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OLYMPIAD SOLUTIONS

Statements of the problems in this section originally appear in 2013 : 89(9), p. 397-398.
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OC141. Find all non-zero polynomials P(z), Q(z) of minimal degree with real
coefficients such that for all z € R we have :

P(a%) + Q(z) = P(z) + 2°Q(x)

Originally from the Greece National Olympiad 2012 Problem 2.

We received three correct submissions. We present the solution by Titu Zvonaru
and Neculai Stanciu.

Isolating for P and @ shows that
2deg(P) = deg(Q) + 5

which shows that the smallest possible degree for P is 3.

If deg(P) = 3, then deg(Q) = 1. Setting P(x) = az® + bx? + cx +d and Q(z) =
mz + n in the equation yields

az® + bzt + e’ +d+mx +n = ax® + bz® + cx + d + ma® + nad

and when comparing the coefficient of 22 yields that a = 0, contradicting the fact
that deg(P) = 3.

If deg(P) = 4, then deg(Q) = 3. Setting P(x) = ax* + bz + cx? + dz + e and
Q(r) = ma3 + naz? + px + ¢ in the equation yields

az® +ba® + cxt + da? + e+ mad + na® +pr+q =
azt 4+ bz + cx® + dz + e + ma® + na” + pa® + qa°.

Equating coefficients yields that m =a,n =0,b=p,¢=0,c=a,b=m,d=c
and d = p. Hence, we have that

P(z) = az’ + ax® + az’ +ax +e and Q(zx) = ax® + ax.

OC142. Find all functions f : R — R such that

ff+y)flz—y)=2"—yfly); Yo,y € R.

Originally from the Japan Mathematical Olympiad Problem 2.
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We received four correct submissions. We present the solution by Joseph Ling.

It is easy to verify that f (x) = x for all x is a solution to

f(f@+y) f@—y)=2>-yf(y). (*)

We claim that it is the only solution.

Letting 2 = y = 0, we see that the number z = f (0)° satisfies f (z) = 0. Also,

FO) =F(f(z+0)f(z=0) =2~ 0f (0) = 2*.

Now, given any y € R, we let x =y + 2. Then f (z —y) = f () = 0 and the given
equation becomes

FO)=(+2)"—yf ().
So,
uf )= W+2)"=f(0)=(y+2)"-2"=y(y+22).
It follows that for all y # 0, f (y) = y + 2z. In particular, if z # 0, then

0=f(2)=242:=32=2=0,

a contradiction. Therefore, z = 0. Consequently, f (y) =y + 0 =y for all y # 0.
But we also have f (0) = 22 = 02 = 0. This completes the proof.

OC143. Determine all the pairs (p,n) of a prime number p and a positive

. . P . .
integer n for which Zi} is an integer.

Originally from the Asian Pacific Mathematical Olympiad 2012 Problem 3.

We present the solution by Oliver Geupel.
For every prime p, the pair (p,p) is a solution. Moreover, (2,4) is a solution. We
prove that there are no other solutions.

1
Note that the function f(z) = o8 L

is decreasing for x > e.

The cases p = 2 with n < 4 are easily inspected. For n > 5 we deduce

log2 logd 1
og2 _log >ogn_

2 4 n '
n?+1
whence nlog2 > 2logn, so that 0 < <1
2n 41
Suppose that (p,n) is a solution with p > 3. For n > p, we have
1 1
ogp ogn;
D n

nP +1
P+l

whence 0 < < 1, a contradiction. Thus

1<n<p. (1)

Copyright (© Canadian Mathematical Society, 2015



378/ THE OLYMPIAD CORNER

Since the integer p™ +1 is even, the number nP 41 is also even ; whence n is odd. As
a consequence, we have the identity p" +1 = (p+1)(p" ! —p" 2 +p" 3 —... +1).
Therefore p 4+ 1 is a divisor of n? + 1. Similarly, p + 1 is a divisor of p” + 1. We
obtain

nP=-1=p” (modp+1). (2)

It follows that the numbers n and p+1 are relatively prime. By Euler’s Theorem, we
obtain n¥®*1Y =1 (mod p + 1). Applying the same theorem, we also get p#P+1) =
1 (mod p + 1). Consequently

n?®) = e+ (mod p 4 1). (3)

Lemma 1 Let a, b, and m be integers such that ged(a,m) = ged(b,m) = 1 and
suppose that k and £ are positive integers such that a* = b* (mod m) and a* = b*
(mod m). Then it holds a2°d%:0) = peed(k:0) (mod m).

The numbers a and b are members of the abelian multiplicative group of congruence
classes modulo m which are coprime to m. If, say, k < ¢, we obtain a*=¢ = pF—¢
(mod m). By the Euclidean algorithm, we arrive at the result after a finite number
of repetitions of this argument. |

From (2) and (3) we deduce by the lemma that

nged®: ¢(p+1)) = peed(p, @(p+1) (mod p 4 1).

Clearly, p(p+1) < p, so that ged(p, p(p+1)) =1 and n = p (mod p+ 1). In view
of (1), we conclude n = p. The proof is complete.

0OC144.1.et ABCD be a convex circumscribed quadrilateral such that ZABC+
ZADC < 180° and LABD + LACB = LACD + ZADB. Prove that one of the
diagonals of quadrilateral ABC D passes through the midpoint of the other diago-
nal.

Originally from Romania TST 2012 Day 2 Problem 2.
We present the solution by Oliver Geupel.

We prove the stronger statement that the quadrilateral ABCD is a kite.
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Because ZABC + ZADC < 180°, the circle (ABC') meets the diagonal BD at an
interior point E. By the inscribed angles theorem and by hypothesis, we have

/EAD =180° - /DFEA - /ADE = /AEB — /ADE = /ACB — Z/ADB
=/ACD - /ABD = ZACD — /ECA = ZDCE.
Using the law of sines in triangles AED, CDE, and ABC, we get

AD B DE B DE B CD
sin/DEA = sin/EAD = sin/ZDCE ~ sin ZCED

and
AB B AB B AB
sin/DEA sinZAEB  sin ZACB
B BC B BC B BC
~ sinZBAC  sinZBEC  sinZCED'
Hence,
AB-CD = BC - AD. (1)
Since the quadrilateral ABCD is circumscribed, we have
AB+CD = BC + AD. (2)

From (1) and (2), we deduce that it holds either AB = BC and CD = AD or
AB = AD and BC = CD. Thus the quadrilateral ABCD is a kite.

OC145. 1etn > 2 be a positive integer. Consider an n x n grid with all entries
1. Define an operation on a square to be changing the signs of all squares adjacent
to it but not the sign of its own. Find all n for which it is possible to find a finite
sequence of operations which changes all entries to —1.

Originally from China Western Mathematical Olympiad 2012, Day 2 Problem 3.

There were no solutions submitted.
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