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OLYMPIAD SOLUTIONS
Statements of the problems in this section originally appear in 2013 : 39(9), p. 397–398.

OC141. Find all non-zero polynomials P (x), Q(x) of minimal degree with real
coefficients such that for all x ∈ R we have :

P (x2) +Q(x) = P (x) + x5Q(x)

Originally from the Greece National Olympiad 2012 Problem 2.

We received three correct submissions. We present the solution by Titu Zvonaru
and Neculai Stanciu.

Isolating for P and Q shows that

2deg(P ) = deg(Q) + 5

which shows that the smallest possible degree for P is 3.

If deg(P ) = 3, then deg(Q) = 1. Setting P (x) = ax3 + bx2 + cx + d and Q(x) =
mx+ n in the equation yields

ax6 + bx4 + cx2 + d+mx+ n = ax3 + bx2 + cx+ d+mx6 + nx5

and when comparing the coefficient of x3 yields that a = 0, contradicting the fact
that deg(P ) = 3.

If deg(P ) = 4, then deg(Q) = 3. Setting P (x) = ax4 + bx3 + cx2 + dx + e and
Q(x) = mx3 + nx2 + px+ q in the equation yields

ax8 + bx6 + cx4 + dx2 + e+mx3 + nx2 + px+ q =

ax4 + bx3 + cx2 + dx+ e+mx8 + nx7 + px6 + qx5.

Equating coefficients yields that m = a, n = 0, b = p, q = 0, c = a, b = m, d = c
and d = p. Hence, we have that

P (x) = ax4 + ax3 + ax2 + ax+ e and Q(x) = ax3 + ax.

OC142. Find all functions f : R 7→ R such that

f(f(x+ y)f(x− y)) = x2 − yf(y) ; ∀x, y ∈ R .

Originally from the Japan Mathematical Olympiad Problem 2.
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We received four correct submissions. We present the solution by Joseph Ling.

It is easy to verify that f (x) = x for all x is a solution to

f (f (x+ y) f (x− y)) = x2 − yf (y) . (*)

We claim that it is the only solution.

Letting x = y = 0, we see that the number z = f (0)
2

satisfies f (z) = 0. Also,

f (0) = f (f (z + 0) f (z − 0)) = z2 − 0f (0) = z2.

Now, given any y ∈ R, we let x = y+ z. Then f (x− y) = f (z) = 0 and the given
equation becomes

f (0) = (y + z)
2 − yf (y) .

So,
yf (y) = (y + z)

2 − f (0) = (y + z)
2 − z2 = y (y + 2z) .

It follows that for all y 6= 0, f (y) = y + 2z. In particular, if z 6= 0, then

0 = f (z) = z + 2z = 3z =⇒ z = 0,

a contradiction. Therefore, z = 0. Consequently, f (y) = y + 0 = y for all y 6= 0.
But we also have f (0) = z2 = 02 = 0. This completes the proof.

OC143. Determine all the pairs (p, n) of a prime number p and a positive
integer n for which np+1

pn+1 is an integer.

Originally from the Asian Pacific Mathematical Olympiad 2012 Problem 3.

We present the solution by Oliver Geupel.

For every prime p, the pair (p, p) is a solution. Moreover, (2, 4) is a solution. We
prove that there are no other solutions.

Note that the function f(x) =
log x

x
is decreasing for x ≥ e.

The cases p = 2 with n ≤ 4 are easily inspected. For n ≥ 5 we deduce

log 2

2
=

log 4

4
>

log n

n
;

whence n log 2 > 2 log n, so that 0 <
n2 + 1

2n + 1
< 1.

Suppose that (p, n) is a solution with p ≥ 3. For n > p, we have

log p

p
>

log n

n
;

whence 0 <
np + 1

pn + 1
< 1, a contradiction. Thus

1 ≤ n ≤ p. (1)
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Since the integer pn+1 is even, the number np+1 is also even ; whence n is odd. As
a consequence, we have the identity pn+1 = (p+1)(pn−1−pn−2 +pn−3−· · ·+1).
Therefore p + 1 is a divisor of np + 1. Similarly, p + 1 is a divisor of pp + 1. We
obtain

np ≡ −1 ≡ pp (mod p+ 1) . (2)

It follows that the numbers n and p+1 are relatively prime. By Euler’s Theorem, we
obtain nϕ(p+1) ≡ 1 (mod p+ 1). Applying the same theorem, we also get pϕ(p+1) ≡
1 (mod p+ 1). Consequently

nϕ(p+1) ≡ pϕ(p+1) (mod p+ 1) . (3)

Lemma 1 Let a, b, and m be integers such that gcd(a,m) = gcd(b,m) = 1 and
suppose that k and ` are positive integers such that ak ≡ bk (mod m) and a` ≡ b`
(mod m). Then it holds agcd(k,`) ≡ bgcd(k,`) (mod m).

The numbers a and b are members of the abelian multiplicative group of congruence
classes modulo m which are coprime to m. If, say, k < `, we obtain ak−` ≡ bk−`

(mod m). By the Euclidean algorithm, we arrive at the result after a finite number
of repetitions of this argument. 2

From (2) and (3) we deduce by the lemma that

ngcd(p, ϕ(p+1)) ≡ pgcd(p, ϕ(p+1)) (mod p+ 1) .

Clearly, ϕ(p+ 1) < p, so that gcd(p, ϕ(p+ 1)) = 1 and n ≡ p (mod p+ 1). In view
of (1), we conclude n = p. The proof is complete.

OC144. LetABCD be a convex circumscribed quadrilateral such that ∠ABC+
∠ADC < 180◦ and ∠ABD + ∠ACB = ∠ACD + ∠ADB. Prove that one of the
diagonals of quadrilateral ABCD passes through the midpoint of the other diago-
nal.

Originally from Romania TST 2012 Day 2 Problem 2.

We present the solution by Oliver Geupel.

We prove the stronger statement that the quadrilateral ABCD is a kite.
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Because ∠ABC +∠ADC < 180◦, the circle (ABC) meets the diagonal BD at an
interior point E. By the inscribed angles theorem and by hypothesis, we have

∠EAD = 180◦ − ∠DEA− ∠ADE = ∠AEB − ∠ADE = ∠ACB − ∠ADB

= ∠ACD − ∠ABD = ∠ACD − ∠ECA = ∠DCE.

Using the law of sines in triangles AED, CDE, and ABC, we get

AD

sin∠DEA
=

DE

sin∠EAD
=

DE

sin∠DCE
=

CD

sin∠CED
and

AB

sin∠DEA
=

AB

sin∠AEB
=

AB

sin∠ACB

=
BC

sin∠BAC
=

BC

sin∠BEC
=

BC

sin∠CED
.

Hence,
AB · CD = BC ·AD. (1)

Since the quadrilateral ABCD is circumscribed, we have

AB + CD = BC +AD. (2)

From (1) and (2), we deduce that it holds either AB = BC and CD = AD or
AB = AD and BC = CD. Thus the quadrilateral ABCD is a kite.

OC145. Let n ≥ 2 be a positive integer. Consider an n×n grid with all entries
1. Define an operation on a square to be changing the signs of all squares adjacent
to it but not the sign of its own. Find all n for which it is possible to find a finite
sequence of operations which changes all entries to −1.

Originally from China Western Mathematical Olympiad 2012, Day 2 Problem 3.

There were no solutions submitted.
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