OC286. There are four basketball players A, B, C, D. Initially the ball is with A. The ball is always passed from one person to a different person. In how many ways can the ball come back to A after seven moves? (For example, A passes to C who passes to B who passes to D who passes to A who passes to B who passes to C who passes to A.)

Originally problem 4 of the 2015 India National Olympiad.

We received 4 correct solutions and 1 incorrect submission. We present the solution by Gabriel Wallace.

We claim there are 546 ways. First, we examine the range of A. It is trivial to show that the minimum number of times person A has the ball is 2. Since no one can pass the ball to themselves, there has to be a space between each person, so the max number of times for A is 4. Then we have three cases.

Case 1: $A = 4$. Here we have three possibilities, as follows:

$$
A - - A - A - A \\
A - A - - A - A
$$

A blank space directly following an A can take 3 values: $B, C,$ or D. A space after that would have two possibilities, whatever two letters that were not selected prior. So a 1-blank will have 3 possibilities and a 2-blank will have 6. Notice in all 3 permutations, there are two 1-blanks and one 2-blank. Summing everything, we have $3(3 \cdot 3 \cdot 3) = 162$ ways for 4 A’s.

Case 2: $A = 3$. Here we have four possibilities, as follows:

$$
A - A - - - A \\
A - - A - - A \\
A - - - A - A \\
A - - - - A - A
$$

Directly following an A we still have 3 possible values. Since we have already fixed the A’s, then any other space will have two possible values, whatever was not selected directly before. So here we have two lines with one 1-blank and one 4-blank, and two lines with one 2-blank and one 3 blank. Thus we have $2(3 \cdot 3 \cdot 2) + 2(3 \cdot 2 \cdot 3 \cdot 2^2) = 288$ ways for 3 A’s.

Case 3: $A = 2$. Here we have one possibility, as follows:

$$
A - - - - - A
$$
Following the same logic as above, for this one 6-blank we have $3 \cdot 2^5 = 96$ ways for 2 A’s.

Summing all the cases we have a total of $162 + 288 + 96 = 546$ ways.

OC287. Let

$$P(x) = ax^3 + (b - a)x^2 - (c + b)x + c$$

and

$$Q(x) = x^4 + (b - 1)x^3 + (a - b)x^2 - (c = a)x + c$$

be polynomials of x with a, b, c non-zero real numbers and $b > 0$. If $P(x)$ has three distinct real roots x_0, x_1, x_2 which are also roots of $Q(x)$, then:

1. Prove that $abc > 28$,
2. If a, b, c are non-zero integers with $b > 0$, find all their possible values.

Originally problem 2 of the 2015 Greece National Olympiad.

We received 4 correct submissions. We present the solution by Ali Adnan.

Clearly the fourth root of $Q(x)$ must also be real. Let that root be x_3. Then from Viete’s relations,

$$x_0x_1x_2 = -\frac{c}{a}, \quad x_0x_1x_2x_3 = c,$$

$$x_0 + x_1 + x_2 = 1 - \frac{b}{a}, \quad x_0 + x_1 + x_2 + x_3 = 1 - b.$$

From the first set of equations, $x_3 = -a$ and using this in the second set, we get $\frac{b}{a} = b - a$. Again from Viete’s relation

$$x_0x_1 + x_1x_2 + x_2x_0 = -\frac{b + c}{a},$$

$$x_3(x_0 + x_1 + x_2) + x_0x_1 + x_1x_2 + x_2x_0 = a - b.$$

The above two relations imply that

$$(-a) \cdot \left(1 - \frac{b}{a}\right) + -\frac{(b + c)}{a} = a - b \Rightarrow \frac{b}{a} + \frac{c}{a} = 2(b - a) \Rightarrow c = b.$$

So $abc = ab^2$, while

$$\frac{b}{a} = b - a \Rightarrow b = \frac{a^2}{a - 1}.$$

(Note that the above relation implies that $a > 1$).

Thus $ab^2 = a^3(a - 1)^{-2}$ ($= f(a)$, say). It is routine calculus to obtain $f'(a) = 0 \Rightarrow a = 5/3$ and check that $a = 5/3$ gives a minimum indeed for $f(a)$, $a > 1$. After that it is easily obtained that $f(5/3) > 28$, which proves part 1.
For part 2, it is seen that $b = \frac{a^2}{a-1}$ implies that

$$(a-1)|a^2 \Rightarrow (a-1)|(a^2 - (a^2 - 1)) \Rightarrow a - 1 = \pm 1.$$

But we also see that $a > 1$ and so $a - 1 = 1 \Rightarrow a = 2$. Thus $b = c = 4$. So in summary the only possible triplet of non-zero integral values of (a,b,c) with $b > 0$ is $(2,4,4)$.

OC288. Find all positive integers n such that for any positive integer a relatively prime to n, $2n^2 \mid a^n - 1$.

