FOCUS ON...
No. 27
Michel Bataille
Some relations in the triangle (I)

Introduction

Relations between the elements of a triangle intervene in *Crux* problems – and solutions – quite often, and that's an understatement! Every solver wanting to establish an identity or an inequality involving those elements should have a number of these relations in her/his toolbox: the Laws of Sines and Cosines of course, but also classical relations such as $a = b \cos C + c \cos B$ or $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$.

However, even the most common of these relations form a vast subject; for instance, the compendium of them in [1] spreads over some twenty pages! The modest goal of this number and the next one is to present a selection of less familiar relations chosen because of their aesthetic qualities and/or their applications to problems. Here and in what follows, we use the standard notations as they can be found in [2] (where α, β, γ are preferred to A, B, C for the angles of the triangle, though).

About the differences of angles $B - C, C - A$ and $A - B$

We begin with the surprising relation

$$a \cos(B - C) + b \cos(C - A) + c \cos(A - B) = 2(a \cos A + b \cos B + c \cos C). \quad (1)$$

The proof is easy: we have that $a \sin C = c \sin A$ (from the Law of Sines) and $b = a \cos C + c \cos A$, therefore

$$a \cos(B - C) - b \cos B = a \cos B \cos C + a \sin B \sin C - b \cos B$$
$$= \cos B(a \cos C - b) + c \sin A \sin B$$
$$= -c \cos A \cos B + c \sin A \sin B$$
$$= -c \cos(A + B)$$
$$= c \cos C.$$

Hence

$$a \cos(B - C) = b \cos B + c \cos C.$$

With similar results for $b \cos(C - A)$ and $c \cos(A - B)$, the desired equality is deduced at once.

With the help of the Law of Cosines, (1) leads to

$$a \cos(B - C) + b \cos(C - A) + c \cos(A - B)$$
$$= \frac{2(a^2b^2 + b^2c^2 + c^2a^2 - a^4 - b^4 - c^4)}{abc} \quad (2)$$
so that
\[a \cos(B - C) + b \cos(C - A) + c \cos(A - B) = \frac{16F^2}{4RF} = \frac{4F}{R} = \frac{abc}{R^2} = \frac{4rs}{R}. \]

Here are two applications. First, the latter shows that \(\frac{4rs}{R} \leq a + b + c = 2s \) and we obtain Euler's inequality \(R \geq 2r \) in a rather oblique way!

Second, (1) yields a neat solution to problem 2546 [2000 : 237 ; 2001 : 343]

Prove that triangle \(ABC \) is equilateral if and only if
\[a \cos(B - C) + b \cos(C - A) + c \cos(A - B) = \frac{a^4 + b^4 + c^4}{abc}, \]
for (2) shows that the given relation is equivalent to
\[2(a^4 + b^4 + c^4) = 2(a^2b^2 + b^2c^2 + c^2a^2), \]
that is, to
\[(a^2 - b^2)^2 + (b^2 - c^2)^2 + (c^2 - a^2)^2 = 0, \]
which clearly holds if and only if \(a = b = c \).

In the same vein, we will prove the following beautiful formula
\[a^3 \cos(B - C) + b^3 \cos(C - A) + c^3 \cos(A - B) = 3abc. \] (3)

To this aim, we start with expressions of the area \(F \) that deserve to be better known:
\[4F = a^2 \sin 2B + b^2 \sin 2A = b^2 \sin 2C + c^2 \sin 2B = c^2 \sin 2A + a^2 \sin 2C. \] (4)

This follows, for example, from
\[a^2 \sin 2B + b^2 \sin 2A = 2a^2 \sin B \cos B + 2ab \sin B \cos A = 2ac \sin B = 4F. \]

Formula (3) is deduced smoothly once we have noticed that
\[a^3 \cos(B - C) = a^2 \cdot 2R \sin A \cos(B - C) \]
\[= 2Ra^2 \sin (B + C) \cos(B - C) \]
\[= Ra^2 (\sin 2B + \sin 2C). \]

Then, using (4),
\[\sum_{\text{cyclic}} a^3 \cos(B - C) \]
\[= R(a^2 \sin 2B + a^2 \sin 2C + b^2 \sin 2C + b^2 \sin 2A + c^2 \sin 2A + c^2 \sin 2B) \]
\[= R(4F + 4F + 4F) \]
\[= 12RF \]
\[= 3abc. \]
About the cosines of $\frac{B-C}{2}$, $\frac{C-A}{2}$ and $\frac{A-B}{2}$

We will consider two expressions of $\cos\left(\frac{B-C}{2}\right)$ and apply them to past problems. The first one is readily obtained:

$$\cos\left(\frac{B-C}{2}\right) = \frac{b+c}{a} \cdot \sin \frac{A}{2}. \quad (5)$$

Indeed, because $\cos \frac{A}{2} = \sin \left(\frac{B+C}{2}\right)$, we have

$$\cos\left(\frac{B-C}{2}\right) \sin \frac{A}{2} = \frac{2 \sin \left(\frac{B+C}{2}\right) \cos \left(\frac{B-C}{2}\right)}{2 \cos \frac{A}{2} \sin \frac{A}{2}} = \frac{\sin B + \sin C}{\sin A} = \frac{b+c}{a}.$$

Relation (5) and similar relations provide a quick and easy solution to problem [2002 : 112; 2003 : 119], which states:

For any triangle ABC, prove that

$$8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \cos \left(\frac{A-B}{2}\right) \cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right).$$

This immediately follows from (5):

$$\frac{\cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right) \cos \left(\frac{A-B}{2}\right)}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} = \frac{\left(\frac{b+c}{a}\right) \left(\frac{c+a}{b}\right) \left(\frac{a+b}{c}\right)}{2 + \left(\frac{b}{a} + \frac{a}{b}\right) + \left(\frac{c}{b} + \frac{b}{c}\right) + \left(\frac{a}{c} + \frac{c}{a}\right)} \geq 8,$$

since $x + \frac{1}{x} \geq 2$ for all positive real numbers x.

