THE OLYMPIAD CORNER

No. 339

Carmen Bruni

The problems featured in this section have appeared in a regional or national mathematical Olympiad. Readers are invited to submit solutions, comments and generalizations to any problem. Please see submission guidelines inside the back cover or online.

To facilitate their consideration, solutions should be received by the editor by December 1, 2016, although late solutions will also be considered until a solution is published.

The editor thanks Rolland Gaudet, retired professor of the University College of Saint Boniface, for translations of the problems.

OC261. Show that there are no 2-tuples \((x, y)\) of positive integers satisfying the equation \((x + 1)(x + 2)\cdots(x + 2014) = (y + 1)(y + 2)\cdots(y + 4028)\).

OC262. In obtuse triangle \(ABC\), with the obtuse angle at \(A\), let \(D, E, F\) be the feet of the altitudes through \(A, B, C\) respectively. \(DE\) is parallel to \(CF\), and \(DF\) is parallel to the angle bisector of \(\angle BAC\). Find the angles of the triangle.

OC263. An integer \(n \geq 3\) is called *special* if it does not divide

\[
(n - 1)\left(1 + \frac{1}{2} + \cdots + \frac{1}{n-1}\right).
\]

Find all special numbers \(n\) such that \(10 \leq n \leq 100\).

OC264. A positive integer is called *beautiful* if it can be represented in the form \(x^2 + y^2\) for two distinct positive integers \(x, y\). A positive integer that is not beautiful is *ugly*.

1. Prove that 2014 is a product of a beautiful number and an ugly number.
2. Prove that the product of two ugly numbers is also ugly.

OC265. Five airway companies operate in a country consisting of 36 cities. Between any pair of cities exactly one company operates two way flights. If some air company operates between cities \(A, B\) and \(B, C\) we say that the ordered triple \(A, B, C\) is properly-connected. Determine the largest possible value of \(k\) such that no matter how these flights are arranged there are at least \(k\) properly-connected triples.
OC261. Démontrer qu’il n’existe aucun couple d’entiers positifs \((x, y)\) satisfaisant à l’équation \((x + 1)(x + 2) \cdots (x + 2014) = (y + 1)(y + 2) \cdots (y + 4028)\).

OC262. Soit un triangle obtus \(ABC\), où l’angle obtus se situe à \(A\), et soient \(D, E, F\) les pieds des altitudes provenant de \(A, B, C\) respectivement. \(DE\) est parallèle à \(CF\) et \(DF\) est parallèle à la bissectrice de \(\angle BAC\). Déterminer les angles du triangle.

OC263. Un entier \(n \geq 3\) est dit spécial s’il ne divise pas
\[
(n - 1)! \left(1 + \frac{1}{2} + \cdots + \frac{1}{n - 1}\right).
\]
Déterminer tous les nombres spéciaux \(n\) tels que \(10 \leq n \leq 100\).

OC264. Un entier est dit adorable s’il peut être représenté sous la forme \(x^2 + y^2\) pour deux entiers positifs distincts \(x, y\). Un entier positif qui n’est pas adorable est dit moche.

1. Démontrer que 2014 est le produit d’un nombre adorable et un nombre moche.
2. Démontrer que le produit de deux nombres moches est moche.

OC265. Cinq compagnies aériennes opèrent dans un pays comprenant 36 villes. Entre toute paire de villes, exactement une compagnie aérienne opère un vol aller-retour. Si une compagnie aérienne opère entre les villes \(A, B\) puis \(B, C\), on dit que le triplet \(A, B, C\) est proprement connecté. Déterminer la plus grande valeur possible de \(k\) telle que, quelle que soit l’organisation des vols, il y aura toujours au moins \(k\) triplets proprement connectés.
OLYMPIAD SOLUTIONS

OC201. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0) \in \mathbb{Q}$ and

$$f(x + f(y)^2) = f(x + y)^2.$$

Originally problem 2 from the third round algebra of the 2013 Iran National Mathematical Olympiad.

We received one correct solution. We present the solution by Oliver Geupel.

The two constant functions $f(x) = 0$ and $f(x) = 1$ have the required property, and we show that there are no other solutions.