Originally problem 6 from day 2 of the 2015 Turkey National Olympiad.

We present the solution by Steven Chow. There were no other submissions.

If $n \equiv 1 \pmod{2}$, then since there are infinitely many primes, there exists integer a relatively prime to n such that $a \equiv 0 \pmod{2}$, so $2n^2 \nmid a^n - 1$, which is a contradiction.

Let n_1 be the integer such that $2n_1 = n$. Therefore

$$2n^2 \mid a^n - 1 \Rightarrow 2(2n_1)^2 \mid a^{2n_1} - 1 \Rightarrow 2^3 n_1^2 \mid (a^{n_1} + 1)(a^{n_1} - 1).$$

Let $2^k \mid n_1$. From Dirichlet’s Theorem, there exists positive integer a relatively prime to $n = 2n_1$ such that $a \equiv 5 \pmod{8}$, so

$$2^3 n_1^2 \mid (a^{n_1} + 1)(a^{n_1} - 1) = \left(\prod_{j=0}^{k} \left(2^{2^{j}}a^{2^{j}} + 1\right)\right)\left(2^{2^{k}}a^{2^{k}} - 1\right)$$

$$\Rightarrow 3 + 2k \leq (k+1) + 2 \Rightarrow k \leq 0.$$

Therefore $k = 0$.

If n_1 is not divisible by a prime, then $n_1 = 1$ and $n = 2$. For all positive integers a relatively prime to $2 = n$, $2n^2 = 2(2)^2 \mid a^2 - 1 = a^n - 1$, so this works.

Otherwise, n_1 is divisible by a prime.

If there exists a prime $p \geq 3$ and an integer m such that $p^m \mid n_1$, then

$$p^{2m} \mid n_1^2 \mid a^{2n_1} - 1 \Rightarrow a^{2n_1} \equiv 1 \pmod{p^{2m}},$$

so since p^{2m} has primitive roots (well known), we have

$$p^{2m-1} \mid p^{2m-1}(p-1) = \phi(p^{2m}) \mid 2n_1 \Rightarrow 2m - 1 \leq m \Rightarrow m \leq 1.$$

Therefore n is square free.

Let p_1 be the least prime such that $p_1 \mid n_1$. Since $k = 0$, $p_1 \geq 3$. By definition, $p_1 - 1 \nmid n_1$, and from above, $p_1(p_1 - 1) \mid 2n_1$, so $p_1 = 3$.

Crux Mathematicorum, Vol. 43(8), October 2017
If $n = (2)(3)$, then from Euler’s Theorem, for any positive integer a relatively prime to n, $a^n = a^{(3)(2)} = a^{\phi(3^2)} \equiv 1 \pmod{3^2}$, and since 2 satisfies for n, $2n^2 | a^n - 1$, so this works.

Otherwise, let $p_2 > p_1 = 3$ be the least prime such that $p_2 | n_1$. From primitive roots, $p_2(p_2 - 1) = \phi(p_2^2) | 2n_1$, so by the definition of p_2, $p_2 - 1 | 2p_2 = 2(3)$, so $p_2 = 7$.

If $n = (2)(3)(7)$, then from Euler’s Theorem, for any positive integer a relatively prime to n, $a^n = a^{(7)(6)} = a^{\phi(7^2)} \equiv 1 \pmod{7^2}$, and since $(2)(3)$ satisfies the condition for n, $2n^2 | a^n - 1$, so this works.

Otherwise, let $p_3 > p_2 = 7$ be the least prime such that $p_3 | n_1$. From primitive roots, $p_3(p_3 - 1) = \phi(p_3^2) | 2n_1$, so by the definition of p_3, $p_3 - 1 | 2p_1p_2 = 2(3)(7)$, so $p_3 = 43$.

If $n = (2)(3)(7)(43)$, then from Euler’s Theorem, for any positive integer a relatively prime to n, $a^n = a^{(43)(42)} = a^{\phi(7^2)} \equiv 1 \pmod{7^2}$, and since $(2)(3)(7)$ satisfies the condition for n, $2n^2 | a^n - 1$, so this works.

If there exists a least prime $p_4 > p_3 = 43$ such that $p_4 | n_1$, then from primitive roots $p_4(p_4 - 1) = \phi(p_4^2) | 2n_1$, so by the definition of p_4,

$$p_4 - 1 | 2p_1p_2p_3 = 2(3)(7)(43),$$

so $p_4 \in \{44, 87, 130, 259, 302, 603, 904, 1807\}$, so p_4 is not prime which is a contradiction.

Therefore all possible n are

$$n \in \{2, (2)(3), (2)(3)(7), (2)(3)(7)(43)\} = \{2, 6, 42, 1806\}.$$

OC289. Let a, b, c, d, e be distinct positive integers such that $a^4 + b^4 = c^4 + d^4 = e^5$. Show that $ac + bd$ is a composite number.

