The problems featured in this section have appeared in, or have been inspired by, a mathematics contest question at either the high school or the undergraduate level. Readers are invited to submit solutions, comments and generalizations to any problem. Please see submission guidelines inside the back cover or online.

To facilitate their consideration, solutions should be received by August 1, 2018.

The editor thanks André Ladouceur, Ottawa, ON, for translations of the problems.

CC311. Suppose $1 \leq a < b < c < d \leq 100$ are four natural numbers. What is the minimum possible value of $\frac{a}{b} + \frac{c}{d}$?

CC312. Choose four points A, B, C and D on a circle uniformly at random. What is the probability that the lines AB and CD intersect outside the circle?

CC313. Consider a pyramid whose faces consist of a 60×60 square base $ABCD$ and four $60 - 50 - 50$ triangles that join at the apex E. If you are only allowed to move on the surfaces of the four triangles, what is the length of the shortest path between A and C?

CC314. An infinite sequence a_1, a_2, \ldots of 1’s and 2’s is uniquely defined by the following properties:

1. $a_1 = 1$ and $a_2 = 2$,
2. For every $n \geq 1$, the number of 1’s between the nth 2 and the $(n+1)$st 2 is equal to a_{n+1}.

Is the sequence periodic from the beginning?

CC315. A square table is divided into a 3×3 grid with every cell having 3
coins. In every step of a game, Terry can take 2 coins from the table as long as they come from distinct but adjacent cells. (Here “adjacent” means the two cells share a common edge.) At most how many coins can Terry take?

CC311. Soit a, b, c et d quatre entiers tels que $1 \leq a < b < c < d \leq 100$. Quelle est la plus petite valeur possible de l’expression $\frac{a}{b} + \frac{c}{d}$?

CC312. On choisit au hasard quatre points, A, B, C et D, sur un cercle. Quelle est la probabilité pour que les droites AB et CD se coupent à l’extérieur du cercle?

CC313. On considère une pyramide d’apex E dont la base est un carré $ABCD$ mesurant 60×60 et dont les faces latérales sont des triangles $60-50-50$. Sachant qu’on peut se déplacer sur les faces latérales seulement, quelle est la longueur du chemin le plus court de A à C?

CC314. On considère une suite a_1, a_2, \ldots dont chaque terme est un 1 ou un 2. Elle est définie de façon non équivoque au moyen des deux propriétés suivantes:

1. $a_1 = 1$ et $a_2 = 2$,

2. Pour chaque n ($n \geq 1$), le nombre de 1 entre le $n^{\text{ième}}$ 2 et le $(n+1)^{\text{ième}}$ 2 est égal à a_{n+1}.

Cette suite est-elle périodique à partir du début?

CC315. Une table carrée est divisée en un quadrillage 3×3. Chaque carreau du quadrillage contient 3 pièces de monnaie. À chaque étape d’un jeu, Terry peut prendre 2 pièces, à condition qu’elles proviennent de deux carreaux distincts adjacents. (Deux carreaux sont adjacents s’ils ont un côté commun.) Quel est le nombre maximal de pièces que Terry peut prendre en tout?
CC261. Peter is walking through a train tunnel when he hears a train approaching. He knows that on this section of track trains travel at 60 mph. The tunnel has equally spaced marker posts, with post 0 at one end and post 12 at the other end. Peter is by post 7 when he hears the train. He quickly works out that whether he runs to the nearer end or the further end of the tunnel as fast as he can (at constant speed) he will just exit the tunnel before the train reaches him. How fast can Peter run?

Originally Problem 1 of the 2016–2017 Scottish Mathematical Council Mathematical Challenge, Middle division.

We received 4 submissions of which three were correct. We present the solution by Digby Smith, modified by the editor.