Note that the inequality rewrites as

$$\cos \left(\frac{A-B}{2}\right) \cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right) \geq 2r. \quad (6)$$

From (6) we easily derive the related inequality

$$\cos \left(\frac{A-B}{2}\right) + \cos \left(\frac{B-C}{2}\right) + \cos \left(\frac{C-A}{2}\right) \geq 1 + \frac{4r}{R}. \quad (7)$$

Proof. Since

$$\cos \left(\frac{A-B}{2}\right) \geq \cos^2 \left(\frac{A-B}{2}\right) = \frac{1}{2} + \frac{1}{2} \cos(A-B)$$

it is sufficient to show that

$$\cos(A-B) + \cos(B-C) + \cos(C-A) \geq \frac{8r}{R} - 1.$$
But, when \(x + y + z = 0 \), we have
\[
\cos x + \cos y + \cos z = 4 \cos \frac{x}{2} \cos \frac{y}{2} \cos \frac{z}{2} - 1,
\]
hence the latter inequality readily transforms into (6) and therefore is true.

It is interesting to notice that this is a variant of proof of an old \textit{Crux} inequality, namely
\[
\cos \left(\frac{A - B}{2} \right) + \cos \left(\frac{B - C}{2} \right) + \cos \left(\frac{C - A}{2} \right) \geq 4(\cos A + \cos B + \cos C) - 3,
\]
proposed in problem \textbf{696} \cite{1981:302;1982:316} (taking into account the known formula \(\cos A + \cos B + \cos C = 1 + \frac{r}{R} \)).

The following additional formula involves the distance \(IA \) from the incenter \(I \) to the vertex \(A \):
\[
\cos \left(\frac{B - C}{2} \right) = \frac{IA}{2R} + \frac{r}{IA}.
\]

To prove this relation, we introduce the circumcentre \(O \) of \(ABC \) and observe that in the case when \(B \geq C \), we have \(C \leq 90^\circ \) and
\[
\angle BAO = \angle OBA = \frac{180^\circ - \angle AOB}{2} = 90^\circ - C.
\]

In consequence,
\[
\angle IAO = \angle BAO - \angle BAI = 90^\circ - C - \frac{A}{2} = \frac{B - C}{2}.
\]

If \(C > B \), we obtain \(\angle IAO = \frac{C - B}{2} \) and in either case
\[
\cos \left(\frac{B - C}{2} \right) = \frac{IA^2 + R^2 - IO^2}{2IA \cdot R} = \frac{IA}{2R} + \frac{r}{IA}
\]
since \(IO^2 = R^2 - 2rR \) (Euler’s formula).

Note that an application of the arithmetic-geometric mean inequality yields
\[
\cos \left(\frac{B - C}{2} \right) \geq 2\sqrt{\frac{IA}{2R} \cdot \frac{r}{IA}} = 2\sqrt{\frac{r}{2R}}
\]
or

\[\cos^2 \left(\frac{B - C}{2} \right) \geq \frac{2r}{R}, \]

the inequality to be proved in problem 2382 [1998 : 425 ; 1999 : 440].

Our second part will offer relations involving the altitudes, exradii, etc. By way of transition, let us remark that if \(H \) is the orthocentre of \(\Delta ABC \), then \(\angle IAO = \angle IAH \) (recall that the line \(AO \) and the altitude from vertex A are symmetric in the angle bisector of \(\angle BAC \)). We deduce that \(\cos \left(\frac{B - C}{2} \right) = \frac{h_a}{w_a} \) where, following the notations of [2], \(w_a = AD \) is the length of the angle bisector of \(\angle BAC \) (see figure above). Therefore, relations (6) and (7) yield

\[
\frac{h_a h_b h_c}{w_a w_b w_c} \geq \frac{2r}{R} \quad \text{and} \quad \frac{h_a}{w_a} + \frac{h_b}{w_b} + \frac{h_c}{w_c} \geq 1 + \frac{4r}{R}.
\]

Exercises

1. a) Establish the formula \(\sin 2A + \sin 2B + \sin 2C = \frac{abc}{2R^3} \) and deduce an expression of \(a^2 \sin 2A + b^2 \sin 2B + c^2 \sin 2C \).

b) Prove that

\[
a^3 \cos A + b^3 \cos B + c^3 \cos C = \frac{abc}{2R^2} \cdot (a^2 + b^2 + c^2 - 6R^2)
\]

and

\[
a \cos^3 A + b \cos^3 B + c \cos^3 C = \frac{abc}{8R^4} \cdot (10R^2 - (a^2 + b^2 + c^2)).
\]

c) From the latter, deduce that if \(\Delta ABC \) is not obtuse then

\[a \cos^3 A + b \cos^3 B + c \cos^3 C \leq \frac{abc}{4R^2}, \]

(the inequality to be proved in problem 3167 [2006 : 395,397 ; 2007 : 374].)

2. Prove the inequality \(\sum_{\text{cyclic}} a \cos \frac{B-C}{2} \geq s \left(1 + \frac{2r}{R}\right) \) (use (5) or give a look at problem 696) and deduce that

\[\frac{1}{w_a} + \frac{1}{w_b} + \frac{1}{w_c} \geq \frac{1}{2r} + \frac{1}{R}. \]

References

Copyright © Canadian Mathematical Society, 2017