The problems featured in this section have appeared in, or have been inspired by, a mathematics contest question at either the high school or the undergraduate level. Readers are invited to submit solutions, comments and generalizations to any problem. Please see submission guidelines inside the back cover or online.

To facilitate their consideration, solutions should be received by August 1, 2018.

The editor thanks André Ladouceur, Ottawa, ON, for translations of the problems.

CC311. Suppose $1 \leq a < b < c < d \leq 100$ are four natural numbers. What is the minimum possible value of $\frac{a}{b} + \frac{c}{d}$?

CC312. Choose four points A, B, C and D on a circle uniformly at random. What is the probability that the lines AB and CD intersect outside the circle?

CC313. Consider a pyramid whose faces consist of a 60×60 square base $ABCD$ and four $60 - 50 - 50$ triangles that join at the apex E. If you are only allowed to move on the surfaces of the four triangles, what is the length of the shortest path between A and C?

![Diagram of a pyramid with labeled vertices A, B, C, D, and E.]

CC314. An infinite sequence a_1, a_2, \ldots of 1’s and 2’s is uniquely defined by the following properties:

1. $a_1 = 1$ and $a_2 = 2$,

2. For every $n \geq 1$, the number of 1’s between the nth 2 and the $(n+1)$st 2 is equal to a_{n+1}.

Is the sequence periodic from the beginning?

CC315. A square table is divided into a 3×3 grid with every cell having 3
coins. In every step of a game, Terry can take 2 coins from the table as long as they come from distinct but adjacent cells. (Here “adjacent” means the two cells share a common edge.) At most how many coins can Terry take?

CC311. Soit a, b, c et d quatre entiers tels que $1 \leq a < b < c < d \leq 100$. Quelle est la plus petite valeur possible de l’expression $\frac{a}{b} + \frac{c}{d}$?

CC312. On choisit au hasard quatre points, A, B, C et D, sur un cercle. Quelle est la probabilité pour que les droites AB et CD se coupent à l’extérieur du cercle?

CC313. On considère une pyramide d’apex E dont la base est un carré $ABCD$ mesurant 60×60 et dont les faces latérales sont des triangles $60-50-50$. Sachant qu’on peut se déplacer sur les faces latérales seulement, quelle est la longueur du chemin le plus court de A à C?

CC314. On considère une suite a_1, a_2, \ldots dont chaque terme est un 1 ou un 2. Elle est définie de façon non équivoque au moyen des deux propriétés suivantes:

1. $a_1 = 1$ et $a_2 = 2$,
2. Pour chaque n ($n \geq 1$), le nombre de 1 entre le nième 2 et le $(n+1)$ième 2 est égal à a_{n+1}.

Cette suite est-elle périodique à partir du début?

CC315. Une table carrée est divisée en un quadrillage 3×3. Chaque carreau du quadrillage contient 3 pièces de monnaie. À chaque étape d’un jeu, Terry peut prendre 2 pièces, à condition qu’elles proviennent de deux carreaux distincts adjacents. (Deux carreaux sont adjacents s’ils ont un côté commun.) Quel est le nombre maximal de pièces que Terry peut prendre en tout?