \(ABCD \) be a square. Let \(\omega \) be the circle centered at \(A \) with radius \(AB \). A point \(M \) lies inside the square on \(\omega \); the line \(BM \) intersects the side \(CD \) at \(N \). Prove that \(CM = 2MN \) if and only if \(CM \) and \(BN \) are perpendicular.

Let \(ABC \) be a triangle with semiperimeter \(s \). The A-excircle of the triangle touches the side \(BC \) at \(Q \) and the lines \(AB \) and \(AC \) at \(M \) and \(N \), respectively. Suppose that \(AQ \) intersects \(MN \) at \(P \). Prove that
\[
AP = \frac{s \sqrt{a(s - a)(as + (b - c)^2)}}{b(s - c) + c(s - b)}.
\]