Let us refer to the functional equation as $F(x, y)$. Let f be a solution and let $f(0) = a/b$ where a, b are integers and $b \geq 1$. From $F(x + y - q^2, 0)$ we obtain $f(x + y) = f(x + y - q^2 + f(0)^2) = f(x + y - q^2)^2$. Specialising $x = 0$, we also have $f(y) = f(y - q^2)^2$. Hence, using $F(x, y - q^2)$, we see that

$$f(x + f(y)) = f((x + f(y - q^2)^2) = f(x + y - q^2)^2 = f(x + y).$$

(1)

Setting $y = 0$ in (1), we obtain $f(x + q) = f(x)$ and therefore

$$f(x + nq) = f(x)$$

(2)

for every integer n. A further consequence of (1) is

$$f(f(x)) = f(x).$$

By $F(x, 0)$, we have $f(x + q^2) = f(x)^2$. Mathematical induction yields

$$f(x + nq^2) = f(x)^{2^n} \quad (n \in \mathbb{N}).$$

(3)

From $F(x - q^2, 0)$, we see that $f(x) = f(x - q^2 + f(0)^2) = f(x - q^2)^2 \geq 0$. By (2) and (3), $f(x) = f(x + aq) = f(x + bq^2) = f(x)^{2^a}$, so that $f(x) \in \{0, 1\}$; whence also $q \in \{0, 1\}$. We consider the cases $q = 1$ and $q = 0$ in succession.

Case $q = 1$. We show that f is the constant function $f(x) = 1$. The proof is by contradiction. Suppose for some real number t it holds $f(t) = 0$. Then,

$$1 = f(0) = f(f(t)) = f(t) = 0,$$

a contradiction which shows that f is the constant function $f(x) = 1$.

Case $q = 0$. We prove that f is the constant function $f(x) = 0$. The proof is again by contradiction. Assume $f(t) = 1$ for some real number t. By (1),

$$f \left(\frac{1}{2} + f \left(\frac{1}{2} \right) \right) = f \left(\frac{1}{2} + \frac{1}{2} \right) = f(1) = f(f(t)) = f(t) = 1.$$
If \(f \left(\frac{1}{3} \right) = 0 \), then \(f \left(\frac{1}{2} + f \left(\frac{1}{3} \right) \right) = 0 \), which is impossible. Thus \(f \left(\frac{1}{3} \right) = 1 \). Hence, by (1), \(f \left(\frac{1}{3} \right) = f \left(\frac{1}{2} + 1 \right) = f \left(\frac{1}{2} + f \left(\frac{1}{3} \right) \right) = 1 \). Moreover, \(0 = f \left(\frac{1}{2} - \frac{1}{2} \right) = f \left(\frac{1}{2} + f \left(-\frac{1}{2} \right) \right) \). Note that \(f \left(-\frac{1}{2} \right) \) is either 0 or 1. So \(f \left(\frac{1}{2} + f \left(-\frac{1}{2} \right) \right) \) is equal to either \(f \left(\frac{1}{2} \right) = 1 \) or \(f \left(\frac{3}{2} \right) = 1 \). This is impossible and the proof is complete.

OC202. Let \(a, b \) be real numbers such that the equation \(x^3 - ax^2 + bx - a = 0 \) has three positive real roots. Find the minimum of \(\frac{2a^3 - 3ab + 3a}{b+1} \).

Originally problem 1 from day 1 of the 2013 South East Mathematical Olympiad.

We received six correct solutions. We present the solution by Michel Bataille.

First, let \(S \) be the set of all pairs of real numbers \((a, b)\) such that the equation \(x^3 - ax^2 + bx - a = 0 \) has three positive real roots and let \(R(a, b) = \frac{2a^3 - 3ab + 3a}{b+1} \).

We show that \(\min_{(a, b) \in S} R(a, b) = 9\sqrt{3} \).

Now, if \(a = 3\sqrt{3}, \ b = 9 \), the equation becomes \((x - \sqrt{3})^3 = 0 \) whose roots are clearly positive real numbers and it is readily checked that \(R(3\sqrt{3}, 9) = 9\sqrt{3} \).

Thus, there just remains to prove that \(R(a, b) \geq 9\sqrt{3} \) whenever \((a, b) \in S\).

