CONTEST CORNER

SOLUIONS

CC216. Starting with a list of three numbers, the “changesum” procedure creates a new list by replacing each number by the sum of the other two. For example, from \{3, 4, 6\} “changesum” gives \{10, 9, 7\} and a new “changesum” leads to \{16, 17, 19\}. If we begin with \{20, 1, 3\}, what is the maximum difference between two numbers of the list after 2014 consecutive “changesums”?

Originally question 23 of Irish Junior Maths Competition Final 2014.

We received four correct solutions. We present the solution of Doddy Kastanya.

Suppose we have a list of numbers \{a, b, c\} where \(a < b < c\). The maximum difference between the largest and the smallest number is \(c - a\). The “changesum” operation on this list will create a new list \(\{b + c, a + c, a + b\}\). Since \(a < b\), we know that \(a + c < b + c\). Since \(b < c\), we also know that \(a + b < a + c\). Combining these two inequalities, we can write \(a + b < a + c < b + c\).

The maximum difference between any number is \((b + c) - (a + b)\) or \(c - a\). So, after the first “changesum” operation, the maximum difference stays the same. Since the maximum difference is independent of the order of \(\{a, b, c\}\) in the original list, the difference will always be \(c - a\).

Equipped with this knowledge, for the initial list of \{20, 1, 3\}, the maximum difference will always be 20 – 1 or 19. So, after 2014 consecutive “changesum” operations, the maximum difference between two numbers will be 19.

CC217. A right triangle \(ABC\) has its hypotenuse \(AB\) trisected at \(M\) and \(N\). If \(CM^2 + CN^2 = k \cdot AB^2\), then what is the value of \(k\)?

Originally question 27 in the Indiana State Mathematics Contest 2009 (Comprehensive Test).

We received eight correct submissions. We present a solution by Doddy Kastanya.

Let \(K\) and \(L\) be the two points on \(CB\) such that \(MK \perp BC\) and \(NL \perp BC\). This yields

\[
CM^2 = CK^2 + MK^2
\]

\[
CN^2 = CL^2 + NL^2.
\]

Using similar triangles \(MKB\) and \(ACB\), we have \(CK = \frac{1}{3}BC\) and \(MK = \frac{2}{3}AC\).

Crux Mathematicorum, Vol. 43(4), April 2017
Substituting this into (1), we get

\[CM^2 = \frac{1}{9} BC^2 + \frac{4}{9} AC^2. \]

(3)

Using similar triangles \(NLB \) and \(ACB \), we have \(CL = \frac{2}{3} BC \) and \(NL = \frac{1}{3} AC \). Substituting this into (2), we get

\[CN^2 = \frac{1}{9} AC^2 + \frac{4}{9} BC^2. \]

(4)

Adding (3) and (4) together, we get

\[CM^2 + CN^2 = \frac{5}{9} (AB^2 + BC^2) = \frac{5}{9} AB^2. \]

So the value of \(k \) is \(\frac{5}{9} \).

Editor’s Comments. Zelator presented (and proved) the following generalization of the problem. (His solution uses the relation between a median and the sides of a triangle as well as the cosine law.)

Let \(r_1 \) and \(r_2 \) be distinct fixed positive real numbers, \(0 < r_1 < r_2 < 1 \). Let \(ABC \) be a right triangle with the right angle at \(C \), hypotenuse \(AB \) and with lengths \(AB = c, BC = a \) and \(AB = c \). Let \(M \) and \(N \) be points on the hypotenuse \(AB \), such that \(AM = r_1c \) and \(AN = r_2c \). Finally, let \(CM = x \) and \(CN = y \).

a) Show that \(x^2 = r_1^2 a^2 + (1 - r_1)^2 b^2 \) and \(y^2 = r_2^2 a^2 + (1 - r_2)^2 b^2 \).

b) Suppose that \(r_1 + r_2 = 1 \) and \(x^2 + y^2 = kc^2 \). Show that \(k = r_1^2 + r_2^2 \).

c) Suppose that \(r_1 + r_2 \neq 1 \) and \(x^2 + y^2 = kc^2 \). Express \(k \) in terms of \(r_1, r_2 \) and the ratio \(R = \frac{b}{a} \).

