The 2018 Canadian Mathematical Olympiad Exam
Official Problem Set

1. Consider an arrangement of tokens in the plane, not necessarily at distinct points. We are allowed to apply a sequence of moves of the following kind: Select a pair of tokens at points A and B and move both of them to the midpoint of A and B.

We say that an arrangement of n tokens is collapsible if it is possible to end up with all n tokens at the same point after a finite number of moves. Prove that every arrangement of n tokens is collapsible if and only if n is a power of 2.

2. Let five points on a circle be labelled A, B, C, D, E in clockwise order. Assume $AE = DE$ and let P be the intersection of AC and BD. Let Q be the point on the line through A and B such that $AQ = DP$. Similarly, let R be the point on the line through C and D such that $DR = AP$. Prove that PE is perpendicular to QR.

3. Two positive integers a and b are prime-related if $a = pb$ or $b = pa$ for some prime p. Find all positive integers n, such that n has at least three divisors, and all the divisors can be arranged without repetition in a circle so that any two adjacent divisors are prime-related.

Note that 1 and n are included as divisors.

4. Find all polynomials $p(x)$ with real coefficients that have the following property: There exists a polynomial $q(x)$ with real coefficients such that

$$p(1) + p(2) + p(3) + \cdots + p(n) = p(n)q(n)$$

for all positive integers n.

5. Let k be a given even positive integer. Sarah first picks a positive integer N greater than 1 and proceeds to alter it as follows: every minute, she chooses a prime divisor p of the current value of N, and multiplies the current N by $p^k - p^{k-1}$ to produce the next value of N. Prove that there are infinitely many even positive integers k such that, no matter what choices Sarah makes, her number N will at some point be divisible by 2018.