Let \((a, b) \in S\) and let \(x_1, x_2, x_3 \) be positive roots of \(x^3 - ax^2 + bx - a = 0 \). Then,

\[
x_1 + x_2 + x_3 = a, \quad x_1x_2 + x_2x_3 + x_3x_1 = b, \quad x_1x_2x_3 = a.
\]

Note that the above shows that \(a, b > 0 \) since the roots are positive real numbers. Observing that

\[
(x_1 + x_2 + x_3)^3 = x_1^3 + x_2^3 + x_3^3 + 3(x_1 + x_2 + x_3)(x_1x_2 + x_2x_3 + x_3x_1) - 3x_1x_2x_3
\]

we obtain \(2a^3 = 2(x_1^3 + x_2^3 + x_3^3) + 6ab - 6a \), hence

\[
2a^3 - 3ab + 3a = 2(x_1^3 + x_2^3 + x_3^3) + 3ab - 3a \geq 2.3x_1x_2x_3 + 3ab - 3a = 3ab + 3a = 3a(b+1)
\]

(using AM-GM for the inequality). It follows that

\[
R(a, b) \geq \frac{3a(b+1)}{b+1} = 3a.
\]

(1)

Now, by AM-GM again, \(\left(\frac{x_1 + x_2 + x_3}{3} \right)^3 \geq x_1x_2x_3 \), hence \(\frac{a^3}{27} \geq a \) and so \(a \geq 3\sqrt{3} \).

With (1), we deduce that \(R(a, b) \geq 9\sqrt{3} \), as desired.

OC203. Find all positive integers \(m \) and \(n \) satisfying \(2^n + n = m! \).

Originally problem 1 from day 2 of the 2013 Turkey Mathematical Olympiad.

We received one correct solution. We present the solution by Oliver Geupel.

A solution is

\[
(m, n) = (3, 2)
\]

and we show that it is unique.

Crus Mathematicorum, Vol. 42(1), January 2016
Suppose that \((m,n)\) is any solution. Then there exists a nonnegative integer \(a\) and a positive odd integer \(b\) such that \(n = 2^a b\). The exact power of 2 that divides \(m! = 2^a + n = 2^n (2^{n-a} + b)\) is \(2^a\). Thus \(m \leq 2^a + 1\). If \(a \leq 4\) then \(m \leq 9\). A straightforward inspection shows that when \(m \leq 9\), the only solution is \((m,n) = (3,2)\). We now consider the case \(a \geq 5\).

We prove that for every \(a \geq 5\) it holds

\[
2^{2^a} > (2a + 1)!.
\]

The proof is by mathematical induction on \(a\). The base case \(a = 5\) is satisfied since

\[
2^{32} > 2^{27} = 2^8 \cdot 2^7 \cdot 2^5 \cdot 2^4 > 2^8 \cdot 3^2 \cdot 5^2 \cdot 7 = 11!
\]

Suppose that for some \(a \geq 6\) we have \(2^{2^{a-1}} > (2a - 1)!\). Then

\[
2^{2^a} > (2a-1)!^2 > (2a-1)! \cdot 2(2a-2) \cdot 3(2a-1) > (2a-1)! \cdot 2a \cdot (2a+1) = (2a+1)!,
\]

which completes the induction.

We conclude \(2^n + n > 2^{2^a} > (2a + 1)! \geq m!\), a contradiction.

OC204. Let \(ABC\) be a triangle. Find all points \(P\) on segment \(BC\) satisfying the following property: If \(X\) and \(Y\) are the intersections of line \(PA\) with the common external tangent lines of the circumcircles of triangles \(PAB\) and \(PAC\), then

\[
\left(\frac{PA}{XY}\right)^2 + \frac{PB \cdot PC}{AB \cdot AC} = 1.
\]

Originally problem 6 from day 2 of the 2013 USA Mathematical Olympiad.

We received one correct solution. We present the solution by Titu Zvonaru.

There are only two such points, namely the intersection of the internal bisector of \(\angle BAC\) with \(BC\) or its reflection with respect to the midpoint of \(BC\).

