OC311. Let \(\triangle ABC \) be an acute-scalene triangle, and let \(N \) be the center of the circle which passes through the feet of the altitudes. Let \(D \) be the intersection of the tangents to the circumcircle of \(\triangle ABC \) at \(B \) and \(C \). Prove that \(A, D \) and \(N \) are collinear if and only if \(\angle BAC = 45^\circ \).

OC312. Let \(a, b, c \) be nonnegative real numbers. Prove that
\[
\frac{(a - bc)^2 + (b - ca)^2 + (c - ab)^2}{(a - b)^2 + (b - c)^2 + (c - a)^2} \geq \frac{1}{2}.
\]

OC313. Let \(x_1, x_2, \ldots, x_n \in (0, 1) \), \(n \geq 2 \). Prove that
\[
\frac{\sqrt{1 - x_1}}{x_1} + \frac{\sqrt{1 - x_2}}{x_2} + \cdots + \frac{\sqrt{1 - x_n}}{x_n} < \frac{\sqrt{n - 1}}{x_1 x_2 \cdots x_n}.
\]

OC314. Find all functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that for all reals \(x, y, z \), we have
\[
(f(x) + 1)(f(y) + f(z)) = f(xy + z) + f(xz - y).
\]

OC315. Suppose that \(a \) is an integer and that \(n! + a \) divides \((2n)! \) for infinitely many positive integers \(n \). Prove that \(a = 0 \).

OC311. Soit \(ABC \) un triangle scalène acutangle et \(N \) le centre du cercle qui passe aux pieds des trois hauteurs du triangle. Soit \(D \) le point d’intersection des tangentes au cercle circonscrit au triangle \(ABC \) aux sommets \(B \) et \(C \). Démontrer que les points \(A, D \) et \(N \) sont alignés si et seulement si \(\angle BAC = 45^\circ \).

Crux Mathematicorum, Vol. 43(1), January 2017
OC312. Soit a, b et c des réels positifs ou nuls. Démontrer que
\[
\frac{(a - bc)^2 + (b - ca)^2 + (c - ab)^2}{(a - b)^2 + (b - c)^2 + (c - a)^2} \geq \frac{1}{2}.
\]

OC313. Soit $x_1, x_2, \cdots, x_n \in (0, 1)$, $n \geq 2$. Démontrer que
\[
\sqrt{1 - x_1} + \sqrt{1 - x_2} + \cdots + \sqrt{1 - x_n} < \frac{\sqrt{n} - 1}{x_1 x_2 \cdots x_n}.
\]

OC314. Déterminer toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que
\[
(f(x) + 1)(f(y) + f(z)) = f(xy + z) + f(xz - y)
\]
pour tous réels x, y et z.

OC315. Soit a un entier tel que $n! + a$ soit un diviseur de $(2n)!$ pour un nombre infini d’entiers strictement positifs n. Démontrer que $a = 0$.

OLYMPIAD SOLUTIONS

OC251. Let a, b, c, d be real numbers such that $b - d \geq 5$ and all zeros x_1, x_2, x_3, and x_4 of the polynomial $P(x) = x^4 + ax^3 + bx^2 + cx + d$ are real. Find the smallest value the product $(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)(x_4^2 + 1)$ can take.

Originally problem 1 from day 1 of the 2014 USAMO.

We present the solution by Missouri State University Problem Solving Group. There were no other submissions.

We have that $P(x) = (x - x_1)(x - x_2)(x - x_3)(x - x_4)$ and so
\[
\begin{align*}
(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)(x_4^2 + 1) & = (i - x_1)(i - x_2)(i - x_3)(i - x_4) \cdot (-i - x_1)(-i - x_2)(-i - x_3)(-i - x_4) \\
& = P(i)P(-i) \\
& = (1 - ai - b + ci + d)(1 + ai - b - ci + d) \\
& = ((1 - b + d) - (a - c)i)((1 - b + d) + (a - c)i) \\
& = (1 - b + d)^2 + (a - c)^2 \\
& = (b - d - 1)^2 + (a - c)^2 \\
& \geq 4^2 + (a - c)^2
\end{align*}
\]

Copyright © Canadian Mathematical Society, 2017
This is smallest when $a = c$ and in that case, the minimum value is 16. Note that $(x - 1)^4$ shows that this minimum can be obtained.

