Application of Inversive Methods to
Euclidean Geometry : solutions

Andy Liu

In this part, we present the solutions to ten problems in Application of Inversive Methods to Euclidean Geometry by Andy Liu appearing in the previous issue (Volume 41 (3), p. 114–118). Solution to problem 1 appears in the original article.

Problem 2 (below left)
Two circles ω_1 and ω_2 are tangent externally to each other at A. A common exterior tangent touches ω_1 at P and ω_2 at Q. The other common exterior tangent touches ω_1 at R and ω_2 at S. Prove that the circumcircles of triangles PAQ and RAS are tangent to each other.

Solution to Problem 2
Invert with respect to A (above right). Then ω_1 and ω_2 become parallel lines $P'R'$ and $Q'S'$. PQ and RS become circles ω'_3 and ω'_4, tangent to both $P'R'$ and $Q'S'$. The circumcircles of triangles PAQ and RAS become diameters $P'Q'$ and $R'S'$ of ω'_3 and ω'_4. These diameters are orthogonal to PR and are therefore parallel to each other. Hence the two circumcircles are also tangent to each other.

Problem 3 (below left)
AB, AC and AD are three chords on a circle. Circles with AB and AC as diameters intersect at E, circles with AB and AD as diameters intersect at F, and circles with diameters AC and AD intersect at G. Prove that E, F and G are collinear.
Solution to Problem 3
Invert with respect to A (above right). Then the original circle becomes the line $B'C'D'$. The other three circles become the lines $E'B''F'$, $E'C'G'$ and $F'G'D'$, and they are orthogonal to AB', AC, and AD, respectively.

Hence $AE'B'C'$, $AB'F'D'$ and $AC'G'D'$ are cyclic quadrilaterals, so that $\angle B'E'C' = \angle B'AC'$, $\angle B'AF' = \angle B'D'F'$ and $\angle C'AG' = \angle C'D'G'$. It follows that

$$
\angle F'AG' = \angle B'AG' - \angle B'AF' = \angle B'AC' - \angle B'D'F' = \angle F'E'G'.
$$

Hence A, E', F' and G' are concyclic, so that E, F and G are collinear.

Problem 4 (below left)
Three circles ω_1, ω_2 and ω_3 pass through O. B is the other point of intersection of ω_1 and ω_2, C is the other point of intersection of ω_2 and ω_3, and A is the other point of intersection of ω_3 and ω_1. The tangent to ω_2 at O intersects BC at D, the tangent at O to ω_3 intersects CA at E, and the tangent at O to ω_1 intersects AB at F. Prove that D, E and F are collinear.
Solution to Problem 4
Invert with respect to O (above right). Then the three circles turn into triangle $A'B'C'$ while the tangent lines OD, OE and OF turn into themselves. Hence OD', OE' and OF' are parallel to $B'C'$, $C'A'$ and $A'B'$ respectively. Moreover, D', E' and F' lie on the circumcircles of triangles $OB'C'$, $OC'A'$ and $OA'B'$ respectively. Let Q be the circumcentre of triangle $A'B'C'$. Then Q lies on the perpendicular bisectors of OD', OE' and OF'. Hence O, D', E' and F' are concyclic. It follows that D, E and F are collinear.

Problem 5 (below left)
Four circles ω_1, ω_2, ω_3 and ω_4 are such that ω_1 and ω_2 touch at A, ω_2 and ω_3 touch at B, ω_3 and ω_4 touch at C and ω_4 and ω_1 touch at D. Prove that A, B, C and D are concyclic.

Solution to Problem 5
Invert with respect to A (above right). Then ω_1 and ω_2 become a pair of parallel lines, tangent to ω_4' and ω_3' at D' and B' respectively. These two circles are tangent to each other at C'. Let P' and Q' be the centres of ω_4' and ω_3' respectively. Then C' lies on $P'Q'$.

Since $C'D'$ and $C'B'$ are parallel, $\angle C'P'D' = \angle C'Q'B'$. Since $C'P' = D'P'$ and $C'Q' = B'Q'$,

$$\angle P'C'D' = \frac{1}{2}(180^\circ - \angle C'P'D') = \frac{1}{2}(180^\circ - \angle C'Q'B') = \angle Q'C'B'.$$

Hence C' also lies on $B'D'$, which means that A, B, C and D are concyclic.

Problem 6 (below left)
Four circles ω_1, ω_2, ω_3 and ω_4 are such that ω_1 and ω_2 intersect at A_1 and A_2, ω_2 and ω_3 intersect at B_1 and B_2, ω_3 and ω_4 intersect at C_1 and C_2, and ω_4 and ω_1 intersect at D_1 and D_2. Prove that if A_1, B_1, C_1 and D_1 are collinear or concyclic, then so are A_2, B_2, C_2 and D_2.

Crux Mathematicorum, Vol. 41(4), April 2015
Solution to Problem 6
Invert with respect to A_1 (above right). Then $A_1B_1C_1D_1$, ω_1 and ω_2 become the sides of triangle $A_2'B_2'C_2$. Since $B_2'B_1'C_1'C_2$ is cyclic, $\angle A_2'B_2'C_2 = \angle C_1'C_2'B_1$. Similarly, $\angle A_2'D_2'C_2' = \angle C_1'C_2'D_1'$. Since A_1, B_1, C_1 and D_1 are either collinear or concyclic, C_1' lies on $B_1'D_1'$. Hence $\angle C_2'C_1'B_1' + \angle C_2'C_1'D_1' = 180^\circ$. It follows that $\angle A_2'B_2'C_2' + \angle A_2'D_2'C_2' = 180^\circ$, so that A_2', B_2', C_2' and D_2' are concyclic. Hence A_2', B_2', C_2' and D_2' are either collinear or concyclic.