We let

\[v = \text{constant running speed of Peter in miles per hour}, \]
\[x = \text{starting distance between the train and post 12 in miles}, \]
\[y = \text{distance between consecutive posts in miles}, \]
\[t_{12} = \text{time taken for Peter and the train to reach post 12, and} \]
\[t_0 = \text{time taken for Peter and the train to reach post 0}. \]

Recall that, given a constant speed,

\[\text{time} = \frac{\text{distance}}{\text{speed}}. \tag{1} \]

Peter and the train will travel a distance of 5\(y\) and \(x\), respectively, to reach post 12 in \(t_{12}\) units of time. Therefore, given (1) we have that

\[t_{12} = \frac{5y}{v} = \frac{x}{60}. \tag{2} \]

Peter and the train will travel a distance of 7\(y\) and \(x + 12y\), respectively, to reach post 0 in \(t_0\) units of time. Therefore, given (1) we have that

\[t_0 = \frac{7y}{v} = \frac{x + 12y}{60}. \]

Note that

\[\frac{7y}{v} = \frac{x + 12y}{60} \implies \frac{7y}{v} - \frac{y}{5} = \frac{x}{60}. \]

Crux Mathematicorum, Vol. 44(3), March 2018
By substituting the above into (2) we have that

\[\frac{7y}{v} - \frac{y}{5} = \frac{5y}{v}, \]

which simplifies to

\[\frac{2}{v} = \frac{1}{5} \implies v = 10. \]

Therefore, the fastest running speed of Peter is 10 miles per hour.

CC262. In the diagram, the square has two of its vertices on the circle of radius 1 unit and the other two vertices lie on a tangent to the circle. Find the area of the square.

Originally Problem 4 of the 2016–2017 Scottish Mathematical Council Mathematical Challenge, Middle division.

We received 13 solutions, all of which were correct. We present three different approaches to this problem.

Solution 1, by Andrea Fanchini, modified by the editor.

Let \(l \) be the side length of the square and let \(C \) be the center of the circle. We construct the following right angle triangle with vertices \(A, B, \) and \(C \). By construction, \(AC \) has length 1, \(CB \) has length \(l - 1 \), and \(BA \) has length \(\frac{l}{2} \).

By the Pythagorean Theorem, we have that

\[(l - 1)^2 + \left(\frac{1}{2}\right)^2 = 1 \implies l = \frac{8}{5}. \]

Therefore the area of the square is \(l^2 = \frac{64}{25} \).
Solution 2, by Ángel Plaza, modified by the editor.

Let x be the side length of the square and let C be center of the circle. We construct the following two triangles and note the relationship between the angles subtending the same arc:

By construction, we have

\[
\sin(\alpha) = \frac{x}{\sqrt{\left(\frac{x}{2}\right)^2 + x^2}} = \frac{1}{\sqrt{5}},
\]

\[
\cos(\alpha) = \frac{x}{\sqrt{\left(\frac{x}{2}\right)^2 + x^2}} = \frac{2}{\sqrt{5}},
\]

\[
\sin(2\alpha) = \frac{x}{2}.
\]

Since $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$ we have that $\frac{x}{2} = 2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}}$, so $x = \frac{8}{5}$. Therefore the area of the square is $x^2 = \frac{64}{25}$.

Solution 3, by Joel Schlosberg, modified by the editor.

Draw the diameter at the midpoint of tangency, and segments connecting the diameter’s endpoints to one of the vertices on the circle. By Thales’ theorem, this produces a right triangle.
It is split into two smaller triangles by one of the square’s sides; since the side is perpendicular to the diameter, the smaller triangles are also right triangles. By construction these smaller triangles are similar.

The right triangle inside the square has one leg twice the length of the other, and so the right triangle outside the square does also. Let s be the side length of the square. The triangle outside the square has a side length of $s/2$. This same length is twice the length of the the other leg which has length $2 - s$. Therefore

$$\frac{s}{2} = 2(2 - s).$$

Thus $s = 8/5$ and area of the square is $s^2 = 64/25$.

CC263. An old fashioned tram starts from the station with a certain number of men and women on board. At the first stop, a third of the women get out and their places are taken by men. At the next stop, a third of the men get out and their places are taken by women. There are now two more women than men and as many men as there originally were women. How many men and women were there on board at the start?