OC252. In an obtuse triangle ABC ($AB > AC$), O is the circumcentre and D, E, F are the midpoints of BC, CA, AB respectively. Median AD intersects OF and OE at M and N respectively. BM meets CN at point P. Prove that $OP \perp AP$.

Originally problem 3 from day 1 of the 2014 South East Mathematical Olympiad.

We received 2 correct submissions. We present the solution by Andrea Fanchini.

We use barycentric coordinates and the usual Conway’s notations with reference to triangle ABC.

Coordinates of points D, E, F, O. These points are well known

$D(0 : 1 : 1), \quad E(1 : 0 : 1), \quad F(1 : 1 : 0), \quad O(a^2S_A : b^2S_B : c^2S_C)$.

Equations of lines AD, OE, OF. Now the equations of these lines are

$AD : y - z = 0, \quad OE : b^2x + (a^2 - c^2)y - b^2z = 0, \quad OF : c^2x - c^2y + (a^2 - b^2)z = 0$.

Coordinates of points M and N. We have

$M = AD \cap OF = (2S_A : c^2 : c^2), \quad N = AD \cap OE = (2S_A : b^2 : b^2)$.

Equations of lines BM, CN. Now the equations of these lines are

$BM : c^2x - 2S_Az = 0, \quad CN : b^2x - 2S_Ay = 0$.

Coordinates of point P. We have

$P = BM \cap CN = (2S_A : b^2 : c^2)$

Equations of lines AP, OP. Now the equations of these lines are

$AP : c^2y - b^2z = 0, \quad OP : b^2x - c^2S_Ay - b^2S_Az = 0$.

Perpendicularity of AP and OP. The infinite perpendicular point of line AP is

$AP_{\infty} \left(S_A(b^2 - c^2) : -b^2(S_A + c^2) : c^2(S_A + b^2) \right)$.

then the infinite point of OP is

$OP_{\infty} \left(S_A(b^2 - c^2) : -b^2(S_A + c^2) : c^2(S_A + b^2) \right)$.

so $AP_{\infty, \perp} = OP_{\infty}$, therefore AP and OP are perpendicular.

OC253. Prove that there exist infinitely many positive integers n such that $3^n + 2$ and $5^n + 2$ are all composite numbers.

Originally problem 8 of the 2014 China Northern Mathematical Olympiad.

We received 9 correct submissions. We present the solution by Ali Adnan.

It is easily seen using Fermat’s Little Theorem that for all $k \geq 0$,
which shows that there are infinitely many $n \in \mathbb{N}$ such that both $3^n + 2$ and $5^n + 2$ are composite ($n = 16k + 6, \ k \geq 0$).

OC254. Find all non-negative integers k, n which satisfy $2^{2k+1} + 9 \cdot 2^k + 5 = n^2$.

Originally problem 5 of the 2014 Balkan Mathematical Olympiad Team Selection Test.

We received 9 correct submissions. We present the solution by Titu Zvonaru.

The only solution is when $k = 0$ and $n = 4$ which one can easily check is a solution. By inspection, we can plug in the values for $k = 0, \ k = 1,$ and $k = 2$ and see that the only solution arises when $k = 0$ which we have already considered. Now, suppose that $k > 2$. Since the left hand side is odd, it follows that n is odd. Let $n = 2p + 1$ where p is a positive integer. The given equation is equivalent to

$$2^{2k+1} + 9 \cdot 2^k + 5 = 4p^2 + 4p + 1$$

$$2^{2k-1} + 9 \cdot 2^{k-2} + 5 = p(p + 1)$$

As $k > 2$, the left hand side above is odd however the right hand side above is even and thus we do not obtain any solutions.

OC255. Let n be a positive integer and x_1, x_2, \ldots, x_n be positive reals. Show that there are numbers $a_1, a_2, \ldots, a_n \in \{-1, 1\}$ such that the following holds:

$$a_1 x_1^2 + a_2 x_2^2 + \cdots + a_n x_n^2 \geq (a_1 x_1 + a_2 x_2 + \cdots + a_n x_n)^2$$

Originally problem 6 of the 2014 France Team Selection Test.

We received 1 incorrect submission.

Editor’s Note: There is a requirement that $|a_i| = 1$ for each i.

Copyright © Canadian Mathematical Society, 2017