CC218. Solve the following system of equations:

\[
\begin{align*}
3^\ln x &= 4^\ln y, \\
(4x)^\ln 4 &= (3y)^\ln 3.
\end{align*}
\]

Originally question 10 from the 2014 Texas A&M High School Mathematics Contest.

We received seven correct submissions. We present a solution by Šefket Šarlanagić, modified by the editor, and a generalization.

Using the fact that a logarithmic function is one-to-one and employing properties of logarithms, we get

\[
\begin{align*}
3^\ln x &= 4^\ln y, \\
(4x)^\ln 4 &= (3y)^\ln 3,
\end{align*}
\]

\(\iff \)

\[
\begin{align*}
\ln x \ln 3 &= \ln y \ln 4, \\
(ln 4 + \ln x)\ln 4 &= (\ln 3 + \ln y)\ln 3.
\end{align*}
\]

Copyright © Canadian Mathematical Society, 2017
From the first equation we see that \(\ln x = \frac{\ln y \ln 4}{\ln 3} \) and substituting into the second equation, we have

\[
\left(\ln 4 + \frac{\ln y \ln 4}{\ln 3} \right) \ln 4 = (\ln 3 + \ln y) \ln 3
\]

and so

\[
(\ln^2 4 - \ln^2 3) \left(1 + \frac{\ln y}{\ln 3} \right) = 0.
\]

From here, since \(\ln^2 3 - \ln^2 4 \neq 0 \), we get \(\ln y = -\ln 3 \), so \(y = \frac{1}{3} \). Plugging this back into the first equation, we have

\[
\ln x = \frac{\ln y \ln 4}{\ln 3} = \frac{\ln 3 \ln 4}{\ln 3} = -\ln 4,
\]

so \(x = \frac{1}{4} \). Therefore, the solution to the system is \((x, y) = (\frac{1}{4}, \frac{1}{3}) \).

Editor’s Comments. Sitariu and Zelator (independently) both noticed that the use of numbers 3 and 4 was arbitrary and gave the following generalized version: the system

\[
\begin{align*}
a \ln x &= b \ln y, \\
(bx)^{\ln b} &= (ay)^{\ln a},
\end{align*}
\]

has solution \((x, y) = (\frac{1}{b}, \frac{1}{a}) \). Natural logarithms can also be replaced with logarithms in base \(c > 0 \).

CC219. A wooden rectangular prism has dimensions 4 by 5 by 6. This solid is painted green and then cut into 1 by 1 by 1 cubes. Find the ratio of the number of cubes with exactly two green faces to the number of cubes with exactly three green faces.

Originally question 18 of the 2014 Texas A&M High School Mathematics Contest.

We received three correct solutions. We present the solution of Fernando Ballesta.

There are 8 cubes with three faces coloured (which are the 8 corners), and there are

\[
4(6-2) + 4(5-2) + 4(4-2) = 16 + 12 + 8 = 36
\]

cubes with two faces coloured (which are the ones on the edges and are not corners).

So the ratio is 36 : 8 = 9 : 2, that is, for every two faces with three faces coloured there are nine with two faces coloured.

CC220. Two random numbers \(x \) and \(y \) are drawn independently from the closed interval \([0, 2]\). What is the probability that \(x + y > 1？\)

Originally question 13 of the 2014 Texas A&M High School Mathematics Contest.

We received three correct solutions. We present the solution of Doddy Kastanya.

Crux Mathematicorum, Vol. 43(4), April 2017
We can draw on the Cartesian plane the area (shaded in the figure below) represented by $x + y > 1$.

The probability of $x + y > 1$ is simply the ratio between the shaded area and the area of the overall square. The area of the non-shaded part of the square is $\frac{1}{2}$. The overall area of the square is $2 \cdot 2 = 4$. So, the area of the shaded part of the square is $4 - \frac{1}{2} = \frac{7}{2}$.

Therefore, the probability that $x + y > 1$ is $\frac{7}{2}/4$ or $\frac{7}{8}$.

Copyright © Canadian Mathematical Society, 2017