Problem 7 (below left)
A, B and C are three points on a line and P is a point not on this line. Prove that the circumcentres of triangles PAB, PBC and PCA are concyclic with P.

Solution to Problem 7
Let F, D and E be the respective circumcentres. Invert with respect to P (above right). Then the circles become the sides of triangle $A'B'C'$. The images D', E' and F' of the circumcentres are the reflections of P across the respective sides.

Hence the midpoints K', L' and M' of PD', PE' and PF' are the feet of perpendiculars from P to the sides of triangle $A'B'C'$. Since A, B and C are collinear, P lies on the circumcircle of triangle $A'B'C'$. It follows that $M'K'L'$ is the Simson line of triangle $A'B'C'$, so that F', D' and E' are also collinear. Hence the circumcentres are concyclic with P.

Copyright © Canadian Mathematical Society, 2016
Problem 8
Prove Ptolemy’s Inequality which states that \(AB \cdot CD + AD \cdot BC \geq AC \cdot BD \) for any convex quadrilateral \(ABCD \), with equality if and only if the quadrilateral is cyclic. (Hint: Because this is quantitative, expect to use the “polar-coordinate” definition of inversion.)

Solution to Problem 8
Invert with respect to \(A \):

Now \(B'D' = \frac{BD \cdot r^2}{AB \cdot AD} \), where \(r \) is the radius of inversion. Similarly,

\[B'C' = \frac{BC \cdot r^2}{AB \cdot AC} \quad \text{and} \quad C'D' = \frac{CD \cdot r^2}{AC \cdot AD}. \]

By the Triangle Inequality, \(B'D' \leq B'C' + C'D' \). Substituting in this the above expressions, we have

\[\frac{BD}{AB \cdot AD} \leq \frac{BC}{AB \cdot AC} + \frac{CD}{AC \cdot AD}, \]

or \(AC \cdot BD \leq BC \cdot AD + CD \cdot AB \). Equality holds if and only if \(C' \) is collinear with \(B' \) and \(D' \). Since the circumcircle of triangle \(BAD \) turns into the line \(B'D' \), this holds if and only if \(C \) is concyclic with \(A, B \) and \(D \).

Problem 9 (below)
Prove that the circle which passes through the midpoints of the sides of a triangle is tangent to the triangle’s incircle and excircles.
Solution to Problem 9
We shall prove that the midpoint circle is tangent to the incircle and the excircle facing B. By symmetry, it will be tangent to the other two excircles. Let BC, CA and AB be tangent to the excircle facing B at K, L and M, and the incircle at N, P and Q, respectively.

![Diagram showing the excircles and incircle](image)

Now

$$AB + AC - BC = (AQ + BQ) + (AN + CN) - (BP + CP) = 2AN$$

and

$$AB + AC - BC = (BK - AK) + (AM + CM) - (BL - CL) = 2CM.$$

Hence $AN = CM$. Since E is the midpoint of AC, it is also the midpoint of NM.

Invert with respective to E and choose $EM = EN = \frac{BC - AB}{2}$ as the radius of inversion. Then both circles are orthogonal to the circle of inversion, and coincide with their respective images.

Let XY be the other common interior tangent of these two circles, with X on AB and Y on BC. Let XY intersect DE at D' and EF at F'. If we can prove that D' and F' are the images of D and F respectively, then the midpoint circle inverts into the line XY, and the desired result follows. By symmetry, we have $BX = BC$ and $BY = BA$. Note that XFF' and XBY are similar triangles.

It follows that

$$FF' = \frac{BY \cdot XF}{BX} = \frac{BA(BX - BF)}{BC} = \frac{BA(2BC - BA)}{2BC},$$

$$EF' = EF - FF' = \frac{BC}{2} - \frac{2BC \cdot BA - BA^2}{2BC} = \frac{(BC - BA)^2}{2BC},$$

$$EF \cdot EF' = \frac{BC}{2} \cdot \frac{(BC - BA)^2}{2BC} = \frac{(BC - BA)^2}{4}. $$

Hence F' is indeed the inversive image of F. From the similar triangles XBY and $D'DY$, we can deduce in an analogous manner that D' is in fact the inversive image of D.

Copyright © Canadian Mathematical Society, 2016
Problem 10 (below left)
From a point O are four rays OA, OC, OB and OD in that order, such that $\angle AOB = \angle COD$. A circle tangent to OA and OB intersects a circle tangent to OC and OD at E and F. Prove that $\angle AOE = \angle DOF$.

Solution to Problem 10.
Let ω_1 be the circle tangent to OA at A and to OB at B. Let ω_2 be the circle tangent to OC at C and to OD at D. If ω_1 and ω_2 are of the same size, then both E and F will lie on the bisector of $\angle COB$, and the desired result follows immediately. Thus we may assume that ω_1 is larger than ω_2.

Invert with respect to O so that A and B coincide with their respective images A' and B' (above right). The rays OA, OC, OB and OD become the rays OA', OC', OB' and OD' respectively. The circle ω_1 coincides with its image ω_1' while the image of the circle ω_2 is another circle ω_2'. Note that the image E' of E is collinear with E and O, and the image F' of F is collinear with F and O.

We now go from the first diagram to the second in a different way. First we perform a reflection about the bisector of $\angle COB$, and then a dilation from O so that D is mapped into A'. Note that the rays OA, OC, OB and OD become the rays OD', OB', OC' and OA' respectively, while the circle ω_2 becomes the circle ω_1'. By inversion, $OD \cdot OD' = OA^2$. Since D is mapped into A', A is mapped into D' so that the circle ω_1 becomes ω_2'. It follows that F is mapped into E' while E is mapped into F'. Thus the rays OE and OF become each other, and the desired result follows.