Volume 43, number 9: November / Novembre 2017

Published by:

Canadian Mathematical Society
Société mathématique du Canada
209 - 1725 St. Laurent Blvd.
Ottawa, ON K1G 3V4, Canada

©CANADIAN MATHEMATICAL SOCIETY 2017. ALL RIGHTS RESERVED.

SYNOPSIS

375 The Contest Corner: No. 59 John McLoughlin
 375 Problems: CC291–CC295
 377 Solutions: CC241–CC245

382 The Olympiad Corner: No. 357 Carmen Bruni
 382 Problems: OC351–OC355
 384 Solutions: OC291–OC295

389 Focus On . . . : No. 28 Michel Bataille

394 Quadratic Allemands Ted Barbeau
 398 Problems: 4281–4290
 403 Solutions: 4181–4190

414 Solvers and proposers index
This month’s “free sample” is:

\[
\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq \sqrt{3(a^2 + b^2 + c^2)}, \quad (a, b, c > 0),
\]

\[
\frac{a_1^2}{a_2} + \frac{a_2^2}{a_3} + \cdots + \frac{a_n^2}{a_1} \geq \sqrt{n(a_1^2 + a_2^2 + \cdots + a_n^2)}, \quad (a_i > 0, n \geq 3).
\]

4281*. Proposed by Šefket Arslanagić.

Prove or disprove the following inequalities:

\[
\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq \sqrt{3(a^2 + b^2 + c^2)}, \quad (a, b, c > 0),
\]

\[
\frac{a_1^2}{a_2} + \frac{a_2^2}{a_3} + \cdots + \frac{a_n^2}{a_1} \geq \sqrt{n(a_1^2 + a_2^2 + \cdots + a_n^2)}, \quad (a_i > 0, n \geq 3).
\]