Let \(a = BC\), \(b = CA\), \(c = AB\) and let \(\Gamma_1(O_1, R_1)\) and \(\Gamma_2(O_2, R_2)\) be the circumcircles of triangles \(PAB\) and \(PAC\) respectively. Let \(M\) be the midpoint of \(AP\) (and \(XY\)) and let \(T_1\) and \(T_2\) be the points of tangency of the common external tangent through \(X\) with the circles \(\Gamma_1\) and \(\Gamma_2\) respectively.

By the power of a point with respect to a circle, we have \(XT_1^2 = XA \cdot XP = XT_2^2\). Hence \(X\) is the midpoint of \(T_1T_2\). Since the point \(M\) lies on \(O_1O_2\) and \(\angle XMO_2 = \angle O_2T_2X = \pi/2\), we obtain the following equivalences:

\[
(XM)^2 + (MO_2)^2 = (O_2T_2)^2 + (T_2X)^2,
\]

\[
(XM)^2 = -(R_2 \cos(C))^2 + R_2^2 + \frac{(T_1T_2)^2}{4},
\]

\[
4(XM)^2 = 4R_2^2 \sin^2(C) + (O_1O_2^2 - (R_1 - R_2)^2),
\]

\[
(XY)^2 = 4R_2^2 \sin^2(C) + (R_1 \cos(B) + R_2 \cos(C))^2 - R_1^2 - R_2^2 + 2R_1R_2,
\]

\[
(XY)^2 = 4R_2^2 \sin^2(C) - R_1^2 \sin^2(B) - R_2^2 \sin^2(C) + 2R_1R_2 \cos(B) \cos(C) + 2R_1R_2.
\]
Applying the law of sines, it follows that
\[
(XY)^2 = (AP)^2 - \frac{(AP)^2}{4} - \frac{(AP)^2}{4} + \frac{(AP)^2 \cos(B) \cos(C)}{2 \sin(B) \sin(C)} + \frac{AP^2}{2 \sin(B) \sin(C)},
\]
\[
(XY)^2 = \frac{(AP)^2(1 + \cos(B) \cos(C) + \sin(B) \sin(C))}{2 \sin(B) \sin(C)},
\]
\[
\frac{(AP)^2}{(XY)^2} = \frac{2 \sin(B) \sin(C)}{1 + \cos(B) \cos(C) + \sin(B) \sin(C)}.
\]
Letting \(x = BP/PC\), we get \(BP = \frac{ax}{x+1}\) and \(PC = \frac{a}{x+1}\). This yields
\[
\frac{PA}{XY} = \frac{PB \cdot PC}{AB \cdot AC} = 1
\]
\[
\Leftrightarrow \frac{2 \sin(B) \sin(C)}{1 + \cos(B) \cos(C) + \sin(B) \sin(C)} + \frac{a^2 x}{bc(x+1)^2} = 1
\]
\[
\Leftrightarrow \frac{x \sin^2(A)}{(x+1)^2 \sin(B) \sin(C)} = \frac{1 + \cos(B) \cos(C) - \sin(B) \sin(C)}{1 + \cos(B) \cos(C) + \sin(B) \sin(C)}
\]
\[
\Leftrightarrow \frac{x(1 - \cos^2(A))}{(x+1)^2 \sin(B) \sin(C)} = \frac{1 + \cos(B+C)}{1 + \cos(B+C)}
\]
\[
\Leftrightarrow x^2 \sin(B) \sin(C) + x(-1 + \cos(B-C) \cos(B+C) + \sin(B) \sin(C)) = 0.
\]
Since
\[
-1 + \cos(B-C) \cos(B+C) = -1 + \frac{\cos(2B) + \cos(2C)}{2}
\]
\[
= -1 + \frac{1 - 2 \sin^2(B) + 1 - 2 \sin^2(C)}{2},
\]
we obtain the equation
\[
x^2 \sin(B) \sin(C) - x(\sin^2(B) + \sin^2(C) + \sin(B) \sin(C)) = 0,
\]
which is a quadratic equation with roots \(x = \sin(C)/\sin(B)\) and \(x = \sin(B)/\sin(C)\). Thus, the points \(P\) are the intersection of the internal bisector of \(\angle BAC\) with \(BC\) or its reflection with respect to the midpoint of \(BC\).