Originally Problem 2 of the 2016–2017 Scottish Mathematical Council Mathematical Challenge, Middle division.

We received six solutions to this problem. We present the composite solution of Dan Daniel, Digby Smith, and Titu Zvonaru.

Let m_i and w_i be the number of men and women on board the train, respectively, at stop i. Note that m_0 and w_0 is the number of men and women on board the train, respectively, at the start of the trip.

At stop 1 we have that

$$m_1 = m_0 + \frac{w_0}{3} \quad \text{and} \quad w_1 = \frac{2w_0}{3}. \tag{1}$$

At stop 2 we have that

$$m_2 = \frac{2m_1}{3} \quad \text{and} \quad w_2 = w_1 + \frac{m_1}{3}.$$

Given (1), the above expands and simplifies to

$$m_2 = \frac{2m_0}{3} + \frac{2w_0}{9} \quad \text{and} \quad w_2 = \frac{7w_0}{9} + \frac{m_0}{3}. \tag{2}$$

Since $m_2 = w_0$ it follows from (2) that

$$w_0 = \frac{2m_0}{3} + \frac{2w_0}{9} \quad \implies \quad m_0 = \frac{7w_0}{6}. \tag{3}$$

Since $m_2 + 2 = w_2$ it follows from (2) that

$$\frac{2m_0}{3} + \frac{2w_0}{9} + 2 = \frac{7w_0}{9} + \frac{m_0}{3} \quad \implies \quad w_0 = \frac{3m_0 + 18}{5}.$$

Copyright © Canadian Mathematical Society, 2018
By substituting $m_0 = \frac{7w_0}{6}$ into (3) and solving for w_0 we see that

$$w_0 = \frac{3 \left(\frac{7w_0}{6} \right) + 18}{5} \implies w_0 = 12.$$ Given $w_0 = 12$ and $m_0 = \frac{7w_0}{6}$ it follows that $m_0 = 14$. Therefore, there are 12 women and 14 men on board the train at the start of the trip.

CC264. Kirsty runs three times as fast as she walks. When going to school one day she walks for twice the time she runs and the journey takes 21 minutes. The next day she follows the same route but runs for twice the time she walks. How long does she take to get to school?

Originally Problem 3 of the 2016–2017 Scottish Mathematical Council Mathematical Challenge, Middle division.

We received 7 submissions. We present the solution by Titu Zvonaru.

We denote by d the distance to school, r the speed when Kirsty runs, and w the speed when Kirsty walks. We have $r = 3w$. On the first day, Kirsty runs 7 minutes and she walks 14 minutes; this yields $d = 7r + 14w$. Solving with $r = 3w$,

$$d = 35w. \quad (1)$$

Let x be the number of minutes Kirsty walks on the second day. Then she runs $2x$ minutes. It follows that $d = 2xr + xw$, so

$$d = 7xw. \quad (2)$$

By equations 1 and 2 we obtain $x = 5$, hence the second day she takes 15 minutes to get to school.

CC265. In the diagram, ST is parallel to QR, UT is parallel to SR, $PU = 4$ and $US = 6$. Find the length of SQ.

Originally Problem 5 of the 2016–2017 Scottish Mathematical Council Mathematical Challenge, Middle division.

Crux Mathematicorum, Vol. 44(3), March 2018
We received 12 correct submissions. We present the solution by Šefket Arslanagić.

We have $\triangle PUT \sim \triangle PSR$ and from here:

\[
\frac{PU}{PS} = \frac{PT}{PR} \implies \frac{4}{10} = \frac{PT}{PR} \implies \frac{PT}{PR} = \frac{2}{5}
\]

(1)

We have too $\triangle PST \sim \triangle PQR$ and from here:

\[
\frac{PS}{PQ} = \frac{PT}{PR}
\]

and from here by equation 1 and $PS = 10$:

\[
\frac{10}{PQ} = \frac{2}{5} \implies PQ = 25.
\]

Now, $SQ = PQ - PS = 25 - 10$, so

\[
SQ = 15.
\]