Originally problem 5 from day 2 of the 2015 USAMO.

No submitted solutions.

OC290. Let $\triangle ABC$ be a scalene triangle and X, Y and Z be points on the lines BC, AC and AB, respectively, such that $\angle AXB = \angle BYC = \angle CZA$. The circumcircles of BXZ and CXY intersect at P. Prove that P is on the circle whose diameter has ends in the orthocenter H and in the barycenter G of $\triangle ABC$.

Originally problem 6 from day 2 of the 2015 Brazil National Olympiad.

We present the solution by Andrea Fanchini. There were no other submissions.

We use barycentric coordinates and the usual Conway’s notations with reference to triangle ABC.

Copyright © Canadian Mathematical Society, 2017
Then the generic points X, Y and Z have absolute coordinates

$$X(0, v, 1 - v), \quad Y(1 - w, 0, w), \quad Z(u, 1 - u, 0)$$

where u, v and w are parameters.

Equation of line AX is $(v - 1)y + vz = 0$, then the $\angle AXB$ gives

$$S_{AXB} = S \cot AXB = S_C - a^2 v$$

Equation of line BY is $wx + (w - 1)z = 0$, then the $\angle BYC$ gives

$$S_{BYC} = S \cot BYC = S_A - b^2 w$$

Equation of line CZ is $(u - 1)x + uy = 0$, then the $\angle CZA$ gives

$$S_{CZA} = S \cot CZA = S_B - c^2 u$$

Now if $\angle AXB = \angle BYC = \angle CZA$ we have the system

$$\begin{cases}
S_C - a^2 v = S_B - c^2 u \\
S_A - b^2 w = S_B - c^2 u
\end{cases} \Rightarrow \begin{cases}
v = \frac{b^2 - a^2 + c^2 u}{a^2} \\
w = \frac{b^2 - a^2 + c^2 u}{b^2}
\end{cases}$$

Therefore points X and Y have coordinates that depend only on the parameter u:

$$X \left(0, \frac{b^2 - c^2 + c^2 u}{a^2}, 2S_B - c^2 u \right), \quad Y \left(\frac{a^2 - c^2 u}{b^2}, 0, \frac{b^2 - a^2 + c^2 u}{b^2} \right).$$

Equation of a generic circle is

$$a^2 yz + b^2 zx + c^2 xy - (x + y + z)(px + qy + rz) = 0.$$

If this circle passes through B, X, Z we obtain the three conditions

$$q = 0, \quad r = b^2 - c^2 + c^2 u, \quad p = c^2 (1 - u),$$

so this circle has equation

$$a^2 yz + b^2 zx + c^2 xy - (x + y + z) \left(c^2 (1 - u)x + (b^2 - c^2 + c^2 u)z \right) = 0$$

and then the circumcircle CXY has equation

$$a^2 yz + b^2 zx + c^2 xy - (x + y + z) \left((b^2 - a^2 + c^2 u)x + (2S_B - c^2 u)y \right) = 0$$

so the radical axis is the line r

$$r : 2(S_B - c^2 u)x + (c^2 u - 2S_B)y + (b^2 - c^2 + c^2 u)z = 0.$$

Crux Mathematicorum, Vol. 43(8), October 2017
Point P (and X) is the intersection between the circle CXY and the radical axis

\[
\begin{align*}
\begin{cases}
b^2x^2 + a^2y^2 + 2S_Cxy + (c^2u - a^2)x + (c^2 - b^2 - c^2u)y = 0, \\
y = \frac{(3S_B - S_C - 3c^2u)x + S_C - S_B + c^2u}{a^2}.
\end{cases}
\end{align*}
\]

Solving it we obtain the coordinates of P:

\[
\begin{align*}
&x - \text{coord} : 4S_B^2 + uc^2(S_C - 7S_B + 3uc^2) \\
y - \text{coord} : a^2c^2 - 2S_AS_B + 2S_B^2 + uc^2(S_A - 6S_B - S_C + 3uc^2) \\
z - \text{coord} : 2c^2S_B + uc^2(3uc^2 - 5S_B - S_A).
\end{align*}
\]

This circle has as center the midpoint between $H(S_BS_C : S_CSA : S_AS_B)$ and $G(1 : 1 : 1)$, that is

\[M_{HG}(3S_BS_C + S^2 : 3S_CSA + S^2 : 3S_AS_B + S^2).\]

The radius ρ is the distance GM_{HG}

\[
\rho^2 = \frac{S^2(S_A + S_B + S_C) - 9S_AS_BS_C}{36S^2},
\]

so the circle with diameter HG has equation

\[
a^2yz + b^2zx + c^2xy - \frac{2}{3}(x + y + z)(S_Ax + S_By + S_Cz) = 0.
\]

Now we put the coordinates of P in this last equation and with a bit of algebra we can verify that this point is on the circle.