OC205. For each positive integer \(n\) determine the maximum number of points in space creating the set \(A\) which has the following properties:

1. the coordinates of every point from the set \(A\) are integers from the range \([0, n]\);
2. for each pair of different points \((x_1, x_2, x_3), (y_1, y_2, y_3)\) belonging to the set \(A\) at least one of the following inequalities \(x_1 < y_1, x_2 < y_2, x_3 < y_3\) is satisfied and at least one of the following inequalities \(x_1 > y_1, x_2 > y_2, x_3 > y_3\) is satisfied.

Cruix Mathematicorum, Vol. 42(1), January 2016
Originally problem 6 from day 2 of the 2013 Polish Mathematical Olympiad.

We received one correct solution. We present the solution by Oliver Geupel.

The answer is
\[a_n = \left\lfloor \frac{3(n + 1)^2 + 1}{4} \right\rfloor. \]

We show that an \(a_n \)-element set with the desired properties is \(A = \{(x,y,z) : x + y + z = \lfloor 3n/2 \rfloor\} \). In fact, if \(n \) is an even number, \(n = 2m \), then members of \(A \) are points \((x,y,3m - x - y)\) where \(0 \leq x \leq m \) and \(m - x \leq y \leq 2m \), as well as points \((x,y,3m - x - y)\) where \(m + 1 \leq x \leq 2m \) and \(0 \leq y \leq 3m - x \), the total number of elements being
\[
\sum_{x=0}^{m} (m + 1 + x) + \sum_{x=m+1}^{2m} (3m + 1 - x) = 3m^2 + 3m + 1 = a_n.
\]

If \(n \) is odd, \(n = 2m + 1 \), then members of \(A \) are points \((x,y,3m + 1 - x - y)\) where \(0 \leq x \leq m \) and \(m - x \leq y \leq 2m + 1 \), and points \((x,y,3m + 1 - x - y)\) where \(m + 1 \leq x \leq 2m + 1 \) and \(0 \leq y \leq 3m + 1 - x \), with the total number of elements
\[
\sum_{x=0}^{m} (m + 2 + x) + \sum_{x=m+1}^{2m+1} (3m + 2 - x) = 3(m + 1)^2 = a_n.
\]

It remains to show that every set \(A \) with the required properties has not more than \(a_n \) elements. Let us define subsets \(B_0, \ldots, B_n \) of the lattice cube \([0,n]^3\). The members of \(B_k \) are the points \((x,n-k,z)\) where \(0 \leq x \leq k - 1 \) and \(0 \leq z \leq n \), as well as the points \((k,y,z)\) where \(n - k \leq y \leq n \) and \(0 \leq z \leq n \). So \(B_k \) consists of \(2k+1\) classes of \(n+1 \) elements each, where the members of a single class vary only in the third coordinate. Let \(P = (x,y,z) \in [0,n]^3 \). It follows that, if \(x + y < n \) then \(P \in B_{n-y} \), whereas if \(x + y \geq n \) then \(P \in B_x \). Hence the sets \(B_0, \ldots, B_n \) constitute a disjoint partition of the lattice cube.

Let \(A \) be a set with the required properties. Then \(A \cap B_k \) has not more than \(2k + 1 \) elements because it cannot contain any two members from the same class by the given property 2. Also by property 2., the elements in \(A \cap B_k \) have distinct \(z \)-coordinates. Thus \(A \cap B_k \) has not more than \(n + 1 \) elements. We obtain
\[
|A| = \sum_{k=0}^{n} |A \cap B_k| \leq \sum_{k=0}^{n} \min(2k + 1, n + 1).
\]

If \(n \) is an even number, \(n = 2m \), then
\[
\sum_{k=0}^{m} \min(2k + 1, n + 1) = \sum_{k=0}^{m} (2k + 1) + \sum_{k=m+1}^{2m} (2m + 1) = 3m^2 + 3m + 1 = a_n.
\]

If \(n \) is odd, say \(n = 2m + 1 \), then
\[
\sum_{k=0}^{m} \min(2k + 1, n + 1) = \sum_{k=0}^{m} (2k + 1) + \sum_{k=m+2}^{2m+1} (2m + 2) = 3(m + 1)^2 = a_n.
\]

Consequently, \(A \) has at least \(a_n \) elements, which completes the proof.